Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- vqvae
|
| 5 |
+
- image-generation
|
| 6 |
+
- unsupervised-learning
|
| 7 |
+
- pytorch
|
| 8 |
+
- imagenet
|
| 9 |
+
- generative-model
|
| 10 |
+
datasets:
|
| 11 |
+
- imagenet-200
|
| 12 |
+
library_name: pytorch
|
| 13 |
+
model-index:
|
| 14 |
+
- name: VQ-VAE-ImageNet200
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: image-generation
|
| 18 |
+
name: Image Generation
|
| 19 |
+
dataset:
|
| 20 |
+
name: Tiny ImageNet (ImageNet-200)
|
| 21 |
+
type: image-classification
|
| 22 |
+
metrics:
|
| 23 |
+
- name: FID
|
| 24 |
+
type: frechet-inception-distance
|
| 25 |
+
value: 102.87
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
# VQ-VAE for Tiny ImageNet (ImageNet-200)
|
| 29 |
+
|
| 30 |
+
This repository contains a **Vector Quantized Variational Autoencoder (VQ-VAE)** trained on the Tiny ImageNet-200 dataset using PyTorch. It is part of an image augmentation and representation learning pipeline for generative modeling and unsupervised learning tasks.
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## 🧠 Model Details
|
| 35 |
+
|
| 36 |
+
- **Model Type**: Vector Quantized Variational Autoencoder (VQ-VAE)
|
| 37 |
+
- **Dataset**: Tiny ImageNet (ImageNet-200)
|
| 38 |
+
- **Epochs**: 35
|
| 39 |
+
- **Latent Space**: Discrete codebook (vector quantization)
|
| 40 |
+
- **Input Size**: 64×64 RGB
|
| 41 |
+
- **Loss Function**: Mean Squared Error (MSE) + VQ commitment loss
|
| 42 |
+
- **Final Training Loss**: ~0.0292
|
| 43 |
+
- **FID Score**: ~102.87
|
| 44 |
+
- **Architecture**: 3-layer CNN Encoder & Decoder with quantization bottleneck
|
| 45 |
+
|
| 46 |
+
---
|
| 47 |
+
|
| 48 |
+
## 📦 Files
|
| 49 |
+
|
| 50 |
+
- `generator.pt` — Trained VQ-VAE model weights
|
| 51 |
+
- `loss_curve.png` — Plot of training loss across 35 epochs
|
| 52 |
+
- `fid_score.json` — FID evaluation result on 1000 generated samples
|
| 53 |
+
- `fid_real/` — 1000 real Tiny ImageNet samples used for FID
|
| 54 |
+
- `fid_fake/` — 1000 VQ-VAE reconstructions used for FID
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
|
| 58 |
+
## 🔧 Usage
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
import torch
|
| 62 |
+
from models.vqvae.model import VQVAE
|
| 63 |
+
|
| 64 |
+
model = VQVAE()
|
| 65 |
+
model.load_state_dict(torch.load("generator.pt", map_location="cpu"))
|
| 66 |
+
model.eval()
|