ppo-Pyramids / run_logs /timers.json
irgallard's picture
First Push
57bdbb4
{
"name": "root",
"gauges": {
"Pyramids.Policy.Entropy.mean": {
"value": 0.3142242431640625,
"min": 0.3142242431640625,
"max": 1.4658249616622925,
"count": 33
},
"Pyramids.Policy.Entropy.sum": {
"value": 9497.11328125,
"min": 9497.11328125,
"max": 44467.265625,
"count": 33
},
"Pyramids.Step.mean": {
"value": 989937.0,
"min": 29952.0,
"max": 989937.0,
"count": 33
},
"Pyramids.Step.sum": {
"value": 989937.0,
"min": 29952.0,
"max": 989937.0,
"count": 33
},
"Pyramids.Policy.ExtrinsicValueEstimate.mean": {
"value": 0.47683265805244446,
"min": -0.2572888433933258,
"max": 0.47683265805244446,
"count": 33
},
"Pyramids.Policy.ExtrinsicValueEstimate.sum": {
"value": 129.698486328125,
"min": -60.977455139160156,
"max": 129.698486328125,
"count": 33
},
"Pyramids.Policy.RndValueEstimate.mean": {
"value": -0.04313739016652107,
"min": -0.04313739016652107,
"max": 0.43667465448379517,
"count": 33
},
"Pyramids.Policy.RndValueEstimate.sum": {
"value": -11.733369827270508,
"min": -11.733369827270508,
"max": 103.49188995361328,
"count": 33
},
"Pyramids.Losses.PolicyLoss.mean": {
"value": 0.07023988753607423,
"min": 0.06272303400308002,
"max": 0.07331832827954694,
"count": 33
},
"Pyramids.Losses.PolicyLoss.sum": {
"value": 1.0535983130411135,
"min": 0.5132282979568286,
"max": 1.0535983130411135,
"count": 33
},
"Pyramids.Losses.ValueLoss.mean": {
"value": 0.01433547756148067,
"min": 0.00013381286774667012,
"max": 0.01433547756148067,
"count": 33
},
"Pyramids.Losses.ValueLoss.sum": {
"value": 0.21503216342221004,
"min": 0.0017395672807067116,
"max": 0.21503216342221004,
"count": 33
},
"Pyramids.Policy.LearningRate.mean": {
"value": 7.453597515499999e-06,
"min": 7.453597515499999e-06,
"max": 0.00029515063018788575,
"count": 33
},
"Pyramids.Policy.LearningRate.sum": {
"value": 0.00011180396273249999,
"min": 0.00011180396273249999,
"max": 0.0035078072307309993,
"count": 33
},
"Pyramids.Policy.Epsilon.mean": {
"value": 0.10248450000000002,
"min": 0.10248450000000002,
"max": 0.19838354285714285,
"count": 33
},
"Pyramids.Policy.Epsilon.sum": {
"value": 1.5372675000000002,
"min": 1.3886848,
"max": 2.5692690000000002,
"count": 33
},
"Pyramids.Policy.Beta.mean": {
"value": 0.00025820155000000003,
"min": 0.00025820155000000003,
"max": 0.00983851593142857,
"count": 33
},
"Pyramids.Policy.Beta.sum": {
"value": 0.00387302325,
"min": 0.00387302325,
"max": 0.1169499731,
"count": 33
},
"Pyramids.Losses.RNDLoss.mean": {
"value": 0.014570423401892185,
"min": 0.014570423401892185,
"max": 0.5203476548194885,
"count": 33
},
"Pyramids.Losses.RNDLoss.sum": {
"value": 0.21855634450912476,
"min": 0.20461633801460266,
"max": 3.6424334049224854,
"count": 33
},
"Pyramids.Environment.EpisodeLength.mean": {
"value": 411.89473684210526,
"min": 387.3783783783784,
"max": 999.0,
"count": 33
},
"Pyramids.Environment.EpisodeLength.sum": {
"value": 31304.0,
"min": 15984.0,
"max": 32541.0,
"count": 33
},
"Pyramids.Environment.CumulativeReward.mean": {
"value": 1.4828105088519423,
"min": -1.0000000521540642,
"max": 1.497505692073277,
"count": 33
},
"Pyramids.Environment.CumulativeReward.sum": {
"value": 112.69359867274761,
"min": -31.99320162832737,
"max": 112.69359867274761,
"count": 33
},
"Pyramids.Policy.ExtrinsicReward.mean": {
"value": 1.4828105088519423,
"min": -1.0000000521540642,
"max": 1.497505692073277,
"count": 33
},
"Pyramids.Policy.ExtrinsicReward.sum": {
"value": 112.69359867274761,
"min": -31.99320162832737,
"max": 112.69359867274761,
"count": 33
},
"Pyramids.Policy.RndReward.mean": {
"value": 0.061423001488468514,
"min": 0.060450017597365846,
"max": 10.782642115838826,
"count": 33
},
"Pyramids.Policy.RndReward.sum": {
"value": 4.668148113123607,
"min": 4.473301302205073,
"max": 172.5222738534212,
"count": 33
},
"Pyramids.IsTraining.mean": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 33
},
"Pyramids.IsTraining.sum": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 33
}
},
"metadata": {
"timer_format_version": "0.1.0",
"start_time_seconds": "1681725493",
"python_version": "3.9.16 (main, Dec 7 2022, 01:11:51) \n[GCC 9.4.0]",
"command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics",
"mlagents_version": "0.31.0.dev0",
"mlagents_envs_version": "0.31.0.dev0",
"communication_protocol_version": "1.5.0",
"pytorch_version": "1.11.0+cu102",
"numpy_version": "1.21.2",
"end_time_seconds": "1681727586"
},
"total": 2093.129246688,
"count": 1,
"self": 0.4748499679994893,
"children": {
"run_training.setup": {
"total": 0.11688721300015459,
"count": 1,
"self": 0.11688721300015459
},
"TrainerController.start_learning": {
"total": 2092.5375095070003,
"count": 1,
"self": 1.4138793889806038,
"children": {
"TrainerController._reset_env": {
"total": 3.793426436000118,
"count": 1,
"self": 3.793426436000118
},
"TrainerController.advance": {
"total": 2087.2353523440206,
"count": 63646,
"self": 1.434748125886017,
"children": {
"env_step": {
"total": 1479.6305073981202,
"count": 63646,
"self": 1373.3664187370891,
"children": {
"SubprocessEnvManager._take_step": {
"total": 105.42257611303103,
"count": 63646,
"self": 4.735638717073471,
"children": {
"TorchPolicy.evaluate": {
"total": 100.68693739595756,
"count": 62575,
"self": 100.68693739595756
}
}
},
"workers": {
"total": 0.8415125480000825,
"count": 63646,
"self": 0.0,
"children": {
"worker_root": {
"total": 2087.577791341044,
"count": 63646,
"is_parallel": true,
"self": 822.9442456119955,
"children": {
"run_training.setup": {
"total": 0.0,
"count": 0,
"is_parallel": true,
"self": 0.0,
"children": {
"steps_from_proto": {
"total": 0.001705107999896427,
"count": 1,
"is_parallel": true,
"self": 0.0005499479998434254,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.0011551600000530016,
"count": 8,
"is_parallel": true,
"self": 0.0011551600000530016
}
}
},
"UnityEnvironment.step": {
"total": 0.044999272000040946,
"count": 1,
"is_parallel": true,
"self": 0.0005131240000082471,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 0.00030612199998358847,
"count": 1,
"is_parallel": true,
"self": 0.00030612199998358847
},
"communicator.exchange": {
"total": 0.042602158000136114,
"count": 1,
"is_parallel": true,
"self": 0.042602158000136114
},
"steps_from_proto": {
"total": 0.0015778679999129963,
"count": 1,
"is_parallel": true,
"self": 0.0003718719999596942,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.001205995999953302,
"count": 8,
"is_parallel": true,
"self": 0.001205995999953302
}
}
}
}
}
}
},
"UnityEnvironment.step": {
"total": 1264.6335457290484,
"count": 63645,
"is_parallel": true,
"self": 31.913115142187507,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 22.852449078042355,
"count": 63645,
"is_parallel": true,
"self": 22.852449078042355
},
"communicator.exchange": {
"total": 1117.2035838069382,
"count": 63645,
"is_parallel": true,
"self": 1117.2035838069382
},
"steps_from_proto": {
"total": 92.66439770188026,
"count": 63645,
"is_parallel": true,
"self": 19.731983583103556,
"children": {
"_process_rank_one_or_two_observation": {
"total": 72.9324141187767,
"count": 509160,
"is_parallel": true,
"self": 72.9324141187767
}
}
}
}
}
}
}
}
}
}
},
"trainer_advance": {
"total": 606.1700968200144,
"count": 63646,
"self": 2.7035485379528836,
"children": {
"process_trajectory": {
"total": 101.83620542506196,
"count": 63646,
"self": 101.6329930310626,
"children": {
"RLTrainer._checkpoint": {
"total": 0.2032123939993653,
"count": 2,
"self": 0.2032123939993653
}
}
},
"_update_policy": {
"total": 501.6303428569995,
"count": 449,
"self": 321.54123719402287,
"children": {
"TorchPPOOptimizer.update": {
"total": 180.08910566297664,
"count": 22767,
"self": 180.08910566297664
}
}
}
}
}
}
},
"trainer_threads": {
"total": 9.279992809752002e-07,
"count": 1,
"self": 9.279992809752002e-07
},
"TrainerController._save_models": {
"total": 0.09485040999970806,
"count": 1,
"self": 0.0015772970000398345,
"children": {
"RLTrainer._checkpoint": {
"total": 0.09327311299966823,
"count": 1,
"self": 0.09327311299966823
}
}
}
}
}
}
}