--- license: mit language: - ko base_model: - K-intelligence/Midm-2.0-Base-Instruct tags: - Korean - Culture --- # Midm-KCulture-2.0-Base-Instruct - This model is fine-tuned from KT/Midm-2.0-Base-Instruct on the 'Korean Culture Q&A Corpus' using the LoRA (Low-Rank Adaptation) methodology. ## GitHub Check out the full training code [here](https://github.com/dahlia52/KR-Culture-QA/tree/main). ## Training Hyperparameters | Hyperparameter | Value | | :---------------------------- | :---------------------------- | | **SFTConfig** | | | `torch_dtype` | `bfloat16` | | `seed` | `42` | | `epoch` | `3` | | `per_device_train_batch_size` | `2` | | `per_device_eval_batch_size` | `2` | | `learning_rate` | `0.0002` | | `lr_scheduler_type` | `"linear"` | | `max_grad_norm` | `1.0` | | `neftune_noise_alpha` | `None` | | `gradient_accumulation_steps` | `1` | | `gradient_checkpointing` | `False` | | `max_seq_length` | `1024` | | **LoraConfig** | | | `r` | `16` | | `lora_alpha` | `16` | | `lora_dropout` | `0.1` | | `target_modules` | `["q_proj", "v_proj"]` | ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "jjae/Midm-KCulture-2.0-Base-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) ```