File size: 26,271 Bytes
eb10636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import ctypes
import enum
import os

# Define constants from the header
CPU0 = (1 << 0)  # 0x01
CPU1 = (1 << 1)  # 0x02
CPU2 = (1 << 2)  # 0x04
CPU3 = (1 << 3)  # 0x08
CPU4 = (1 << 4)  # 0x10
CPU5 = (1 << 5)  # 0x20
CPU6 = (1 << 6)  # 0x40
CPU7 = (1 << 7)  # 0x80

# --- Enums ---
class LLMCallState(enum.IntEnum):
    RKLLM_RUN_NORMAL = 0
    RKLLM_RUN_WAITING = 1
    RKLLM_RUN_FINISH = 2
    RKLLM_RUN_ERROR = 3

class RKLLMInputType(enum.IntEnum):
    RKLLM_INPUT_PROMPT = 0
    RKLLM_INPUT_TOKEN = 1
    RKLLM_INPUT_EMBED = 2
    RKLLM_INPUT_MULTIMODAL = 3

class RKLLMInferMode(enum.IntEnum):
    RKLLM_INFER_GENERATE = 0
    RKLLM_INFER_GET_LAST_HIDDEN_LAYER = 1
    RKLLM_INFER_GET_LOGITS = 2

# --- Structures ---
class RKLLMExtendParam(ctypes.Structure):
    # 基础iommu domain ID, 对>1b的模型建议设置为1
    base_domain_id: ctypes.c_int32
    # 是否使用flash存储Embedding
    embed_flash: ctypes.c_int8
    # 启用的cpu核心数
    enabled_cpus_num: ctypes.c_int8
    # 启用的cpu核心掩码
    enabled_cpus_mask: ctypes.c_uint32
    reserved: ctypes.c_uint8 * 106

    _fields_ = [
        ("base_domain_id", ctypes.c_int32),
        ("embed_flash", ctypes.c_int8),
        ("enabled_cpus_num", ctypes.c_int8),
        ("enabled_cpus_mask", ctypes.c_uint32),
        ("reserved", ctypes.c_uint8 * 106)
    ]

class RKLLMParam(ctypes.Structure):
    # 模型文件路径
    model_path: ctypes.c_char_p
    # 上下文窗口最大token数
    max_context_len: ctypes.c_int32
    # 最大生成新token数
    max_new_tokens: ctypes.c_int32
    # Top-K采样参数
    top_k: ctypes.c_int32
    # 上下文窗口移动时保留的kv缓存数量
    n_keep: ctypes.c_int32
    # Top-P采样参数
    top_p: ctypes.c_float
    # 采样温度,影响token选择的随机性
    temperature: ctypes.c_float
    # 重复token惩罚
    repeat_penalty: ctypes.c_float
    # 频繁token惩罚
    frequency_penalty: ctypes.c_float
    # 输入中已存在token的惩罚
    presence_penalty: ctypes.c_float
    # Mirostat采样策略标志(0表示禁用)
    mirostat: ctypes.c_int32
    # Mirostat采样Tau参数
    mirostat_tau: ctypes.c_float
    # Mirostat采样Eta参数
    mirostat_eta: ctypes.c_float
    # 是否跳过特殊token
    skip_special_token: ctypes.c_bool
    # 是否异步推理
    is_async: ctypes.c_bool
    # 多模态输入中图像的起始Token
    img_start: ctypes.c_char_p
    # 多模态输入中图像的结束Token
    img_end: ctypes.c_char_p
    # 图像内容指针
    img_content: ctypes.c_char_p
    # 扩展参数
    extend_param: RKLLMExtendParam

    _fields_ = [
        ("model_path", ctypes.c_char_p),         # 模型文件路径
        ("max_context_len", ctypes.c_int32),     # 上下文窗口最大token数
        ("max_new_tokens", ctypes.c_int32),      # 最大生成新token数
        ("top_k", ctypes.c_int32),               # Top-K采样参数
        ("n_keep", ctypes.c_int32),              # 上下文窗口移动时保留的kv缓存数量
        ("top_p", ctypes.c_float),               # Top-P(nucleus)采样参数
        ("temperature", ctypes.c_float),         # 采样温度,影响token选择的随机性
        ("repeat_penalty", ctypes.c_float),      # 重复token惩罚
        ("frequency_penalty", ctypes.c_float),   # 频繁token惩罚
        ("presence_penalty", ctypes.c_float),    # 输入中已存在token的惩罚
        ("mirostat", ctypes.c_int32),            # Mirostat采样策略标志(0表示禁用)
        ("mirostat_tau", ctypes.c_float),        # Mirostat采样Tau参数
        ("mirostat_eta", ctypes.c_float),        # Mirostat采样Eta参数
        ("skip_special_token", ctypes.c_bool),   # 是否跳过特殊token
        ("is_async", ctypes.c_bool),             # 是否异步推理
        ("img_start", ctypes.c_char_p),          # 多模态输入中图像的起始Token
        ("img_end", ctypes.c_char_p),            # 多模态输入中图像的结束Token
        ("img_content", ctypes.c_char_p),        # 图像内容指针
        ("extend_param", RKLLMExtendParam)       # 扩展参数
    ]

class RKLLMLoraAdapter(ctypes.Structure):
    lora_adapter_path: ctypes.c_char_p
    lora_adapter_name: ctypes.c_char_p
    scale: ctypes.c_float

    _fields_ = [
        ("lora_adapter_path", ctypes.c_char_p),
        ("lora_adapter_name", ctypes.c_char_p),
        ("scale", ctypes.c_float)
    ]

class RKLLMEmbedInput(ctypes.Structure):
    # Shape: [n_tokens, embed_size]
    embed: ctypes.POINTER(ctypes.c_float)
    n_tokens: ctypes.c_size_t

    _fields_ = [
        ("embed", ctypes.POINTER(ctypes.c_float)),  
        ("n_tokens", ctypes.c_size_t)
    ]

class RKLLMTokenInput(ctypes.Structure):
    # Shape: [n_tokens]
    input_ids: ctypes.POINTER(ctypes.c_int32)
    n_tokens: ctypes.c_size_t

    _fields_ = [
        ("input_ids", ctypes.POINTER(ctypes.c_int32)),
        ("n_tokens", ctypes.c_size_t)
    ]

class RKLLMMultiModelInput(ctypes.Structure):
    prompt: ctypes.c_char_p
    image_embed: ctypes.POINTER(ctypes.c_float)
    n_image_tokens: ctypes.c_size_t
    n_image: ctypes.c_size_t
    image_width: ctypes.c_size_t
    image_height: ctypes.c_size_t

    _fields_ = [
        ("prompt", ctypes.c_char_p),
        ("image_embed", ctypes.POINTER(ctypes.c_float)),
        ("n_image_tokens", ctypes.c_size_t),
        ("n_image", ctypes.c_size_t),
        ("image_width", ctypes.c_size_t),
        ("image_height", ctypes.c_size_t)
    ]

class _RKLLMInputUnion(ctypes.Union):
    prompt_input: ctypes.c_char_p
    embed_input: RKLLMEmbedInput
    token_input: RKLLMTokenInput
    multimodal_input: RKLLMMultiModelInput

    _fields_ = [
        ("prompt_input", ctypes.c_char_p),
        ("embed_input", RKLLMEmbedInput),
        ("token_input", RKLLMTokenInput),
        ("multimodal_input", RKLLMMultiModelInput)
    ]

class RKLLMInput(ctypes.Structure):
    input_type: ctypes.c_int
    _union_data: _RKLLMInputUnion

    _fields_ = [
        ("input_type", ctypes.c_int), # Enum will be passed as int, changed RKLLMInputType to ctypes.c_int
        ("_union_data", _RKLLMInputUnion)
    ]
    # Properties to make accessing union members easier
    @property
    def prompt_input(self) -> bytes: # Assuming c_char_p maps to bytes
        if self.input_type == RKLLMInputType.RKLLM_INPUT_PROMPT:
            return self._union_data.prompt_input
        raise AttributeError("Not a prompt input")
    @prompt_input.setter
    def prompt_input(self, value: bytes): # Assuming c_char_p maps to bytes
        if self.input_type == RKLLMInputType.RKLLM_INPUT_PROMPT:
            self._union_data.prompt_input = value
        else:
            raise AttributeError("Not a prompt input")
    @property
    def embed_input(self) -> RKLLMEmbedInput:
        if self.input_type == RKLLMInputType.RKLLM_INPUT_EMBED:
            return self._union_data.embed_input
        raise AttributeError("Not an embed input")
    @embed_input.setter
    def embed_input(self, value: RKLLMEmbedInput):
        if self.input_type == RKLLMInputType.RKLLM_INPUT_EMBED:
            self._union_data.embed_input = value
        else:
            raise AttributeError("Not an embed input")

    @property
    def token_input(self) -> RKLLMTokenInput:
        if self.input_type == RKLLMInputType.RKLLM_INPUT_TOKEN:
            return self._union_data.token_input
        raise AttributeError("Not a token input")
    @token_input.setter
    def token_input(self, value: RKLLMTokenInput):
        if self.input_type == RKLLMInputType.RKLLM_INPUT_TOKEN:
            self._union_data.token_input = value
        else:
            raise AttributeError("Not a token input")

    @property
    def multimodal_input(self) -> RKLLMMultiModelInput:
        if self.input_type == RKLLMInputType.RKLLM_INPUT_MULTIMODAL:
            return self._union_data.multimodal_input
        raise AttributeError("Not a multimodal input")
    @multimodal_input.setter
    def multimodal_input(self, value: RKLLMMultiModelInput):
        if self.input_type == RKLLMInputType.RKLLM_INPUT_MULTIMODAL:
            self._union_data.multimodal_input = value
        else:
            raise AttributeError("Not a multimodal input")

class RKLLMLoraParam(ctypes.Structure): # For inference
    lora_adapter_name: ctypes.c_char_p

    _fields_ = [
        ("lora_adapter_name", ctypes.c_char_p)
    ]

class RKLLMPromptCacheParam(ctypes.Structure): # For inference
    save_prompt_cache: ctypes.c_int # bool-like
    prompt_cache_path: ctypes.c_char_p

    _fields_ = [
        ("save_prompt_cache", ctypes.c_int), # bool-like
        ("prompt_cache_path", ctypes.c_char_p)
    ]

class RKLLMInferParam(ctypes.Structure):
    mode: ctypes.c_int
    lora_params: ctypes.POINTER(RKLLMLoraParam)
    prompt_cache_params: ctypes.POINTER(RKLLMPromptCacheParam)
    keep_history: ctypes.c_int # bool-like

    _fields_ = [
        ("mode", ctypes.c_int), # Enum will be passed as int, changed RKLLMInferMode to ctypes.c_int
        ("lora_params", ctypes.POINTER(RKLLMLoraParam)),
        ("prompt_cache_params", ctypes.POINTER(RKLLMPromptCacheParam)),
        ("keep_history", ctypes.c_int) # bool-like
    ]

class RKLLMResultLastHiddenLayer(ctypes.Structure):
    # Shape: [num_tokens, embd_size]
    hidden_states: ctypes.POINTER(ctypes.c_float)
    # 隐藏层大小
    embd_size: ctypes.c_int
    # 输出token数
    num_tokens: ctypes.c_int

    _fields_ = [
        ("hidden_states", ctypes.POINTER(ctypes.c_float)),
        ("embd_size", ctypes.c_int),
        ("num_tokens", ctypes.c_int)
    ]

class RKLLMResultLogits(ctypes.Structure):
    # Shape: [num_tokens, vocab_size]
    logits: ctypes.POINTER(ctypes.c_float)
    # 词汇表大小
    vocab_size: ctypes.c_int
    # 输出token数
    num_tokens: ctypes.c_int

    _fields_ = [
        ("logits", ctypes.POINTER(ctypes.c_float)),
        ("vocab_size", ctypes.c_int),
        ("num_tokens", ctypes.c_int)
    ]

class RKLLMResult(ctypes.Structure):
    text: ctypes.c_char_p
    token_id: ctypes.c_int32
    last_hidden_layer: RKLLMResultLastHiddenLayer
    logits: RKLLMResultLogits

    _fields_ = [
        ("text", ctypes.c_char_p),
        ("token_id", ctypes.c_int32),
        ("last_hidden_layer", RKLLMResultLastHiddenLayer),
        ("logits", RKLLMResultLogits)
    ]

# --- Typedefs ---
LLMHandle = ctypes.c_void_p

# --- Callback Function Type ---
LLMResultCallback = ctypes.CFUNCTYPE(
    None,  # return type: void
    ctypes.POINTER(RKLLMResult),
    ctypes.c_void_p,  # userdata
    ctypes.c_int      # enum, will be passed as int. Changed LLMCallState to ctypes.c_int
)


class RKLLMRuntime:
    def __init__(self, library_path="./librkllmrt.so"):
        try:
            self.lib = ctypes.CDLL(library_path)
        except OSError as e:
            raise OSError(f"Failed to load RKLLM library from {library_path}. "
                          f"Ensure it's in your LD_LIBRARY_PATH or provide the full path. Error: {e}")
        self._setup_functions()
        self.llm_handle = LLMHandle()
        self._c_callback = None # To keep the callback object alive

    def _setup_functions(self):
        # RKLLMParam rkllm_createDefaultParam();
        self.lib.rkllm_createDefaultParam.restype = RKLLMParam
        self.lib.rkllm_createDefaultParam.argtypes = []

        # int rkllm_init(LLMHandle* handle, RKLLMParam* param, LLMResultCallback callback);
        self.lib.rkllm_init.restype = ctypes.c_int
        self.lib.rkllm_init.argtypes = [
            ctypes.POINTER(LLMHandle),
            ctypes.POINTER(RKLLMParam),
            LLMResultCallback
        ]

        # int rkllm_load_lora(LLMHandle handle, RKLLMLoraAdapter* lora_adapter);
        self.lib.rkllm_load_lora.restype = ctypes.c_int
        self.lib.rkllm_load_lora.argtypes = [LLMHandle, ctypes.POINTER(RKLLMLoraAdapter)]

        # int rkllm_load_prompt_cache(LLMHandle handle, const char* prompt_cache_path);
        self.lib.rkllm_load_prompt_cache.restype = ctypes.c_int
        self.lib.rkllm_load_prompt_cache.argtypes = [LLMHandle, ctypes.c_char_p]

        # int rkllm_release_prompt_cache(LLMHandle handle);
        self.lib.rkllm_release_prompt_cache.restype = ctypes.c_int
        self.lib.rkllm_release_prompt_cache.argtypes = [LLMHandle]

        # int rkllm_destroy(LLMHandle handle);
        self.lib.rkllm_destroy.restype = ctypes.c_int
        self.lib.rkllm_destroy.argtypes = [LLMHandle]

        # int rkllm_run(LLMHandle handle, RKLLMInput* rkllm_input, RKLLMInferParam* rkllm_infer_params, void* userdata);
        self.lib.rkllm_run.restype = ctypes.c_int
        self.lib.rkllm_run.argtypes = [
            LLMHandle,
            ctypes.POINTER(RKLLMInput),
            ctypes.POINTER(RKLLMInferParam),
            ctypes.c_void_p # userdata
        ]

        # int rkllm_run_async(LLMHandle handle, RKLLMInput* rkllm_input, RKLLMInferParam* rkllm_infer_params, void* userdata);
        # Assuming async also takes userdata for the callback context
        self.lib.rkllm_run_async.restype = ctypes.c_int
        self.lib.rkllm_run_async.argtypes = [
            LLMHandle,
            ctypes.POINTER(RKLLMInput),
            ctypes.POINTER(RKLLMInferParam),
            ctypes.c_void_p # userdata
        ]

        # int rkllm_abort(LLMHandle handle);
        self.lib.rkllm_abort.restype = ctypes.c_int
        self.lib.rkllm_abort.argtypes = [LLMHandle]

        # int rkllm_is_running(LLMHandle handle);
        self.lib.rkllm_is_running.restype = ctypes.c_int # 0 if running, non-zero otherwise
        self.lib.rkllm_is_running.argtypes = [LLMHandle]

        # int rkllm_clear_kv_cache(LLMHandle handle, int keep_system_prompt);
        self.lib.rkllm_clear_kv_cache.restype = ctypes.c_int
        self.lib.rkllm_clear_kv_cache.argtypes = [LLMHandle, ctypes.c_int]

        # int rkllm_set_chat_template(LLMHandle handle, const char* system_prompt, const char* prompt_prefix, const char* prompt_postfix);
        self.lib.rkllm_set_chat_template.restype = ctypes.c_int
        self.lib.rkllm_set_chat_template.argtypes = [
            LLMHandle,
            ctypes.c_char_p,
            ctypes.c_char_p,
            ctypes.c_char_p
        ]

    def create_default_param(self) -> RKLLMParam:
        """Creates a default RKLLMParam structure."""
        return self.lib.rkllm_createDefaultParam()

    def init(self, param: RKLLMParam, callback_func) -> int:
        """
        Initializes the LLM.
        :param param: RKLLMParam structure.
        :param callback_func: A Python function that matches the signature:
                              def my_callback(result_ptr, userdata_ptr, state_enum):
                                  result = result_ptr.contents # RKLLMResult
                                  # Process result
                                  # userdata can be retrieved if passed during run, or ignored
                                  # state = LLMCallState(state_enum)
        :return: 0 for success, non-zero for failure.
        """
        if not callable(callback_func):
            raise ValueError("callback_func must be a callable Python function.")

        # Keep a reference to the ctypes callback object to prevent it from being garbage collected
        self._c_callback = LLMResultCallback(callback_func)
        
        ret = self.lib.rkllm_init(ctypes.byref(self.llm_handle), ctypes.byref(param), self._c_callback)
        if ret != 0:
            raise RuntimeError(f"rkllm_init failed with error code {ret}")
        return ret

    def load_lora(self, lora_adapter: RKLLMLoraAdapter) -> int:
        """Loads a Lora adapter."""
        ret = self.lib.rkllm_load_lora(self.llm_handle, ctypes.byref(lora_adapter))
        if ret != 0:
            raise RuntimeError(f"rkllm_load_lora failed with error code {ret}")
        return ret

    def load_prompt_cache(self, prompt_cache_path: str) -> int:
        """Loads a prompt cache from a file."""
        c_path = prompt_cache_path.encode('utf-8')
        ret = self.lib.rkllm_load_prompt_cache(self.llm_handle, c_path)
        if ret != 0:
            raise RuntimeError(f"rkllm_load_prompt_cache failed for {prompt_cache_path} with error code {ret}")
        return ret

    def release_prompt_cache(self) -> int:
        """Releases the prompt cache from memory."""
        ret = self.lib.rkllm_release_prompt_cache(self.llm_handle)
        if ret != 0:
            raise RuntimeError(f"rkllm_release_prompt_cache failed with error code {ret}")
        return ret

    def destroy(self) -> int:
        """Destroys the LLM instance and releases resources."""
        if self.llm_handle and self.llm_handle.value: # Check if handle is not NULL
            ret = self.lib.rkllm_destroy(self.llm_handle)
            self.llm_handle = LLMHandle() # Reset handle
            if ret != 0:
                # Don't raise here as it might be called in __del__
                print(f"Warning: rkllm_destroy failed with error code {ret}") 
            return ret
        return 0 # Already destroyed or not initialized

    def run(self, rkllm_input: RKLLMInput, rkllm_infer_params: RKLLMInferParam, userdata=None) -> int:
        """Runs an LLM inference task synchronously."""
        # userdata can be a ctypes.py_object if you want to pass Python objects,
        # then cast to c_void_p. Or simply None.
        if userdata is not None:
            # Store the userdata object to keep it alive during the call
            self._userdata_ref = userdata
            c_userdata = ctypes.cast(ctypes.pointer(ctypes.py_object(userdata)), ctypes.c_void_p)
        else:
            c_userdata = None
        ret = self.lib.rkllm_run(self.llm_handle, ctypes.byref(rkllm_input), ctypes.byref(rkllm_infer_params), c_userdata)
        if ret != 0:
            raise RuntimeError(f"rkllm_run failed with error code {ret}")
        return ret

    def run_async(self, rkllm_input: RKLLMInput, rkllm_infer_params: RKLLMInferParam, userdata=None) -> int:
        """Runs an LLM inference task asynchronously."""
        if userdata is not None:
            # Store the userdata object to keep it alive during the call
            self._userdata_ref = userdata
            c_userdata = ctypes.cast(ctypes.pointer(ctypes.py_object(userdata)), ctypes.c_void_p)
        else:
            c_userdata = None
        ret = self.lib.rkllm_run_async(self.llm_handle, ctypes.byref(rkllm_input), ctypes.byref(rkllm_infer_params), c_userdata)
        if ret != 0:
            raise RuntimeError(f"rkllm_run_async failed with error code {ret}")
        return ret

    def abort(self) -> int:
        """Aborts an ongoing LLM task."""
        ret = self.lib.rkllm_abort(self.llm_handle)
        if ret != 0:
            raise RuntimeError(f"rkllm_abort failed with error code {ret}")
        return ret

    def is_running(self) -> bool:
        """Checks if an LLM task is currently running. Returns True if running."""
        # The C API returns 0 if running, non-zero otherwise.
        # This is a bit counter-intuitive for a boolean "is_running".
        return self.lib.rkllm_is_running(self.llm_handle) == 0

    def clear_kv_cache(self, keep_system_prompt: bool) -> int:
        """Clears the key-value cache."""
        ret = self.lib.rkllm_clear_kv_cache(self.llm_handle, ctypes.c_int(1 if keep_system_prompt else 0))
        if ret != 0:
            raise RuntimeError(f"rkllm_clear_kv_cache failed with error code {ret}")
        return ret

    def set_chat_template(self, system_prompt: str, prompt_prefix: str, prompt_postfix: str) -> int:
        """Sets the chat template for the LLM."""
        c_system = system_prompt.encode('utf-8') if system_prompt else b""
        c_prefix = prompt_prefix.encode('utf-8') if prompt_prefix else b""
        c_postfix = prompt_postfix.encode('utf-8') if prompt_postfix else b""
        
        ret = self.lib.rkllm_set_chat_template(self.llm_handle, c_system, c_prefix, c_postfix)
        if ret != 0:
            raise RuntimeError(f"rkllm_set_chat_template failed with error code {ret}")
        return ret

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.destroy()

    def __del__(self):
        self.destroy() # Ensure resources are freed if object is garbage collected

# --- Example Usage (Illustrative) ---
if __name__ == "__main__":
    # This is a placeholder for how you might use it.
    # You'll need a valid .rkllm model and librkllmrt.so in your path.

    # Global list to store results from callback for demonstration
    results_buffer = []

    def my_python_callback(result_ptr, userdata_ptr, state_enum):
        """
        Callback function to be called by the C library.
        """
        global results_buffer
        state = LLMCallState(state_enum)
        result = result_ptr.contents

        current_text = ""
        if result.text: # Check if the char_p is not NULL
            current_text = result.text.decode('utf-8', errors='ignore')
        
        print(f"Callback: State={state.name}, TokenID={result.token_id}, Text='{current_text}'")
        results_buffer.append(current_text)

        if state == LLMCallState.RKLLM_RUN_FINISH:
            print("Inference finished.")
        elif state == LLMCallState.RKLLM_RUN_ERROR:
            print("Inference error.")
        
        # Example: Accessing logits if available (and if mode was set to get logits)
        # if result.logits.logits and result.logits.vocab_size > 0:
        #     print(f"  Logits (first 5 of vocab_size {result.logits.vocab_size}):")
        #     for i in range(min(5, result.logits.vocab_size)):
        #         print(f"    {result.logits.logits[i]:.4f}", end=" ")
        #     print()


    # --- Attempt to use the wrapper ---
    try:
        print("Initializing RKLLMRuntime...")
        # Adjust library_path if librkllmrt.so is not in default search paths
        # e.g., library_path="./path/to/librkllmrt.so"
        rk_llm = RKLLMRuntime() 

        print("Creating default parameters...")
        params = rk_llm.create_default_param()

        # --- Configure parameters ---
        # THIS IS CRITICAL: model_path must point to an actual .rkllm file
        # For this example to run, you need a model file.
        # Let's assume a dummy path for now, this will fail at init if not valid.
        model_file = "dummy_model.rkllm" 
        if not os.path.exists(model_file):
            print(f"Warning: Model file '{model_file}' does not exist. Init will likely fail.")
            # Create a dummy file for the example to proceed further, though init will still fail
            # with a real library unless it's a valid model.
            with open(model_file, "w") as f:
                f.write("dummy content")

        params.model_path = model_file.encode('utf-8')
        params.max_context_len = 512
        params.max_new_tokens = 128
        params.top_k = 1 # Greedy
        params.temperature = 0.7
        params.repeat_penalty = 1.1
        # ... set other params as needed

        print(f"Initializing LLM with model: {params.model_path.decode()}...")
        # This will likely fail if dummy_model.rkllm is not a valid model recognized by the library
        try:
            rk_llm.init(params, my_python_callback)
            print("LLM Initialized.")
        except RuntimeError as e:
            print(f"Error during LLM initialization: {e}")
            print("This is expected if 'dummy_model.rkllm' is not a valid model.")
            print("Replace 'dummy_model.rkllm' with a real model path to test further.")
            exit()


        # --- Prepare input ---
        print("Preparing input...")
        rk_input = RKLLMInput()
        rk_input.input_type = RKLLMInputType.RKLLM_INPUT_PROMPT
        
        prompt_text = "Translate the following English text to French: 'Hello, world!'"
        c_prompt = prompt_text.encode('utf-8')
        rk_input._union_data.prompt_input = c_prompt # Accessing union member directly

        # --- Prepare inference parameters ---
        print("Preparing inference parameters...")
        infer_params = RKLLMInferParam()
        infer_params.mode = RKLLMInferMode.RKLLM_INFER_GENERATE
        infer_params.keep_history = 1 # True
        # infer_params.lora_params = None # or set up RKLLMLoraParam if using LoRA
        # infer_params.prompt_cache_params = None # or set up RKLLMPromptCacheParam

        # --- Run inference ---
        print(f"Running inference with prompt: '{prompt_text}'")
        results_buffer.clear()
        try:
            rk_llm.run(rk_input, infer_params) # Userdata is None by default
            print("\n--- Full Response ---")
            print("".join(results_buffer))
            print("---------------------\n")
        except RuntimeError as e:
            print(f"Error during LLM run: {e}")


        # --- Example: Set chat template (if model supports it) ---
        # print("Setting chat template...")
        # try:
        #     rk_llm.set_chat_template("You are a helpful assistant.", "<user>: ", "<assistant>: ")
        #     print("Chat template set.")
        # except RuntimeError as e:
        #     print(f"Error setting chat template: {e}")

        # --- Example: Clear KV Cache ---
        # print("Clearing KV cache (keeping system prompt if any)...")
        # try:
        #     rk_llm.clear_kv_cache(keep_system_prompt=True)
        #     print("KV cache cleared.")
        # except RuntimeError as e:
        #     print(f"Error clearing KV cache: {e}")

    except OSError as e:
        print(f"OSError: {e}. Could not load the RKLLM library.")
        print("Please ensure 'librkllmrt.so' is in your LD_LIBRARY_PATH or provide the full path.")
    except Exception as e:
        print(f"An unexpected error occurred: {e}")
    finally:
        if 'rk_llm' in locals() and rk_llm.llm_handle and rk_llm.llm_handle.value:
            print("Destroying LLM instance...")
            rk_llm.destroy()
            print("LLM instance destroyed.")
        if os.path.exists(model_file) and model_file == "dummy_model.rkllm":
             os.remove(model_file) # Clean up dummy file

    print("Example finished.")