File size: 26,271 Bytes
eb10636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
import ctypes
import enum
import os
# Define constants from the header
CPU0 = (1 << 0) # 0x01
CPU1 = (1 << 1) # 0x02
CPU2 = (1 << 2) # 0x04
CPU3 = (1 << 3) # 0x08
CPU4 = (1 << 4) # 0x10
CPU5 = (1 << 5) # 0x20
CPU6 = (1 << 6) # 0x40
CPU7 = (1 << 7) # 0x80
# --- Enums ---
class LLMCallState(enum.IntEnum):
RKLLM_RUN_NORMAL = 0
RKLLM_RUN_WAITING = 1
RKLLM_RUN_FINISH = 2
RKLLM_RUN_ERROR = 3
class RKLLMInputType(enum.IntEnum):
RKLLM_INPUT_PROMPT = 0
RKLLM_INPUT_TOKEN = 1
RKLLM_INPUT_EMBED = 2
RKLLM_INPUT_MULTIMODAL = 3
class RKLLMInferMode(enum.IntEnum):
RKLLM_INFER_GENERATE = 0
RKLLM_INFER_GET_LAST_HIDDEN_LAYER = 1
RKLLM_INFER_GET_LOGITS = 2
# --- Structures ---
class RKLLMExtendParam(ctypes.Structure):
# 基础iommu domain ID, 对>1b的模型建议设置为1
base_domain_id: ctypes.c_int32
# 是否使用flash存储Embedding
embed_flash: ctypes.c_int8
# 启用的cpu核心数
enabled_cpus_num: ctypes.c_int8
# 启用的cpu核心掩码
enabled_cpus_mask: ctypes.c_uint32
reserved: ctypes.c_uint8 * 106
_fields_ = [
("base_domain_id", ctypes.c_int32),
("embed_flash", ctypes.c_int8),
("enabled_cpus_num", ctypes.c_int8),
("enabled_cpus_mask", ctypes.c_uint32),
("reserved", ctypes.c_uint8 * 106)
]
class RKLLMParam(ctypes.Structure):
# 模型文件路径
model_path: ctypes.c_char_p
# 上下文窗口最大token数
max_context_len: ctypes.c_int32
# 最大生成新token数
max_new_tokens: ctypes.c_int32
# Top-K采样参数
top_k: ctypes.c_int32
# 上下文窗口移动时保留的kv缓存数量
n_keep: ctypes.c_int32
# Top-P采样参数
top_p: ctypes.c_float
# 采样温度,影响token选择的随机性
temperature: ctypes.c_float
# 重复token惩罚
repeat_penalty: ctypes.c_float
# 频繁token惩罚
frequency_penalty: ctypes.c_float
# 输入中已存在token的惩罚
presence_penalty: ctypes.c_float
# Mirostat采样策略标志(0表示禁用)
mirostat: ctypes.c_int32
# Mirostat采样Tau参数
mirostat_tau: ctypes.c_float
# Mirostat采样Eta参数
mirostat_eta: ctypes.c_float
# 是否跳过特殊token
skip_special_token: ctypes.c_bool
# 是否异步推理
is_async: ctypes.c_bool
# 多模态输入中图像的起始Token
img_start: ctypes.c_char_p
# 多模态输入中图像的结束Token
img_end: ctypes.c_char_p
# 图像内容指针
img_content: ctypes.c_char_p
# 扩展参数
extend_param: RKLLMExtendParam
_fields_ = [
("model_path", ctypes.c_char_p), # 模型文件路径
("max_context_len", ctypes.c_int32), # 上下文窗口最大token数
("max_new_tokens", ctypes.c_int32), # 最大生成新token数
("top_k", ctypes.c_int32), # Top-K采样参数
("n_keep", ctypes.c_int32), # 上下文窗口移动时保留的kv缓存数量
("top_p", ctypes.c_float), # Top-P(nucleus)采样参数
("temperature", ctypes.c_float), # 采样温度,影响token选择的随机性
("repeat_penalty", ctypes.c_float), # 重复token惩罚
("frequency_penalty", ctypes.c_float), # 频繁token惩罚
("presence_penalty", ctypes.c_float), # 输入中已存在token的惩罚
("mirostat", ctypes.c_int32), # Mirostat采样策略标志(0表示禁用)
("mirostat_tau", ctypes.c_float), # Mirostat采样Tau参数
("mirostat_eta", ctypes.c_float), # Mirostat采样Eta参数
("skip_special_token", ctypes.c_bool), # 是否跳过特殊token
("is_async", ctypes.c_bool), # 是否异步推理
("img_start", ctypes.c_char_p), # 多模态输入中图像的起始Token
("img_end", ctypes.c_char_p), # 多模态输入中图像的结束Token
("img_content", ctypes.c_char_p), # 图像内容指针
("extend_param", RKLLMExtendParam) # 扩展参数
]
class RKLLMLoraAdapter(ctypes.Structure):
lora_adapter_path: ctypes.c_char_p
lora_adapter_name: ctypes.c_char_p
scale: ctypes.c_float
_fields_ = [
("lora_adapter_path", ctypes.c_char_p),
("lora_adapter_name", ctypes.c_char_p),
("scale", ctypes.c_float)
]
class RKLLMEmbedInput(ctypes.Structure):
# Shape: [n_tokens, embed_size]
embed: ctypes.POINTER(ctypes.c_float)
n_tokens: ctypes.c_size_t
_fields_ = [
("embed", ctypes.POINTER(ctypes.c_float)),
("n_tokens", ctypes.c_size_t)
]
class RKLLMTokenInput(ctypes.Structure):
# Shape: [n_tokens]
input_ids: ctypes.POINTER(ctypes.c_int32)
n_tokens: ctypes.c_size_t
_fields_ = [
("input_ids", ctypes.POINTER(ctypes.c_int32)),
("n_tokens", ctypes.c_size_t)
]
class RKLLMMultiModelInput(ctypes.Structure):
prompt: ctypes.c_char_p
image_embed: ctypes.POINTER(ctypes.c_float)
n_image_tokens: ctypes.c_size_t
n_image: ctypes.c_size_t
image_width: ctypes.c_size_t
image_height: ctypes.c_size_t
_fields_ = [
("prompt", ctypes.c_char_p),
("image_embed", ctypes.POINTER(ctypes.c_float)),
("n_image_tokens", ctypes.c_size_t),
("n_image", ctypes.c_size_t),
("image_width", ctypes.c_size_t),
("image_height", ctypes.c_size_t)
]
class _RKLLMInputUnion(ctypes.Union):
prompt_input: ctypes.c_char_p
embed_input: RKLLMEmbedInput
token_input: RKLLMTokenInput
multimodal_input: RKLLMMultiModelInput
_fields_ = [
("prompt_input", ctypes.c_char_p),
("embed_input", RKLLMEmbedInput),
("token_input", RKLLMTokenInput),
("multimodal_input", RKLLMMultiModelInput)
]
class RKLLMInput(ctypes.Structure):
input_type: ctypes.c_int
_union_data: _RKLLMInputUnion
_fields_ = [
("input_type", ctypes.c_int), # Enum will be passed as int, changed RKLLMInputType to ctypes.c_int
("_union_data", _RKLLMInputUnion)
]
# Properties to make accessing union members easier
@property
def prompt_input(self) -> bytes: # Assuming c_char_p maps to bytes
if self.input_type == RKLLMInputType.RKLLM_INPUT_PROMPT:
return self._union_data.prompt_input
raise AttributeError("Not a prompt input")
@prompt_input.setter
def prompt_input(self, value: bytes): # Assuming c_char_p maps to bytes
if self.input_type == RKLLMInputType.RKLLM_INPUT_PROMPT:
self._union_data.prompt_input = value
else:
raise AttributeError("Not a prompt input")
@property
def embed_input(self) -> RKLLMEmbedInput:
if self.input_type == RKLLMInputType.RKLLM_INPUT_EMBED:
return self._union_data.embed_input
raise AttributeError("Not an embed input")
@embed_input.setter
def embed_input(self, value: RKLLMEmbedInput):
if self.input_type == RKLLMInputType.RKLLM_INPUT_EMBED:
self._union_data.embed_input = value
else:
raise AttributeError("Not an embed input")
@property
def token_input(self) -> RKLLMTokenInput:
if self.input_type == RKLLMInputType.RKLLM_INPUT_TOKEN:
return self._union_data.token_input
raise AttributeError("Not a token input")
@token_input.setter
def token_input(self, value: RKLLMTokenInput):
if self.input_type == RKLLMInputType.RKLLM_INPUT_TOKEN:
self._union_data.token_input = value
else:
raise AttributeError("Not a token input")
@property
def multimodal_input(self) -> RKLLMMultiModelInput:
if self.input_type == RKLLMInputType.RKLLM_INPUT_MULTIMODAL:
return self._union_data.multimodal_input
raise AttributeError("Not a multimodal input")
@multimodal_input.setter
def multimodal_input(self, value: RKLLMMultiModelInput):
if self.input_type == RKLLMInputType.RKLLM_INPUT_MULTIMODAL:
self._union_data.multimodal_input = value
else:
raise AttributeError("Not a multimodal input")
class RKLLMLoraParam(ctypes.Structure): # For inference
lora_adapter_name: ctypes.c_char_p
_fields_ = [
("lora_adapter_name", ctypes.c_char_p)
]
class RKLLMPromptCacheParam(ctypes.Structure): # For inference
save_prompt_cache: ctypes.c_int # bool-like
prompt_cache_path: ctypes.c_char_p
_fields_ = [
("save_prompt_cache", ctypes.c_int), # bool-like
("prompt_cache_path", ctypes.c_char_p)
]
class RKLLMInferParam(ctypes.Structure):
mode: ctypes.c_int
lora_params: ctypes.POINTER(RKLLMLoraParam)
prompt_cache_params: ctypes.POINTER(RKLLMPromptCacheParam)
keep_history: ctypes.c_int # bool-like
_fields_ = [
("mode", ctypes.c_int), # Enum will be passed as int, changed RKLLMInferMode to ctypes.c_int
("lora_params", ctypes.POINTER(RKLLMLoraParam)),
("prompt_cache_params", ctypes.POINTER(RKLLMPromptCacheParam)),
("keep_history", ctypes.c_int) # bool-like
]
class RKLLMResultLastHiddenLayer(ctypes.Structure):
# Shape: [num_tokens, embd_size]
hidden_states: ctypes.POINTER(ctypes.c_float)
# 隐藏层大小
embd_size: ctypes.c_int
# 输出token数
num_tokens: ctypes.c_int
_fields_ = [
("hidden_states", ctypes.POINTER(ctypes.c_float)),
("embd_size", ctypes.c_int),
("num_tokens", ctypes.c_int)
]
class RKLLMResultLogits(ctypes.Structure):
# Shape: [num_tokens, vocab_size]
logits: ctypes.POINTER(ctypes.c_float)
# 词汇表大小
vocab_size: ctypes.c_int
# 输出token数
num_tokens: ctypes.c_int
_fields_ = [
("logits", ctypes.POINTER(ctypes.c_float)),
("vocab_size", ctypes.c_int),
("num_tokens", ctypes.c_int)
]
class RKLLMResult(ctypes.Structure):
text: ctypes.c_char_p
token_id: ctypes.c_int32
last_hidden_layer: RKLLMResultLastHiddenLayer
logits: RKLLMResultLogits
_fields_ = [
("text", ctypes.c_char_p),
("token_id", ctypes.c_int32),
("last_hidden_layer", RKLLMResultLastHiddenLayer),
("logits", RKLLMResultLogits)
]
# --- Typedefs ---
LLMHandle = ctypes.c_void_p
# --- Callback Function Type ---
LLMResultCallback = ctypes.CFUNCTYPE(
None, # return type: void
ctypes.POINTER(RKLLMResult),
ctypes.c_void_p, # userdata
ctypes.c_int # enum, will be passed as int. Changed LLMCallState to ctypes.c_int
)
class RKLLMRuntime:
def __init__(self, library_path="./librkllmrt.so"):
try:
self.lib = ctypes.CDLL(library_path)
except OSError as e:
raise OSError(f"Failed to load RKLLM library from {library_path}. "
f"Ensure it's in your LD_LIBRARY_PATH or provide the full path. Error: {e}")
self._setup_functions()
self.llm_handle = LLMHandle()
self._c_callback = None # To keep the callback object alive
def _setup_functions(self):
# RKLLMParam rkllm_createDefaultParam();
self.lib.rkllm_createDefaultParam.restype = RKLLMParam
self.lib.rkllm_createDefaultParam.argtypes = []
# int rkllm_init(LLMHandle* handle, RKLLMParam* param, LLMResultCallback callback);
self.lib.rkllm_init.restype = ctypes.c_int
self.lib.rkllm_init.argtypes = [
ctypes.POINTER(LLMHandle),
ctypes.POINTER(RKLLMParam),
LLMResultCallback
]
# int rkllm_load_lora(LLMHandle handle, RKLLMLoraAdapter* lora_adapter);
self.lib.rkllm_load_lora.restype = ctypes.c_int
self.lib.rkllm_load_lora.argtypes = [LLMHandle, ctypes.POINTER(RKLLMLoraAdapter)]
# int rkllm_load_prompt_cache(LLMHandle handle, const char* prompt_cache_path);
self.lib.rkllm_load_prompt_cache.restype = ctypes.c_int
self.lib.rkllm_load_prompt_cache.argtypes = [LLMHandle, ctypes.c_char_p]
# int rkllm_release_prompt_cache(LLMHandle handle);
self.lib.rkllm_release_prompt_cache.restype = ctypes.c_int
self.lib.rkllm_release_prompt_cache.argtypes = [LLMHandle]
# int rkllm_destroy(LLMHandle handle);
self.lib.rkllm_destroy.restype = ctypes.c_int
self.lib.rkllm_destroy.argtypes = [LLMHandle]
# int rkllm_run(LLMHandle handle, RKLLMInput* rkllm_input, RKLLMInferParam* rkllm_infer_params, void* userdata);
self.lib.rkllm_run.restype = ctypes.c_int
self.lib.rkllm_run.argtypes = [
LLMHandle,
ctypes.POINTER(RKLLMInput),
ctypes.POINTER(RKLLMInferParam),
ctypes.c_void_p # userdata
]
# int rkllm_run_async(LLMHandle handle, RKLLMInput* rkllm_input, RKLLMInferParam* rkllm_infer_params, void* userdata);
# Assuming async also takes userdata for the callback context
self.lib.rkllm_run_async.restype = ctypes.c_int
self.lib.rkllm_run_async.argtypes = [
LLMHandle,
ctypes.POINTER(RKLLMInput),
ctypes.POINTER(RKLLMInferParam),
ctypes.c_void_p # userdata
]
# int rkllm_abort(LLMHandle handle);
self.lib.rkllm_abort.restype = ctypes.c_int
self.lib.rkllm_abort.argtypes = [LLMHandle]
# int rkllm_is_running(LLMHandle handle);
self.lib.rkllm_is_running.restype = ctypes.c_int # 0 if running, non-zero otherwise
self.lib.rkllm_is_running.argtypes = [LLMHandle]
# int rkllm_clear_kv_cache(LLMHandle handle, int keep_system_prompt);
self.lib.rkllm_clear_kv_cache.restype = ctypes.c_int
self.lib.rkllm_clear_kv_cache.argtypes = [LLMHandle, ctypes.c_int]
# int rkllm_set_chat_template(LLMHandle handle, const char* system_prompt, const char* prompt_prefix, const char* prompt_postfix);
self.lib.rkllm_set_chat_template.restype = ctypes.c_int
self.lib.rkllm_set_chat_template.argtypes = [
LLMHandle,
ctypes.c_char_p,
ctypes.c_char_p,
ctypes.c_char_p
]
def create_default_param(self) -> RKLLMParam:
"""Creates a default RKLLMParam structure."""
return self.lib.rkllm_createDefaultParam()
def init(self, param: RKLLMParam, callback_func) -> int:
"""
Initializes the LLM.
:param param: RKLLMParam structure.
:param callback_func: A Python function that matches the signature:
def my_callback(result_ptr, userdata_ptr, state_enum):
result = result_ptr.contents # RKLLMResult
# Process result
# userdata can be retrieved if passed during run, or ignored
# state = LLMCallState(state_enum)
:return: 0 for success, non-zero for failure.
"""
if not callable(callback_func):
raise ValueError("callback_func must be a callable Python function.")
# Keep a reference to the ctypes callback object to prevent it from being garbage collected
self._c_callback = LLMResultCallback(callback_func)
ret = self.lib.rkllm_init(ctypes.byref(self.llm_handle), ctypes.byref(param), self._c_callback)
if ret != 0:
raise RuntimeError(f"rkllm_init failed with error code {ret}")
return ret
def load_lora(self, lora_adapter: RKLLMLoraAdapter) -> int:
"""Loads a Lora adapter."""
ret = self.lib.rkllm_load_lora(self.llm_handle, ctypes.byref(lora_adapter))
if ret != 0:
raise RuntimeError(f"rkllm_load_lora failed with error code {ret}")
return ret
def load_prompt_cache(self, prompt_cache_path: str) -> int:
"""Loads a prompt cache from a file."""
c_path = prompt_cache_path.encode('utf-8')
ret = self.lib.rkllm_load_prompt_cache(self.llm_handle, c_path)
if ret != 0:
raise RuntimeError(f"rkllm_load_prompt_cache failed for {prompt_cache_path} with error code {ret}")
return ret
def release_prompt_cache(self) -> int:
"""Releases the prompt cache from memory."""
ret = self.lib.rkllm_release_prompt_cache(self.llm_handle)
if ret != 0:
raise RuntimeError(f"rkllm_release_prompt_cache failed with error code {ret}")
return ret
def destroy(self) -> int:
"""Destroys the LLM instance and releases resources."""
if self.llm_handle and self.llm_handle.value: # Check if handle is not NULL
ret = self.lib.rkllm_destroy(self.llm_handle)
self.llm_handle = LLMHandle() # Reset handle
if ret != 0:
# Don't raise here as it might be called in __del__
print(f"Warning: rkllm_destroy failed with error code {ret}")
return ret
return 0 # Already destroyed or not initialized
def run(self, rkllm_input: RKLLMInput, rkllm_infer_params: RKLLMInferParam, userdata=None) -> int:
"""Runs an LLM inference task synchronously."""
# userdata can be a ctypes.py_object if you want to pass Python objects,
# then cast to c_void_p. Or simply None.
if userdata is not None:
# Store the userdata object to keep it alive during the call
self._userdata_ref = userdata
c_userdata = ctypes.cast(ctypes.pointer(ctypes.py_object(userdata)), ctypes.c_void_p)
else:
c_userdata = None
ret = self.lib.rkllm_run(self.llm_handle, ctypes.byref(rkllm_input), ctypes.byref(rkllm_infer_params), c_userdata)
if ret != 0:
raise RuntimeError(f"rkllm_run failed with error code {ret}")
return ret
def run_async(self, rkllm_input: RKLLMInput, rkllm_infer_params: RKLLMInferParam, userdata=None) -> int:
"""Runs an LLM inference task asynchronously."""
if userdata is not None:
# Store the userdata object to keep it alive during the call
self._userdata_ref = userdata
c_userdata = ctypes.cast(ctypes.pointer(ctypes.py_object(userdata)), ctypes.c_void_p)
else:
c_userdata = None
ret = self.lib.rkllm_run_async(self.llm_handle, ctypes.byref(rkllm_input), ctypes.byref(rkllm_infer_params), c_userdata)
if ret != 0:
raise RuntimeError(f"rkllm_run_async failed with error code {ret}")
return ret
def abort(self) -> int:
"""Aborts an ongoing LLM task."""
ret = self.lib.rkllm_abort(self.llm_handle)
if ret != 0:
raise RuntimeError(f"rkllm_abort failed with error code {ret}")
return ret
def is_running(self) -> bool:
"""Checks if an LLM task is currently running. Returns True if running."""
# The C API returns 0 if running, non-zero otherwise.
# This is a bit counter-intuitive for a boolean "is_running".
return self.lib.rkllm_is_running(self.llm_handle) == 0
def clear_kv_cache(self, keep_system_prompt: bool) -> int:
"""Clears the key-value cache."""
ret = self.lib.rkllm_clear_kv_cache(self.llm_handle, ctypes.c_int(1 if keep_system_prompt else 0))
if ret != 0:
raise RuntimeError(f"rkllm_clear_kv_cache failed with error code {ret}")
return ret
def set_chat_template(self, system_prompt: str, prompt_prefix: str, prompt_postfix: str) -> int:
"""Sets the chat template for the LLM."""
c_system = system_prompt.encode('utf-8') if system_prompt else b""
c_prefix = prompt_prefix.encode('utf-8') if prompt_prefix else b""
c_postfix = prompt_postfix.encode('utf-8') if prompt_postfix else b""
ret = self.lib.rkllm_set_chat_template(self.llm_handle, c_system, c_prefix, c_postfix)
if ret != 0:
raise RuntimeError(f"rkllm_set_chat_template failed with error code {ret}")
return ret
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.destroy()
def __del__(self):
self.destroy() # Ensure resources are freed if object is garbage collected
# --- Example Usage (Illustrative) ---
if __name__ == "__main__":
# This is a placeholder for how you might use it.
# You'll need a valid .rkllm model and librkllmrt.so in your path.
# Global list to store results from callback for demonstration
results_buffer = []
def my_python_callback(result_ptr, userdata_ptr, state_enum):
"""
Callback function to be called by the C library.
"""
global results_buffer
state = LLMCallState(state_enum)
result = result_ptr.contents
current_text = ""
if result.text: # Check if the char_p is not NULL
current_text = result.text.decode('utf-8', errors='ignore')
print(f"Callback: State={state.name}, TokenID={result.token_id}, Text='{current_text}'")
results_buffer.append(current_text)
if state == LLMCallState.RKLLM_RUN_FINISH:
print("Inference finished.")
elif state == LLMCallState.RKLLM_RUN_ERROR:
print("Inference error.")
# Example: Accessing logits if available (and if mode was set to get logits)
# if result.logits.logits and result.logits.vocab_size > 0:
# print(f" Logits (first 5 of vocab_size {result.logits.vocab_size}):")
# for i in range(min(5, result.logits.vocab_size)):
# print(f" {result.logits.logits[i]:.4f}", end=" ")
# print()
# --- Attempt to use the wrapper ---
try:
print("Initializing RKLLMRuntime...")
# Adjust library_path if librkllmrt.so is not in default search paths
# e.g., library_path="./path/to/librkllmrt.so"
rk_llm = RKLLMRuntime()
print("Creating default parameters...")
params = rk_llm.create_default_param()
# --- Configure parameters ---
# THIS IS CRITICAL: model_path must point to an actual .rkllm file
# For this example to run, you need a model file.
# Let's assume a dummy path for now, this will fail at init if not valid.
model_file = "dummy_model.rkllm"
if not os.path.exists(model_file):
print(f"Warning: Model file '{model_file}' does not exist. Init will likely fail.")
# Create a dummy file for the example to proceed further, though init will still fail
# with a real library unless it's a valid model.
with open(model_file, "w") as f:
f.write("dummy content")
params.model_path = model_file.encode('utf-8')
params.max_context_len = 512
params.max_new_tokens = 128
params.top_k = 1 # Greedy
params.temperature = 0.7
params.repeat_penalty = 1.1
# ... set other params as needed
print(f"Initializing LLM with model: {params.model_path.decode()}...")
# This will likely fail if dummy_model.rkllm is not a valid model recognized by the library
try:
rk_llm.init(params, my_python_callback)
print("LLM Initialized.")
except RuntimeError as e:
print(f"Error during LLM initialization: {e}")
print("This is expected if 'dummy_model.rkllm' is not a valid model.")
print("Replace 'dummy_model.rkllm' with a real model path to test further.")
exit()
# --- Prepare input ---
print("Preparing input...")
rk_input = RKLLMInput()
rk_input.input_type = RKLLMInputType.RKLLM_INPUT_PROMPT
prompt_text = "Translate the following English text to French: 'Hello, world!'"
c_prompt = prompt_text.encode('utf-8')
rk_input._union_data.prompt_input = c_prompt # Accessing union member directly
# --- Prepare inference parameters ---
print("Preparing inference parameters...")
infer_params = RKLLMInferParam()
infer_params.mode = RKLLMInferMode.RKLLM_INFER_GENERATE
infer_params.keep_history = 1 # True
# infer_params.lora_params = None # or set up RKLLMLoraParam if using LoRA
# infer_params.prompt_cache_params = None # or set up RKLLMPromptCacheParam
# --- Run inference ---
print(f"Running inference with prompt: '{prompt_text}'")
results_buffer.clear()
try:
rk_llm.run(rk_input, infer_params) # Userdata is None by default
print("\n--- Full Response ---")
print("".join(results_buffer))
print("---------------------\n")
except RuntimeError as e:
print(f"Error during LLM run: {e}")
# --- Example: Set chat template (if model supports it) ---
# print("Setting chat template...")
# try:
# rk_llm.set_chat_template("You are a helpful assistant.", "<user>: ", "<assistant>: ")
# print("Chat template set.")
# except RuntimeError as e:
# print(f"Error setting chat template: {e}")
# --- Example: Clear KV Cache ---
# print("Clearing KV cache (keeping system prompt if any)...")
# try:
# rk_llm.clear_kv_cache(keep_system_prompt=True)
# print("KV cache cleared.")
# except RuntimeError as e:
# print(f"Error clearing KV cache: {e}")
except OSError as e:
print(f"OSError: {e}. Could not load the RKLLM library.")
print("Please ensure 'librkllmrt.so' is in your LD_LIBRARY_PATH or provide the full path.")
except Exception as e:
print(f"An unexpected error occurred: {e}")
finally:
if 'rk_llm' in locals() and rk_llm.llm_handle and rk_llm.llm_handle.value:
print("Destroying LLM instance...")
rk_llm.destroy()
print("LLM instance destroyed.")
if os.path.exists(model_file) and model_file == "dummy_model.rkllm":
os.remove(model_file) # Clean up dummy file
print("Example finished.") |