| import torch | |
| from sentence_transformers.models import Transformer as BaseTransformer | |
| class JasperTransformer(BaseTransformer): | |
| def forward(self, features: dict[str, torch.Tensor], **kwargs) -> dict[str, torch.Tensor]: | |
| vectors = self.auto_model(**features, **kwargs) | |
| features.update({"sentence_embedding": vectors}) | |
| return features | |