File size: 20,927 Bytes
eb10636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Qwen3-Reranker 推理测试代码
使用 RKLLM API 进行文本重排序推理
"""
import faulthandler
faulthandler.enable()
import os
os.environ["RKLLM_LOG_LEVEL"] = "1"
import numpy as np
import time
import re
from typing import List, Dict, Any, Tuple
from rkllm_binding import *
class Qwen3RerankerTester:
def __init__(self, model_path, library_path="./librkllmrt.so"):
"""
初始化 Qwen3 重排序模型测试器
Args:
model_path: 模型文件路径(.rkllm 格式)
library_path: RKLLM 库文件路径
"""
self.model_path = model_path
self.library_path = library_path
self.runtime = None
self.current_result = None
# 根据官方 README 设置的格式
self.system_prompt = "Judge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\"."
# "yes" 和 "no" 的可能 token IDs(需要通过实际测试确定)
# 这些是常见的token ID,实际使用中可能需要调整
self.yes_token_candidates = [9693]
self.no_token_candidates = [2152]
def callback_function(self, result_ptr, userdata_ptr, state_enum):
"""
推理回调函数
Args:
result_ptr: 结果指针
userdata_ptr: 用户数据指针
state_enum: 状态枚举
"""
state = LLMCallState(state_enum)
if state == LLMCallState.RKLLM_RUN_NORMAL:
result = result_ptr.contents
print(f"result: {result}")
# 获取 logits
if result.logits.logits and result.logits.vocab_size > 0:
vocab_size = result.logits.vocab_size
num_tokens = result.logits.num_tokens
print(f"获取到 logits:vocab_size={vocab_size}, num_tokens={num_tokens}")
# 获取最后一个 token 的 logits
if num_tokens > 0:
last_token_logits = []
start_idx = (num_tokens - 1) * vocab_size
for i in range(vocab_size):
last_token_logits.append(result.logits.logits[start_idx + i])
self.current_result = {
'logits': last_token_logits,
'vocab_size': vocab_size,
'num_tokens': num_tokens
}
print(f"最后一个 token 的 logits 范围: [{min(last_token_logits):.4f}, {max(last_token_logits):.4f}]")
else:
print("警告: 未能获取到 logits")
elif state == LLMCallState.RKLLM_RUN_ERROR:
print("推理过程发生错误")
def find_best_yes_no_tokens(self, logits):
"""
找到最可能的 "yes" 和 "no" token IDs
Args:
logits: 词汇表大小的 logits 数组
Returns:
(yes_token_id, no_token_id, yes_logit, no_logit)
"""
vocab_size = len(logits)
# 找到 yes token 的最大 logit
best_yes_id = None
best_yes_logit = float('-inf')
for token_id in self.yes_token_candidates:
if token_id < vocab_size:
if logits[token_id] > best_yes_logit:
best_yes_logit = logits[token_id]
best_yes_id = token_id
# 找到 no token 的最大 logit
best_no_id = None
best_no_logit = float('-inf')
for token_id in self.no_token_candidates:
if token_id < vocab_size:
if logits[token_id] > best_no_logit:
best_no_logit = logits[token_id]
best_no_id = token_id
# 如果找不到预定义的 token,使用启发式方法
if best_yes_id is None or best_no_id is None:
print("警告: 使用启发式方法寻找 yes/no tokens")
# 找到 logits 最高的几个 token
sorted_indices = np.argsort(logits)[::-1]
top_tokens = sorted_indices[:20] # 取前20个最高的 logits
# 简单启发式:假设较高的 logit 对应 "yes",较低的对应 "no"
if best_yes_id is None:
best_yes_id = top_tokens[0]
best_yes_logit = logits[best_yes_id]
if best_no_id is None:
# 寻找一个相对较低但合理的 logit 作为 "no"
best_no_id = top_tokens[min(10, len(top_tokens)-1)]
best_no_logit = logits[best_no_id]
return best_yes_id, best_no_id, best_yes_logit, best_no_logit
def calculate_reranker_score(self, logits):
"""
计算重排序分数(基于 "yes" 和 "no" token 的 softmax 概率)
Args:
logits: 词汇表大小的 logits 数组
Returns:
相关性分数 (0-1之间,越高越相关)
"""
try:
# 找到 yes 和 no token 的 logits
yes_id, no_id, yes_logit, no_logit = self.find_best_yes_no_tokens(logits)
print(f"Yes token ID: {yes_id}, logit: {yes_logit:.4f}")
print(f"No token ID: {no_id}, logit: {no_logit:.4f}")
# 计算 softmax 概率
# 只考虑 yes 和 no 两个 token 的相对概率
max_logit = max(yes_logit, no_logit)
yes_exp = np.exp(yes_logit - max_logit) # 数值稳定性
no_exp = np.exp(no_logit - max_logit)
sum_exp = yes_exp + no_exp
yes_prob = yes_exp / sum_exp
no_prob = no_exp / sum_exp
print(f"Yes 概率: {yes_prob:.4f}, No 概率: {no_prob:.4f}")
# 返回 yes 的概率作为相关性分数
return float(yes_prob)
except Exception as e:
print(f"计算 reranker 分数时发生错误: {e}")
# 回退到简单的启发式方法
return self.fallback_score_calculation(logits)
def fallback_score_calculation(self, logits):
"""
备用分数计算方法(当无法找到 yes/no tokens 时)
Args:
logits: 词汇表大小的 logits 数组
Returns:
相关性分数 (0-1之间)
"""
print("使用备用分数计算方法")
# 使用 logits 的分布特征计算分数
logits_array = np.array(logits)
# 计算 softmax 分布的熵
softmax_probs = np.exp(logits_array - np.max(logits_array))
softmax_probs = softmax_probs / np.sum(softmax_probs)
# 熵越低,模型越确信(越相关)
entropy = -np.sum(softmax_probs * np.log(softmax_probs + 1e-10))
max_entropy = np.log(len(logits))
normalized_entropy = entropy / max_entropy
# 转换为相关性分数(熵低 = 相关性高)
confidence_score = 1.0 - normalized_entropy
# 结合最大 logit 的信息
max_logit_score = (np.max(logits_array) - np.mean(logits_array)) / (np.std(logits_array) + 1e-8)
max_logit_score = max(0, min(1, max_logit_score / 10)) # 归一化
# 综合分数
final_score = 0.7 * confidence_score + 0.3 * max_logit_score
final_score = max(0.0, min(1.0, final_score))
print(f"备用计算 - 熵分数: {confidence_score:.4f}, 最大logit分数: {max_logit_score:.4f}, 最终分数: {final_score:.4f}")
return final_score
def init_model(self):
"""初始化模型"""
try:
print(f"初始化 RKLLM 运行时,库路径: {self.library_path}")
self.runtime = RKLLMRuntime(self.library_path)
print("创建默认参数...")
params = self.runtime.create_default_param()
# 配置参数
params.model_path = self.model_path.encode('utf-8')
params.max_context_len = 1024
params.max_new_tokens = 1 # reranker 只需要生成一个 token
params.temperature = 0.0 # 确定性输出
params.top_k = 1 # 贪心解码
params.top_p = 1.0 # 禁用nucleus采样
# 扩展参数配置
params.extend_param.base_domain_id = 1
params.extend_param.embed_flash = 0
params.extend_param.enabled_cpus_num = 4
params.extend_param.enabled_cpus_mask = 0x0F
print(f"初始化模型: {self.model_path}")
self.runtime.init(params, self.callback_function)
# 设置聊天模板
self.runtime.set_chat_template(
"",
"", # prefix
"" # suffix
)
print("模型初始化成功!")
except Exception as e:
print(f"模型初始化失败: {e}")
raise
def format_rerank_input(self, instruction, query, document):
"""
格式化重排序输入(根据官方 README 格式)
Args:
instruction: 任务指令
query: 查询文本
document: 文档文本
Returns:
格式化的输入文本
"""
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
# 根据官方 README 的格式
formatted_input = f"<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {document}"
return formatted_input
def get_reranker_score(self, instruction, query, document):
"""
获取重排序分数(通过 logits)
Args:
instruction: 任务指令
query: 查询文本
document: 文档文本
Returns:
相关性分数 (0-1之间)
"""
try:
# 格式化输入
input_text = self.format_rerank_input(instruction, query, document)
print(f"\n重排序输入: {input_text[:200]}{'...' if len(input_text) > 200 else ''}")
# 准备输入
rk_input = RKLLMInput()
rk_input.input_type = RKLLMInputType.RKLLM_INPUT_PROMPT
c_prompt = input_text.encode('utf-8')
rk_input._union_data.prompt_input = c_prompt
# 准备推理参数 - 使用 GET_LOGITS 模式
infer_params = RKLLMInferParam()
infer_params.mode = RKLLMInferMode.RKLLM_INFER_GET_LOGITS # 获取 logits
infer_params.keep_history = 0
# 清空之前的结果
self.current_result = None
self.runtime.clear_kv_cache(False)
# 执行推理
start_time = time.time()
self.runtime.run(rk_input, infer_params)
end_time = time.time()
print(f"\n推理耗时: {end_time - start_time:.3f}秒")
if self.current_result and 'logits' in self.current_result:
# 使用正确的方法计算 reranker 分数
logits = self.current_result['logits']
score = self.calculate_reranker_score(logits)
print(f"计算得分: {score:.4f}")
return score
else:
print("警告: 未能获取到有效的 logits,返回默认分数")
return 0.0
except Exception as e:
print(f"重排序评分时发生错误: {e}")
import traceback
traceback.print_exc()
return 0.0
def rerank_documents(self, query, documents, instruction=None):
"""
对文档列表进行重排序
Args:
query: 查询文本
documents: 文档列表
instruction: 可选的任务指令
Returns:
按相关性分数降序排列的(文档, 分数)元组列表
"""
print(f"\n对 {len(documents)} 个文档进行重排序")
print(f"查询: {query}")
if instruction:
print(f"指令: {instruction}")
scored_docs = []
for i, doc in enumerate(documents):
print(f"\n--- 处理文档 {i+1}/{len(documents)} ---")
print(f"文档: {doc[:100]}{'...' if len(doc) > 100 else ''}")
score = self.get_reranker_score(instruction, query, doc)
scored_docs.append((doc, score))
print(f"得分: {score:.4f}")
# 按分数降序排序
scored_docs.sort(key=lambda x: x[1], reverse=True)
return scored_docs
def test_basic_reranking(self):
"""测试基础重排序功能"""
print("\n" + "="*60)
print("测试基础重排序功能")
print("="*60)
# 测试查询
query = "What is the capital of China?"
# 候选文档(包含相关和不相关的)
documents = [
"Beijing is the capital city of China, located in northern China.",
"The Great Wall of China is an ancient fortification built to protect Chinese states.",
"Python is a high-level programming language used for software development.",
"China's capital Beijing is home to over 21 million people.",
"Machine learning is a subset of artificial intelligence that uses algorithms."
]
# 执行重排序
instruction = "Given a web search query, retrieve relevant passages that answer the query"
ranked_docs = self.rerank_documents(query, documents, instruction)
# 显示结果
print(f"\n重排序结果(查询: {query}):")
print("-" * 80)
for i, (doc, score) in enumerate(ranked_docs):
print(f"排名 {i+1}: 分数 {score:.4f}")
print(f"文档: {doc}")
print()
return ranked_docs
def test_multilingual_reranking(self):
"""测试多语言重排序"""
print("\n" + "="*60)
print("测试多语言重排序功能")
print("="*60)
# 中文查询
query = "中国的首都是什么?"
documents = [
"北京是中华人民共和国的首都,位于中国北部。",
"上海是中国的经济中心,人口超过2400万。",
"Python 是一种高级编程语言。",
"The capital of China is Beijing.",
"长城是中国古代的军事防御工程。"
]
instruction = "Given a web search query, retrieve relevant passages that answer the query"
ranked_docs = self.rerank_documents(query, documents, instruction)
print(f"\n多语言重排序结果(查询: {query}):")
print("-" * 80)
for i, (doc, score) in enumerate(ranked_docs):
print(f"排名 {i+1}: 分数 {score:.4f}")
print(f"文档: {doc}")
print()
return ranked_docs
def test_domain_specific_reranking(self):
"""测试领域特定的重排序"""
print("\n" + "="*60)
print("测试领域特定重排序(技术文档)")
print("="*60)
query = "How to implement a neural network in Python?"
documents = [
"PyTorch is a deep learning framework that provides tensor computations with GPU acceleration.",
"TensorFlow is an open-source machine learning library developed by Google.",
"Neural networks are computing systems inspired by biological neural networks.",
"Python is a programming language with simple syntax and powerful libraries.",
"To implement a neural network in Python, you can use libraries like PyTorch or TensorFlow to define layers, loss functions, and optimization algorithms.",
"Cooking recipes often require precise measurements and cooking times.",
"Backpropagation is the algorithm used to train neural networks by computing gradients."
]
# 使用自定义指令
instruction = "Given a technical query and a document, determine if the document provides practical information for implementing the requested technical solution"
ranked_docs = self.rerank_documents(query, documents, instruction)
print(f"\n技术文档重排序结果(查询: {query}):")
print("-" * 80)
for i, (doc, score) in enumerate(ranked_docs):
print(f"排名 {i+1}: 分数 {score:.4f}")
print(f"文档: {doc}")
print()
return ranked_docs
def test_comparison_with_official_example(self):
"""测试与官方示例的对比"""
print("\n" + "="*60)
print("测试与官方示例的对比")
print("="*60)
# 使用官方 README 中的示例
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
"What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
print("测试官方示例的查询-文档对:")
for i, (query, doc) in enumerate(zip(queries, documents)):
print(f"\n=== 查询-文档对 {i+1} ===")
print(f"查询: {query}")
print(f"文档: {doc}")
score = self.get_reranker_score(task, query, doc)
print(f"相关性分数: {score:.4f}")
def cleanup(self):
"""清理资源"""
if self.runtime:
try:
self.runtime.destroy()
print("模型资源已清理")
except Exception as e:
print(f"清理资源时发生错误: {e}")
def main():
"""主函数"""
import argparse
# 解析命令行参数
parser = argparse.ArgumentParser(description='Qwen3-Reranker-0.6B 推理测试')
parser.add_argument('model_path', help='模型文件路径(.rkllm格式)')
parser.add_argument('--library_path', default="./librkllmrt.so", help='RKLLM库文件路径(默认为./librkllmrt.so)')
args = parser.parse_args()
# 检查文件是否存在
if not os.path.exists(args.model_path):
print(f"错误: 模型文件不存在: {args.model_path}")
print("请确保:")
print("1. 已下载 Qwen3-Reranker-0.6B 模型")
print("2. 已使用 rkllm-convert.py 将模型转换为 .rkllm 格式")
return
if not os.path.exists(args.library_path):
print(f"错误: RKLLM 库文件不存在: {args.library_path}")
print("请确保 librkllmrt.so 在当前目录或 LD_LIBRARY_PATH 中")
return
print("Qwen3-Reranker-0.6B 推理测试")
print("=" * 60)
print("基于官方 README 的正确实现")
print("=" * 60)
# 创建测试器
tester = Qwen3RerankerTester(args.model_path, args.library_path)
try:
# 初始化模型
tester.init_model()
# 运行测试
print("\n开始运行重排序测试...")
# 测试官方示例对比
tester.test_comparison_with_official_example()
# 测试基础重排序功能
tester.test_basic_reranking()
# 测试多语言重排序
tester.test_multilingual_reranking()
# 测试领域特定重排序
tester.test_domain_specific_reranking()
print("\n" + "="*60)
print("所有重排序测试完成!")
print("="*60)
except KeyboardInterrupt:
print("\n测试被用户中断")
except Exception as e:
print(f"\n测试过程中发生错误: {e}")
import traceback
traceback.print_exc()
finally:
# 清理资源
tester.cleanup()
if __name__ == "__main__":
main() |