--- library_name: transformers license: apache-2.0 language: - en --- ### Example ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "jaeyong2/QuerySense-Preview" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = """ # Role You are an AI that receives Questions and Context from users as input and preprocesses the Questions. # Instruction - If the user's Questions contains enough information to create an answer, use the user's Questions as is. - If the information is insufficient or the Context is insufficient, please rephrase the Questions with the necessary information. - If there is insufficient information to generate an answer and there is no Context, it will automatically fill in the appropriate information. # input - Context : Previous conversations or related Context or related information entered by the user (Optional) - Question : User's Questions (Required) """.strip() content =""" Context : Question : name """.strip() system = {"role":"system", "content":prompt} user = {"role":"user", "content":content} messages = [system, user] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n") print("content:", content) ``` ### result ``` content: what is the name of the product? ``` ## License - Qwen/Qwen3-1.7B : https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/LICENSE ## Acknowledgement This research is supported by **TPU Research Cloud program**.