SirajRLX commited on
Commit
d9737b1
·
verified ·
1 Parent(s): e527a65

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. sft_devstral_24B_v2/best_adapter/README.md +207 -0
  3. sft_devstral_24B_v2/best_adapter/adapter_config.json +43 -0
  4. sft_devstral_24B_v2/best_adapter/adapter_model.safetensors +3 -0
  5. sft_devstral_24B_v2/best_adapter/training_args.bin +3 -0
  6. sft_devstral_24B_v2/checkpoints/checkpoint-1000/README.md +207 -0
  7. sft_devstral_24B_v2/checkpoints/checkpoint-1000/adapter_config.json +43 -0
  8. sft_devstral_24B_v2/checkpoints/checkpoint-1000/adapter_model.safetensors +3 -0
  9. sft_devstral_24B_v2/checkpoints/checkpoint-1000/optimizer.pt +3 -0
  10. sft_devstral_24B_v2/checkpoints/checkpoint-1000/rng_state.pth +3 -0
  11. sft_devstral_24B_v2/checkpoints/checkpoint-1000/scheduler.pt +3 -0
  12. sft_devstral_24B_v2/checkpoints/checkpoint-1000/trainer_state.json +3623 -0
  13. sft_devstral_24B_v2/checkpoints/checkpoint-1000/training_args.bin +3 -0
  14. sft_devstral_24B_v2/checkpoints/checkpoint-1500/README.md +207 -0
  15. sft_devstral_24B_v2/checkpoints/checkpoint-1500/adapter_config.json +43 -0
  16. sft_devstral_24B_v2/checkpoints/checkpoint-1500/adapter_model.safetensors +3 -0
  17. sft_devstral_24B_v2/checkpoints/checkpoint-1500/optimizer.pt +3 -0
  18. sft_devstral_24B_v2/checkpoints/checkpoint-1500/rng_state.pth +3 -0
  19. sft_devstral_24B_v2/checkpoints/checkpoint-1500/scheduler.pt +3 -0
  20. sft_devstral_24B_v2/checkpoints/checkpoint-1500/trainer_state.json +0 -0
  21. sft_devstral_24B_v2/checkpoints/checkpoint-1500/training_args.bin +3 -0
  22. sft_devstral_24B_v2/checkpoints/checkpoint-2000/README.md +207 -0
  23. sft_devstral_24B_v2/checkpoints/checkpoint-2000/adapter_config.json +43 -0
  24. sft_devstral_24B_v2/checkpoints/checkpoint-2000/adapter_model.safetensors +3 -0
  25. sft_devstral_24B_v2/checkpoints/checkpoint-2000/optimizer.pt +3 -0
  26. sft_devstral_24B_v2/checkpoints/checkpoint-2000/rng_state.pth +3 -0
  27. sft_devstral_24B_v2/checkpoints/checkpoint-2000/scheduler.pt +3 -0
  28. sft_devstral_24B_v2/checkpoints/checkpoint-2000/trainer_state.json +0 -0
  29. sft_devstral_24B_v2/checkpoints/checkpoint-2000/training_args.bin +3 -0
  30. sft_devstral_24B_v2/checkpoints/checkpoint-2500/README.md +207 -0
  31. sft_devstral_24B_v2/checkpoints/checkpoint-2500/adapter_config.json +43 -0
  32. sft_devstral_24B_v2/checkpoints/checkpoint-2500/adapter_model.safetensors +3 -0
  33. sft_devstral_24B_v2/checkpoints/checkpoint-2500/optimizer.pt +3 -0
  34. sft_devstral_24B_v2/checkpoints/checkpoint-2500/rng_state.pth +3 -0
  35. sft_devstral_24B_v2/checkpoints/checkpoint-2500/scheduler.pt +3 -0
  36. sft_devstral_24B_v2/checkpoints/checkpoint-2500/trainer_state.json +0 -0
  37. sft_devstral_24B_v2/checkpoints/checkpoint-2500/training_args.bin +3 -0
  38. sft_devstral_24B_v2/checkpoints/checkpoint-3000/README.md +207 -0
  39. sft_devstral_24B_v2/checkpoints/checkpoint-3000/adapter_config.json +43 -0
  40. sft_devstral_24B_v2/checkpoints/checkpoint-3000/adapter_model.safetensors +3 -0
  41. sft_devstral_24B_v2/checkpoints/checkpoint-3000/optimizer.pt +3 -0
  42. sft_devstral_24B_v2/checkpoints/checkpoint-3000/rng_state.pth +3 -0
  43. sft_devstral_24B_v2/checkpoints/checkpoint-3000/scheduler.pt +3 -0
  44. sft_devstral_24B_v2/checkpoints/checkpoint-3000/trainer_state.json +0 -0
  45. sft_devstral_24B_v2/checkpoints/checkpoint-3000/training_args.bin +3 -0
  46. sft_devstral_24B_v2/checkpoints/checkpoint-3500/README.md +207 -0
  47. sft_devstral_24B_v2/checkpoints/checkpoint-3500/adapter_config.json +43 -0
  48. sft_devstral_24B_v2/checkpoints/checkpoint-3500/adapter_model.safetensors +3 -0
  49. sft_devstral_24B_v2/checkpoints/checkpoint-3500/optimizer.pt +3 -0
  50. sft_devstral_24B_v2/checkpoints/checkpoint-3500/rng_state.pth +3 -0
.gitattributes CHANGED
@@ -55,3 +55,6 @@ sft_devstral_24B/wandb/offline-run-20251223_134236-sicxj35d/run-sicxj35d.wandb f
55
  sft_devstral_24B/wandb/offline-run-20251223_134432-y3kepwdy/run-y3kepwdy.wandb filter=lfs diff=lfs merge=lfs -text
56
  sft_devstral_24B/wandb/run-20251223_134618-9jed4peb/run-9jed4peb.wandb filter=lfs diff=lfs merge=lfs -text
57
  sft_devstral_24B/wandb/run-20251223_142235-cktxoubm/run-cktxoubm.wandb filter=lfs diff=lfs merge=lfs -text
 
 
 
 
55
  sft_devstral_24B/wandb/offline-run-20251223_134432-y3kepwdy/run-y3kepwdy.wandb filter=lfs diff=lfs merge=lfs -text
56
  sft_devstral_24B/wandb/run-20251223_134618-9jed4peb/run-9jed4peb.wandb filter=lfs diff=lfs merge=lfs -text
57
  sft_devstral_24B/wandb/run-20251223_142235-cktxoubm/run-cktxoubm.wandb filter=lfs diff=lfs merge=lfs -text
58
+ sft_devstral_24B_v2/wandb/run-20251226_180613-i1cmzyri/run-i1cmzyri.wandb filter=lfs diff=lfs merge=lfs -text
59
+ sft_devstral_24B_v2/wandb/run-20251226_180702-oordmylf/run-oordmylf.wandb filter=lfs diff=lfs merge=lfs -text
60
+ sft_devstral_24B_v2/wandb/run-20251226_180808-ny9q48hd/run-ny9q48hd.wandb filter=lfs diff=lfs merge=lfs -text
sft_devstral_24B_v2/best_adapter/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Models/Devstral-Small-2-24B-HS-CPT
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Models/Devstral-Small-2-24B-HS-CPT
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B_v2/best_adapter/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Models/Devstral-Small-2-24B-HS-CPT",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "q_proj",
34
+ "o_proj",
35
+ "k_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B_v2/best_adapter/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83291f6d455ca5ce17a07f21cc02ec56cba0671e1d6495dd81c1d98fd10b7c26
3
+ size 45690960
sft_devstral_24B_v2/best_adapter/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09df88fe57630482e911c5fab6026e3d20e4f37f6e48706f3566768f533d6d7
3
+ size 4792
sft_devstral_24B_v2/checkpoints/checkpoint-1000/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Models/Devstral-Small-2-24B-HS-CPT
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Models/Devstral-Small-2-24B-HS-CPT
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B_v2/checkpoints/checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Models/Devstral-Small-2-24B-HS-CPT",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "q_proj",
34
+ "o_proj",
35
+ "k_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B_v2/checkpoints/checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44afa7c257cedf456ae8538816f1dcd1546f8e0509f0b58cb9c689ac56711166
3
+ size 45690960
sft_devstral_24B_v2/checkpoints/checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2baa24039deac4dc92f3e0e35321ca7d94cd710dfd3416641e7f5735dcfbaba5
3
+ size 78912442
sft_devstral_24B_v2/checkpoints/checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0de6a7ba694bc1275a5b47fcf2c7b687280c780b6f307863a07ec69d3e9567f
3
+ size 14244
sft_devstral_24B_v2/checkpoints/checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd7d0063a4b9f937b9f5f63ec0f89ae9cc467878dc393ecd578a9607b37e26c8
3
+ size 1064
sft_devstral_24B_v2/checkpoints/checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,3623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 1000,
3
+ "best_metric": 0.8388314247131348,
4
+ "best_model_checkpoint": "task2file/sft_devstral_24B_v2/checkpoints/checkpoint-1000",
5
+ "epoch": 0.4219409282700422,
6
+ "eval_steps": 100,
7
+ "global_step": 1000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0008438818565400844,
14
+ "grad_norm": 1.597854733467102,
15
+ "learning_rate": 8.787346221441124e-08,
16
+ "loss": 1.3927901983261108,
17
+ "step": 2
18
+ },
19
+ {
20
+ "epoch": 0.0016877637130801688,
21
+ "grad_norm": 1.6547431945800781,
22
+ "learning_rate": 2.6362038664323375e-07,
23
+ "loss": 1.407160758972168,
24
+ "step": 4
25
+ },
26
+ {
27
+ "epoch": 0.002531645569620253,
28
+ "grad_norm": 1.8221601247787476,
29
+ "learning_rate": 4.393673110720563e-07,
30
+ "loss": 1.376656174659729,
31
+ "step": 6
32
+ },
33
+ {
34
+ "epoch": 0.0033755274261603376,
35
+ "grad_norm": 1.4831048250198364,
36
+ "learning_rate": 6.151142355008788e-07,
37
+ "loss": 1.247712254524231,
38
+ "step": 8
39
+ },
40
+ {
41
+ "epoch": 0.004219409282700422,
42
+ "grad_norm": 1.668201208114624,
43
+ "learning_rate": 7.908611599297013e-07,
44
+ "loss": 1.2685163021087646,
45
+ "step": 10
46
+ },
47
+ {
48
+ "epoch": 0.005063291139240506,
49
+ "grad_norm": 1.67417311668396,
50
+ "learning_rate": 9.666080843585237e-07,
51
+ "loss": 1.2942761182785034,
52
+ "step": 12
53
+ },
54
+ {
55
+ "epoch": 0.00590717299578059,
56
+ "grad_norm": 1.7154079675674438,
57
+ "learning_rate": 1.1423550087873463e-06,
58
+ "loss": 1.3638604879379272,
59
+ "step": 14
60
+ },
61
+ {
62
+ "epoch": 0.006751054852320675,
63
+ "grad_norm": 1.729427456855774,
64
+ "learning_rate": 1.3181019332161688e-06,
65
+ "loss": 1.3476728200912476,
66
+ "step": 16
67
+ },
68
+ {
69
+ "epoch": 0.007594936708860759,
70
+ "grad_norm": 1.3813447952270508,
71
+ "learning_rate": 1.4938488576449913e-06,
72
+ "loss": 1.3476393222808838,
73
+ "step": 18
74
+ },
75
+ {
76
+ "epoch": 0.008438818565400843,
77
+ "grad_norm": 1.557220458984375,
78
+ "learning_rate": 1.6695957820738139e-06,
79
+ "loss": 1.2449309825897217,
80
+ "step": 20
81
+ },
82
+ {
83
+ "epoch": 0.009282700421940928,
84
+ "grad_norm": 1.1883500814437866,
85
+ "learning_rate": 1.8453427065026362e-06,
86
+ "loss": 1.3125361204147339,
87
+ "step": 22
88
+ },
89
+ {
90
+ "epoch": 0.010126582278481013,
91
+ "grad_norm": 1.7290029525756836,
92
+ "learning_rate": 2.0210896309314587e-06,
93
+ "loss": 1.3724769353866577,
94
+ "step": 24
95
+ },
96
+ {
97
+ "epoch": 0.010970464135021098,
98
+ "grad_norm": 1.5627557039260864,
99
+ "learning_rate": 2.1968365553602812e-06,
100
+ "loss": 1.3401387929916382,
101
+ "step": 26
102
+ },
103
+ {
104
+ "epoch": 0.01181434599156118,
105
+ "grad_norm": 1.796866774559021,
106
+ "learning_rate": 2.3725834797891038e-06,
107
+ "loss": 1.365437388420105,
108
+ "step": 28
109
+ },
110
+ {
111
+ "epoch": 0.012658227848101266,
112
+ "grad_norm": 1.7030404806137085,
113
+ "learning_rate": 2.5483304042179263e-06,
114
+ "loss": 1.2706533670425415,
115
+ "step": 30
116
+ },
117
+ {
118
+ "epoch": 0.01350210970464135,
119
+ "grad_norm": 1.3186293840408325,
120
+ "learning_rate": 2.724077328646749e-06,
121
+ "loss": 1.3084994554519653,
122
+ "step": 32
123
+ },
124
+ {
125
+ "epoch": 0.014345991561181435,
126
+ "grad_norm": 1.5762513875961304,
127
+ "learning_rate": 2.8998242530755714e-06,
128
+ "loss": 1.3259696960449219,
129
+ "step": 34
130
+ },
131
+ {
132
+ "epoch": 0.015189873417721518,
133
+ "grad_norm": 1.422295331954956,
134
+ "learning_rate": 3.075571177504394e-06,
135
+ "loss": 1.3205676078796387,
136
+ "step": 36
137
+ },
138
+ {
139
+ "epoch": 0.016033755274261603,
140
+ "grad_norm": 1.495523452758789,
141
+ "learning_rate": 3.2513181019332165e-06,
142
+ "loss": 1.3740568161010742,
143
+ "step": 38
144
+ },
145
+ {
146
+ "epoch": 0.016877637130801686,
147
+ "grad_norm": 1.5112254619598389,
148
+ "learning_rate": 3.427065026362039e-06,
149
+ "loss": 1.321828842163086,
150
+ "step": 40
151
+ },
152
+ {
153
+ "epoch": 0.017721518987341773,
154
+ "grad_norm": 1.4667807817459106,
155
+ "learning_rate": 3.602811950790861e-06,
156
+ "loss": 1.3673173189163208,
157
+ "step": 42
158
+ },
159
+ {
160
+ "epoch": 0.018565400843881856,
161
+ "grad_norm": 1.6609723567962646,
162
+ "learning_rate": 3.7785588752196836e-06,
163
+ "loss": 1.3968093395233154,
164
+ "step": 44
165
+ },
166
+ {
167
+ "epoch": 0.019409282700421943,
168
+ "grad_norm": 1.59381103515625,
169
+ "learning_rate": 3.954305799648506e-06,
170
+ "loss": 1.4295302629470825,
171
+ "step": 46
172
+ },
173
+ {
174
+ "epoch": 0.020253164556962026,
175
+ "grad_norm": 1.1470608711242676,
176
+ "learning_rate": 4.130052724077329e-06,
177
+ "loss": 1.2536572217941284,
178
+ "step": 48
179
+ },
180
+ {
181
+ "epoch": 0.02109704641350211,
182
+ "grad_norm": 1.2014588117599487,
183
+ "learning_rate": 4.305799648506151e-06,
184
+ "loss": 1.242217779159546,
185
+ "step": 50
186
+ },
187
+ {
188
+ "epoch": 0.021940928270042195,
189
+ "grad_norm": 1.2327464818954468,
190
+ "learning_rate": 4.481546572934974e-06,
191
+ "loss": 1.2166963815689087,
192
+ "step": 52
193
+ },
194
+ {
195
+ "epoch": 0.02278481012658228,
196
+ "grad_norm": 1.9708983898162842,
197
+ "learning_rate": 4.657293497363796e-06,
198
+ "loss": 1.25709867477417,
199
+ "step": 54
200
+ },
201
+ {
202
+ "epoch": 0.02362869198312236,
203
+ "grad_norm": 1.180569052696228,
204
+ "learning_rate": 4.833040421792619e-06,
205
+ "loss": 1.2886158227920532,
206
+ "step": 56
207
+ },
208
+ {
209
+ "epoch": 0.024472573839662448,
210
+ "grad_norm": 1.5029548406600952,
211
+ "learning_rate": 5.008787346221441e-06,
212
+ "loss": 1.29886794090271,
213
+ "step": 58
214
+ },
215
+ {
216
+ "epoch": 0.02531645569620253,
217
+ "grad_norm": 1.5380216836929321,
218
+ "learning_rate": 5.184534270650264e-06,
219
+ "loss": 1.2387628555297852,
220
+ "step": 60
221
+ },
222
+ {
223
+ "epoch": 0.026160337552742614,
224
+ "grad_norm": 1.572144865989685,
225
+ "learning_rate": 5.3602811950790864e-06,
226
+ "loss": 1.2177000045776367,
227
+ "step": 62
228
+ },
229
+ {
230
+ "epoch": 0.0270042194092827,
231
+ "grad_norm": 1.4882780313491821,
232
+ "learning_rate": 5.536028119507909e-06,
233
+ "loss": 1.181516170501709,
234
+ "step": 64
235
+ },
236
+ {
237
+ "epoch": 0.027848101265822784,
238
+ "grad_norm": 1.2982488870620728,
239
+ "learning_rate": 5.7117750439367315e-06,
240
+ "loss": 1.2101733684539795,
241
+ "step": 66
242
+ },
243
+ {
244
+ "epoch": 0.02869198312236287,
245
+ "grad_norm": 1.5236955881118774,
246
+ "learning_rate": 5.887521968365554e-06,
247
+ "loss": 1.2277681827545166,
248
+ "step": 68
249
+ },
250
+ {
251
+ "epoch": 0.029535864978902954,
252
+ "grad_norm": 1.4521006345748901,
253
+ "learning_rate": 6.0632688927943766e-06,
254
+ "loss": 1.1688424348831177,
255
+ "step": 70
256
+ },
257
+ {
258
+ "epoch": 0.030379746835443037,
259
+ "grad_norm": 1.2352311611175537,
260
+ "learning_rate": 6.239015817223199e-06,
261
+ "loss": 1.273059368133545,
262
+ "step": 72
263
+ },
264
+ {
265
+ "epoch": 0.031223628691983123,
266
+ "grad_norm": 1.3438209295272827,
267
+ "learning_rate": 6.414762741652021e-06,
268
+ "loss": 1.1609034538269043,
269
+ "step": 74
270
+ },
271
+ {
272
+ "epoch": 0.032067510548523206,
273
+ "grad_norm": 1.9009398221969604,
274
+ "learning_rate": 6.590509666080843e-06,
275
+ "loss": 1.2508260011672974,
276
+ "step": 76
277
+ },
278
+ {
279
+ "epoch": 0.03291139240506329,
280
+ "grad_norm": 1.6718412637710571,
281
+ "learning_rate": 6.766256590509666e-06,
282
+ "loss": 1.2524956464767456,
283
+ "step": 78
284
+ },
285
+ {
286
+ "epoch": 0.03375527426160337,
287
+ "grad_norm": 1.249891757965088,
288
+ "learning_rate": 6.942003514938488e-06,
289
+ "loss": 1.1472493410110474,
290
+ "step": 80
291
+ },
292
+ {
293
+ "epoch": 0.03459915611814346,
294
+ "grad_norm": 1.4398653507232666,
295
+ "learning_rate": 7.117750439367312e-06,
296
+ "loss": 1.0845389366149902,
297
+ "step": 82
298
+ },
299
+ {
300
+ "epoch": 0.035443037974683546,
301
+ "grad_norm": 1.3701167106628418,
302
+ "learning_rate": 7.293497363796134e-06,
303
+ "loss": 1.1088868379592896,
304
+ "step": 84
305
+ },
306
+ {
307
+ "epoch": 0.036286919831223625,
308
+ "grad_norm": 1.277998924255371,
309
+ "learning_rate": 7.469244288224957e-06,
310
+ "loss": 1.1513772010803223,
311
+ "step": 86
312
+ },
313
+ {
314
+ "epoch": 0.03713080168776371,
315
+ "grad_norm": 1.4970002174377441,
316
+ "learning_rate": 7.644991212653779e-06,
317
+ "loss": 1.1385771036148071,
318
+ "step": 88
319
+ },
320
+ {
321
+ "epoch": 0.0379746835443038,
322
+ "grad_norm": 1.3384218215942383,
323
+ "learning_rate": 7.820738137082601e-06,
324
+ "loss": 1.1632680892944336,
325
+ "step": 90
326
+ },
327
+ {
328
+ "epoch": 0.038818565400843885,
329
+ "grad_norm": 1.4317446947097778,
330
+ "learning_rate": 7.996485061511425e-06,
331
+ "loss": 1.2256064414978027,
332
+ "step": 92
333
+ },
334
+ {
335
+ "epoch": 0.039662447257383965,
336
+ "grad_norm": 1.8743640184402466,
337
+ "learning_rate": 8.172231985940246e-06,
338
+ "loss": 1.1935789585113525,
339
+ "step": 94
340
+ },
341
+ {
342
+ "epoch": 0.04050632911392405,
343
+ "grad_norm": 1.4789546728134155,
344
+ "learning_rate": 8.347978910369069e-06,
345
+ "loss": 1.1429362297058105,
346
+ "step": 96
347
+ },
348
+ {
349
+ "epoch": 0.04135021097046414,
350
+ "grad_norm": 1.658605694770813,
351
+ "learning_rate": 8.523725834797891e-06,
352
+ "loss": 1.1831508874893188,
353
+ "step": 98
354
+ },
355
+ {
356
+ "epoch": 0.04219409282700422,
357
+ "grad_norm": 1.5077892541885376,
358
+ "learning_rate": 8.699472759226714e-06,
359
+ "loss": 1.0539867877960205,
360
+ "step": 100
361
+ },
362
+ {
363
+ "epoch": 0.04219409282700422,
364
+ "eval_loss": 1.138856053352356,
365
+ "eval_runtime": 859.7128,
366
+ "eval_samples_per_second": 2.451,
367
+ "eval_steps_per_second": 2.451,
368
+ "step": 100
369
+ },
370
+ {
371
+ "epoch": 0.043037974683544304,
372
+ "grad_norm": 1.4335681200027466,
373
+ "learning_rate": 8.875219683655536e-06,
374
+ "loss": 1.0719901323318481,
375
+ "step": 102
376
+ },
377
+ {
378
+ "epoch": 0.04388185654008439,
379
+ "grad_norm": 1.7387681007385254,
380
+ "learning_rate": 9.050966608084359e-06,
381
+ "loss": 1.0654313564300537,
382
+ "step": 104
383
+ },
384
+ {
385
+ "epoch": 0.04472573839662447,
386
+ "grad_norm": 1.6071950197219849,
387
+ "learning_rate": 9.226713532513181e-06,
388
+ "loss": 1.0752698183059692,
389
+ "step": 106
390
+ },
391
+ {
392
+ "epoch": 0.04556962025316456,
393
+ "grad_norm": 1.40005362033844,
394
+ "learning_rate": 9.402460456942004e-06,
395
+ "loss": 1.1029763221740723,
396
+ "step": 108
397
+ },
398
+ {
399
+ "epoch": 0.046413502109704644,
400
+ "grad_norm": 2.2338669300079346,
401
+ "learning_rate": 9.578207381370826e-06,
402
+ "loss": 1.1157960891723633,
403
+ "step": 110
404
+ },
405
+ {
406
+ "epoch": 0.04725738396624472,
407
+ "grad_norm": 1.4972727298736572,
408
+ "learning_rate": 9.753954305799649e-06,
409
+ "loss": 1.1095420122146606,
410
+ "step": 112
411
+ },
412
+ {
413
+ "epoch": 0.04810126582278481,
414
+ "grad_norm": 1.317979097366333,
415
+ "learning_rate": 9.929701230228471e-06,
416
+ "loss": 1.109113097190857,
417
+ "step": 114
418
+ },
419
+ {
420
+ "epoch": 0.048945147679324896,
421
+ "grad_norm": 1.496346116065979,
422
+ "learning_rate": 1.0105448154657294e-05,
423
+ "loss": 1.1055104732513428,
424
+ "step": 116
425
+ },
426
+ {
427
+ "epoch": 0.049789029535864976,
428
+ "grad_norm": 1.385406732559204,
429
+ "learning_rate": 1.0281195079086117e-05,
430
+ "loss": 1.118395209312439,
431
+ "step": 118
432
+ },
433
+ {
434
+ "epoch": 0.05063291139240506,
435
+ "grad_norm": 1.524222731590271,
436
+ "learning_rate": 1.0456942003514939e-05,
437
+ "loss": 1.1008446216583252,
438
+ "step": 120
439
+ },
440
+ {
441
+ "epoch": 0.05147679324894515,
442
+ "grad_norm": 1.6308200359344482,
443
+ "learning_rate": 1.0632688927943762e-05,
444
+ "loss": 1.0891425609588623,
445
+ "step": 122
446
+ },
447
+ {
448
+ "epoch": 0.05232067510548523,
449
+ "grad_norm": 1.3681106567382812,
450
+ "learning_rate": 1.0808435852372584e-05,
451
+ "loss": 0.9080473184585571,
452
+ "step": 124
453
+ },
454
+ {
455
+ "epoch": 0.053164556962025315,
456
+ "grad_norm": 1.9429908990859985,
457
+ "learning_rate": 1.0984182776801407e-05,
458
+ "loss": 1.0337369441986084,
459
+ "step": 126
460
+ },
461
+ {
462
+ "epoch": 0.0540084388185654,
463
+ "grad_norm": 1.5830830335617065,
464
+ "learning_rate": 1.115992970123023e-05,
465
+ "loss": 1.0703333616256714,
466
+ "step": 128
467
+ },
468
+ {
469
+ "epoch": 0.05485232067510549,
470
+ "grad_norm": 1.4792555570602417,
471
+ "learning_rate": 1.1335676625659052e-05,
472
+ "loss": 1.004652738571167,
473
+ "step": 130
474
+ },
475
+ {
476
+ "epoch": 0.05569620253164557,
477
+ "grad_norm": 1.7196226119995117,
478
+ "learning_rate": 1.1511423550087874e-05,
479
+ "loss": 0.9798293709754944,
480
+ "step": 132
481
+ },
482
+ {
483
+ "epoch": 0.056540084388185655,
484
+ "grad_norm": 1.8733659982681274,
485
+ "learning_rate": 1.1687170474516697e-05,
486
+ "loss": 1.0213249921798706,
487
+ "step": 134
488
+ },
489
+ {
490
+ "epoch": 0.05738396624472574,
491
+ "grad_norm": 1.3431142568588257,
492
+ "learning_rate": 1.186291739894552e-05,
493
+ "loss": 1.0358591079711914,
494
+ "step": 136
495
+ },
496
+ {
497
+ "epoch": 0.05822784810126582,
498
+ "grad_norm": 1.527864933013916,
499
+ "learning_rate": 1.2038664323374342e-05,
500
+ "loss": 0.9372249841690063,
501
+ "step": 138
502
+ },
503
+ {
504
+ "epoch": 0.05907172995780591,
505
+ "grad_norm": 1.5495563745498657,
506
+ "learning_rate": 1.2214411247803164e-05,
507
+ "loss": 1.0277758836746216,
508
+ "step": 140
509
+ },
510
+ {
511
+ "epoch": 0.059915611814345994,
512
+ "grad_norm": 1.6792418956756592,
513
+ "learning_rate": 1.2390158172231985e-05,
514
+ "loss": 1.0349801778793335,
515
+ "step": 142
516
+ },
517
+ {
518
+ "epoch": 0.060759493670886074,
519
+ "grad_norm": 1.6468945741653442,
520
+ "learning_rate": 1.256590509666081e-05,
521
+ "loss": 0.9578297734260559,
522
+ "step": 144
523
+ },
524
+ {
525
+ "epoch": 0.06160337552742616,
526
+ "grad_norm": 1.7243824005126953,
527
+ "learning_rate": 1.2741652021089632e-05,
528
+ "loss": 1.0628854036331177,
529
+ "step": 146
530
+ },
531
+ {
532
+ "epoch": 0.06244725738396625,
533
+ "grad_norm": 1.7286981344223022,
534
+ "learning_rate": 1.2917398945518455e-05,
535
+ "loss": 0.9336449503898621,
536
+ "step": 148
537
+ },
538
+ {
539
+ "epoch": 0.06329113924050633,
540
+ "grad_norm": 1.6411832571029663,
541
+ "learning_rate": 1.3093145869947277e-05,
542
+ "loss": 0.953730583190918,
543
+ "step": 150
544
+ },
545
+ {
546
+ "epoch": 0.06413502109704641,
547
+ "grad_norm": 1.8297001123428345,
548
+ "learning_rate": 1.3268892794376098e-05,
549
+ "loss": 1.051239013671875,
550
+ "step": 152
551
+ },
552
+ {
553
+ "epoch": 0.06497890295358649,
554
+ "grad_norm": 1.9660519361495972,
555
+ "learning_rate": 1.3444639718804922e-05,
556
+ "loss": 0.9955035448074341,
557
+ "step": 154
558
+ },
559
+ {
560
+ "epoch": 0.06582278481012659,
561
+ "grad_norm": 1.8423733711242676,
562
+ "learning_rate": 1.3620386643233743e-05,
563
+ "loss": 0.913300096988678,
564
+ "step": 156
565
+ },
566
+ {
567
+ "epoch": 0.06666666666666667,
568
+ "grad_norm": 1.9146347045898438,
569
+ "learning_rate": 1.3796133567662567e-05,
570
+ "loss": 1.0429846048355103,
571
+ "step": 158
572
+ },
573
+ {
574
+ "epoch": 0.06751054852320675,
575
+ "grad_norm": 1.6221821308135986,
576
+ "learning_rate": 1.3971880492091388e-05,
577
+ "loss": 1.0360238552093506,
578
+ "step": 160
579
+ },
580
+ {
581
+ "epoch": 0.06835443037974684,
582
+ "grad_norm": 2.173283338546753,
583
+ "learning_rate": 1.4147627416520212e-05,
584
+ "loss": 1.0227266550064087,
585
+ "step": 162
586
+ },
587
+ {
588
+ "epoch": 0.06919831223628692,
589
+ "grad_norm": 1.7091665267944336,
590
+ "learning_rate": 1.4323374340949033e-05,
591
+ "loss": 1.0075194835662842,
592
+ "step": 164
593
+ },
594
+ {
595
+ "epoch": 0.070042194092827,
596
+ "grad_norm": 1.7219135761260986,
597
+ "learning_rate": 1.4499121265377857e-05,
598
+ "loss": 1.0044782161712646,
599
+ "step": 166
600
+ },
601
+ {
602
+ "epoch": 0.07088607594936709,
603
+ "grad_norm": 1.6558159589767456,
604
+ "learning_rate": 1.4674868189806678e-05,
605
+ "loss": 0.9393973350524902,
606
+ "step": 168
607
+ },
608
+ {
609
+ "epoch": 0.07172995780590717,
610
+ "grad_norm": 1.9362739324569702,
611
+ "learning_rate": 1.4850615114235502e-05,
612
+ "loss": 0.9955337643623352,
613
+ "step": 170
614
+ },
615
+ {
616
+ "epoch": 0.07257383966244725,
617
+ "grad_norm": 1.7792853116989136,
618
+ "learning_rate": 1.5026362038664323e-05,
619
+ "loss": 0.9659126400947571,
620
+ "step": 172
621
+ },
622
+ {
623
+ "epoch": 0.07341772151898734,
624
+ "grad_norm": 1.7184511423110962,
625
+ "learning_rate": 1.5202108963093147e-05,
626
+ "loss": 0.9077855348587036,
627
+ "step": 174
628
+ },
629
+ {
630
+ "epoch": 0.07426160337552742,
631
+ "grad_norm": 1.5701428651809692,
632
+ "learning_rate": 1.537785588752197e-05,
633
+ "loss": 0.9305018782615662,
634
+ "step": 176
635
+ },
636
+ {
637
+ "epoch": 0.0751054852320675,
638
+ "grad_norm": 1.970229148864746,
639
+ "learning_rate": 1.555360281195079e-05,
640
+ "loss": 1.0211774110794067,
641
+ "step": 178
642
+ },
643
+ {
644
+ "epoch": 0.0759493670886076,
645
+ "grad_norm": 1.8410269021987915,
646
+ "learning_rate": 1.5729349736379615e-05,
647
+ "loss": 0.9479315876960754,
648
+ "step": 180
649
+ },
650
+ {
651
+ "epoch": 0.07679324894514768,
652
+ "grad_norm": 1.8991246223449707,
653
+ "learning_rate": 1.5905096660808434e-05,
654
+ "loss": 1.0629050731658936,
655
+ "step": 182
656
+ },
657
+ {
658
+ "epoch": 0.07763713080168777,
659
+ "grad_norm": 1.8052008152008057,
660
+ "learning_rate": 1.608084358523726e-05,
661
+ "loss": 0.946983814239502,
662
+ "step": 184
663
+ },
664
+ {
665
+ "epoch": 0.07848101265822785,
666
+ "grad_norm": 1.547108769416809,
667
+ "learning_rate": 1.625659050966608e-05,
668
+ "loss": 0.9413356184959412,
669
+ "step": 186
670
+ },
671
+ {
672
+ "epoch": 0.07932489451476793,
673
+ "grad_norm": 1.9713538885116577,
674
+ "learning_rate": 1.6432337434094905e-05,
675
+ "loss": 0.9337888956069946,
676
+ "step": 188
677
+ },
678
+ {
679
+ "epoch": 0.08016877637130802,
680
+ "grad_norm": 1.708789348602295,
681
+ "learning_rate": 1.6608084358523728e-05,
682
+ "loss": 0.9816337823867798,
683
+ "step": 190
684
+ },
685
+ {
686
+ "epoch": 0.0810126582278481,
687
+ "grad_norm": 1.815292477607727,
688
+ "learning_rate": 1.678383128295255e-05,
689
+ "loss": 1.017122507095337,
690
+ "step": 192
691
+ },
692
+ {
693
+ "epoch": 0.08185654008438818,
694
+ "grad_norm": 1.7950682640075684,
695
+ "learning_rate": 1.6959578207381373e-05,
696
+ "loss": 0.991599440574646,
697
+ "step": 194
698
+ },
699
+ {
700
+ "epoch": 0.08270042194092828,
701
+ "grad_norm": 1.692512035369873,
702
+ "learning_rate": 1.7135325131810195e-05,
703
+ "loss": 0.9570834040641785,
704
+ "step": 196
705
+ },
706
+ {
707
+ "epoch": 0.08354430379746836,
708
+ "grad_norm": 2.056089162826538,
709
+ "learning_rate": 1.7311072056239018e-05,
710
+ "loss": 1.035754919052124,
711
+ "step": 198
712
+ },
713
+ {
714
+ "epoch": 0.08438818565400844,
715
+ "grad_norm": 1.7022203207015991,
716
+ "learning_rate": 1.7486818980667837e-05,
717
+ "loss": 1.0124205350875854,
718
+ "step": 200
719
+ },
720
+ {
721
+ "epoch": 0.08438818565400844,
722
+ "eval_loss": 0.995743453502655,
723
+ "eval_runtime": 846.8257,
724
+ "eval_samples_per_second": 2.488,
725
+ "eval_steps_per_second": 2.488,
726
+ "step": 200
727
+ },
728
+ {
729
+ "epoch": 0.08523206751054853,
730
+ "grad_norm": 1.6088604927062988,
731
+ "learning_rate": 1.7662565905096663e-05,
732
+ "loss": 0.8946985006332397,
733
+ "step": 202
734
+ },
735
+ {
736
+ "epoch": 0.08607594936708861,
737
+ "grad_norm": 2.02270770072937,
738
+ "learning_rate": 1.7838312829525482e-05,
739
+ "loss": 0.976133406162262,
740
+ "step": 204
741
+ },
742
+ {
743
+ "epoch": 0.08691983122362869,
744
+ "grad_norm": 1.7832789421081543,
745
+ "learning_rate": 1.8014059753954308e-05,
746
+ "loss": 0.9079383611679077,
747
+ "step": 206
748
+ },
749
+ {
750
+ "epoch": 0.08776371308016878,
751
+ "grad_norm": 1.9793545007705688,
752
+ "learning_rate": 1.8189806678383127e-05,
753
+ "loss": 0.8650367856025696,
754
+ "step": 208
755
+ },
756
+ {
757
+ "epoch": 0.08860759493670886,
758
+ "grad_norm": 1.8124271631240845,
759
+ "learning_rate": 1.8365553602811953e-05,
760
+ "loss": 0.9327266812324524,
761
+ "step": 210
762
+ },
763
+ {
764
+ "epoch": 0.08945147679324894,
765
+ "grad_norm": 1.8581212759017944,
766
+ "learning_rate": 1.8541300527240772e-05,
767
+ "loss": 0.9811079502105713,
768
+ "step": 212
769
+ },
770
+ {
771
+ "epoch": 0.09029535864978903,
772
+ "grad_norm": 2.001699447631836,
773
+ "learning_rate": 1.8717047451669598e-05,
774
+ "loss": 0.9546971321105957,
775
+ "step": 214
776
+ },
777
+ {
778
+ "epoch": 0.09113924050632911,
779
+ "grad_norm": 1.6994978189468384,
780
+ "learning_rate": 1.8892794376098417e-05,
781
+ "loss": 0.9611319899559021,
782
+ "step": 216
783
+ },
784
+ {
785
+ "epoch": 0.0919831223628692,
786
+ "grad_norm": 2.1379497051239014,
787
+ "learning_rate": 1.9068541300527243e-05,
788
+ "loss": 0.9781531095504761,
789
+ "step": 218
790
+ },
791
+ {
792
+ "epoch": 0.09282700421940929,
793
+ "grad_norm": 1.8961224555969238,
794
+ "learning_rate": 1.9244288224956066e-05,
795
+ "loss": 0.9374833106994629,
796
+ "step": 220
797
+ },
798
+ {
799
+ "epoch": 0.09367088607594937,
800
+ "grad_norm": 1.851464033126831,
801
+ "learning_rate": 1.9420035149384885e-05,
802
+ "loss": 0.9681299328804016,
803
+ "step": 222
804
+ },
805
+ {
806
+ "epoch": 0.09451476793248945,
807
+ "grad_norm": 2.0642266273498535,
808
+ "learning_rate": 1.959578207381371e-05,
809
+ "loss": 1.0086225271224976,
810
+ "step": 224
811
+ },
812
+ {
813
+ "epoch": 0.09535864978902954,
814
+ "grad_norm": 1.8658756017684937,
815
+ "learning_rate": 1.977152899824253e-05,
816
+ "loss": 0.9190312623977661,
817
+ "step": 226
818
+ },
819
+ {
820
+ "epoch": 0.09620253164556962,
821
+ "grad_norm": 2.4398674964904785,
822
+ "learning_rate": 1.9947275922671356e-05,
823
+ "loss": 0.9740874171257019,
824
+ "step": 228
825
+ },
826
+ {
827
+ "epoch": 0.0970464135021097,
828
+ "grad_norm": 1.849183440208435,
829
+ "learning_rate": 2.0123022847100175e-05,
830
+ "loss": 0.884376049041748,
831
+ "step": 230
832
+ },
833
+ {
834
+ "epoch": 0.09789029535864979,
835
+ "grad_norm": 2.027320384979248,
836
+ "learning_rate": 2.0298769771529e-05,
837
+ "loss": 0.9116487503051758,
838
+ "step": 232
839
+ },
840
+ {
841
+ "epoch": 0.09873417721518987,
842
+ "grad_norm": 1.6800135374069214,
843
+ "learning_rate": 2.047451669595782e-05,
844
+ "loss": 0.9035115242004395,
845
+ "step": 234
846
+ },
847
+ {
848
+ "epoch": 0.09957805907172995,
849
+ "grad_norm": 2.2362256050109863,
850
+ "learning_rate": 2.0650263620386646e-05,
851
+ "loss": 0.9043796062469482,
852
+ "step": 236
853
+ },
854
+ {
855
+ "epoch": 0.10042194092827005,
856
+ "grad_norm": 1.938215970993042,
857
+ "learning_rate": 2.0826010544815465e-05,
858
+ "loss": 1.0888828039169312,
859
+ "step": 238
860
+ },
861
+ {
862
+ "epoch": 0.10126582278481013,
863
+ "grad_norm": 1.890328049659729,
864
+ "learning_rate": 2.100175746924429e-05,
865
+ "loss": 0.9960280656814575,
866
+ "step": 240
867
+ },
868
+ {
869
+ "epoch": 0.1021097046413502,
870
+ "grad_norm": 2.021235227584839,
871
+ "learning_rate": 2.117750439367311e-05,
872
+ "loss": 0.9848901629447937,
873
+ "step": 242
874
+ },
875
+ {
876
+ "epoch": 0.1029535864978903,
877
+ "grad_norm": 2.023920774459839,
878
+ "learning_rate": 2.1353251318101936e-05,
879
+ "loss": 0.891694188117981,
880
+ "step": 244
881
+ },
882
+ {
883
+ "epoch": 0.10379746835443038,
884
+ "grad_norm": 1.8061069250106812,
885
+ "learning_rate": 2.1528998242530755e-05,
886
+ "loss": 0.9059976935386658,
887
+ "step": 246
888
+ },
889
+ {
890
+ "epoch": 0.10464135021097046,
891
+ "grad_norm": 2.176302194595337,
892
+ "learning_rate": 2.1704745166959578e-05,
893
+ "loss": 1.0056109428405762,
894
+ "step": 248
895
+ },
896
+ {
897
+ "epoch": 0.10548523206751055,
898
+ "grad_norm": 1.9820969104766846,
899
+ "learning_rate": 2.18804920913884e-05,
900
+ "loss": 0.9645357728004456,
901
+ "step": 250
902
+ },
903
+ {
904
+ "epoch": 0.10632911392405063,
905
+ "grad_norm": 1.8764572143554688,
906
+ "learning_rate": 2.2056239015817223e-05,
907
+ "loss": 1.0178182125091553,
908
+ "step": 252
909
+ },
910
+ {
911
+ "epoch": 0.10717299578059072,
912
+ "grad_norm": 2.56221342086792,
913
+ "learning_rate": 2.223198594024605e-05,
914
+ "loss": 0.9546761512756348,
915
+ "step": 254
916
+ },
917
+ {
918
+ "epoch": 0.1080168776371308,
919
+ "grad_norm": 2.6779074668884277,
920
+ "learning_rate": 2.2407732864674868e-05,
921
+ "loss": 0.9300968647003174,
922
+ "step": 256
923
+ },
924
+ {
925
+ "epoch": 0.10886075949367088,
926
+ "grad_norm": 2.140897512435913,
927
+ "learning_rate": 2.2583479789103694e-05,
928
+ "loss": 0.926638662815094,
929
+ "step": 258
930
+ },
931
+ {
932
+ "epoch": 0.10970464135021098,
933
+ "grad_norm": 2.0880508422851562,
934
+ "learning_rate": 2.2759226713532513e-05,
935
+ "loss": 1.0681840181350708,
936
+ "step": 260
937
+ },
938
+ {
939
+ "epoch": 0.11054852320675106,
940
+ "grad_norm": 2.7273616790771484,
941
+ "learning_rate": 2.293497363796134e-05,
942
+ "loss": 1.0840941667556763,
943
+ "step": 262
944
+ },
945
+ {
946
+ "epoch": 0.11139240506329114,
947
+ "grad_norm": 1.6723874807357788,
948
+ "learning_rate": 2.3110720562390158e-05,
949
+ "loss": 0.8637182116508484,
950
+ "step": 264
951
+ },
952
+ {
953
+ "epoch": 0.11223628691983123,
954
+ "grad_norm": 1.806243896484375,
955
+ "learning_rate": 2.3286467486818984e-05,
956
+ "loss": 0.9554686546325684,
957
+ "step": 266
958
+ },
959
+ {
960
+ "epoch": 0.11308016877637131,
961
+ "grad_norm": 1.9086743593215942,
962
+ "learning_rate": 2.3462214411247803e-05,
963
+ "loss": 0.9556593894958496,
964
+ "step": 268
965
+ },
966
+ {
967
+ "epoch": 0.11392405063291139,
968
+ "grad_norm": 2.1822304725646973,
969
+ "learning_rate": 2.3637961335676626e-05,
970
+ "loss": 0.9177709817886353,
971
+ "step": 270
972
+ },
973
+ {
974
+ "epoch": 0.11476793248945148,
975
+ "grad_norm": 2.1009039878845215,
976
+ "learning_rate": 2.3813708260105448e-05,
977
+ "loss": 0.9288759827613831,
978
+ "step": 272
979
+ },
980
+ {
981
+ "epoch": 0.11561181434599156,
982
+ "grad_norm": 1.9814810752868652,
983
+ "learning_rate": 2.398945518453427e-05,
984
+ "loss": 0.9881691932678223,
985
+ "step": 274
986
+ },
987
+ {
988
+ "epoch": 0.11645569620253164,
989
+ "grad_norm": 1.9946284294128418,
990
+ "learning_rate": 2.4165202108963093e-05,
991
+ "loss": 0.9390727281570435,
992
+ "step": 276
993
+ },
994
+ {
995
+ "epoch": 0.11729957805907174,
996
+ "grad_norm": 2.4489169120788574,
997
+ "learning_rate": 2.4340949033391916e-05,
998
+ "loss": 0.9625692963600159,
999
+ "step": 278
1000
+ },
1001
+ {
1002
+ "epoch": 0.11814345991561181,
1003
+ "grad_norm": 2.0919103622436523,
1004
+ "learning_rate": 2.451669595782074e-05,
1005
+ "loss": 0.9304702877998352,
1006
+ "step": 280
1007
+ },
1008
+ {
1009
+ "epoch": 0.1189873417721519,
1010
+ "grad_norm": 1.912914752960205,
1011
+ "learning_rate": 2.469244288224956e-05,
1012
+ "loss": 0.9313994646072388,
1013
+ "step": 282
1014
+ },
1015
+ {
1016
+ "epoch": 0.11983122362869199,
1017
+ "grad_norm": 2.1553256511688232,
1018
+ "learning_rate": 2.4868189806678387e-05,
1019
+ "loss": 1.004011869430542,
1020
+ "step": 284
1021
+ },
1022
+ {
1023
+ "epoch": 0.12067510548523207,
1024
+ "grad_norm": 2.0129058361053467,
1025
+ "learning_rate": 2.504393673110721e-05,
1026
+ "loss": 0.9092531204223633,
1027
+ "step": 286
1028
+ },
1029
+ {
1030
+ "epoch": 0.12151898734177215,
1031
+ "grad_norm": 2.1632325649261475,
1032
+ "learning_rate": 2.5219683655536032e-05,
1033
+ "loss": 0.993347704410553,
1034
+ "step": 288
1035
+ },
1036
+ {
1037
+ "epoch": 0.12236286919831224,
1038
+ "grad_norm": 2.3072738647460938,
1039
+ "learning_rate": 2.539543057996485e-05,
1040
+ "loss": 0.978348433971405,
1041
+ "step": 290
1042
+ },
1043
+ {
1044
+ "epoch": 0.12320675105485232,
1045
+ "grad_norm": 2.056560516357422,
1046
+ "learning_rate": 2.5571177504393674e-05,
1047
+ "loss": 1.0018101930618286,
1048
+ "step": 292
1049
+ },
1050
+ {
1051
+ "epoch": 0.1240506329113924,
1052
+ "grad_norm": 1.8906747102737427,
1053
+ "learning_rate": 2.5746924428822493e-05,
1054
+ "loss": 0.9607775211334229,
1055
+ "step": 294
1056
+ },
1057
+ {
1058
+ "epoch": 0.1248945147679325,
1059
+ "grad_norm": 2.1375651359558105,
1060
+ "learning_rate": 2.5922671353251322e-05,
1061
+ "loss": 0.9259153008460999,
1062
+ "step": 296
1063
+ },
1064
+ {
1065
+ "epoch": 0.1257383966244726,
1066
+ "grad_norm": 1.9994823932647705,
1067
+ "learning_rate": 2.609841827768014e-05,
1068
+ "loss": 0.8524524569511414,
1069
+ "step": 298
1070
+ },
1071
+ {
1072
+ "epoch": 0.12658227848101267,
1073
+ "grad_norm": 2.2421181201934814,
1074
+ "learning_rate": 2.6274165202108964e-05,
1075
+ "loss": 1.0047069787979126,
1076
+ "step": 300
1077
+ },
1078
+ {
1079
+ "epoch": 0.12658227848101267,
1080
+ "eval_loss": 0.9517185688018799,
1081
+ "eval_runtime": 860.0287,
1082
+ "eval_samples_per_second": 2.45,
1083
+ "eval_steps_per_second": 2.45,
1084
+ "step": 300
1085
+ },
1086
+ {
1087
+ "epoch": 0.12742616033755275,
1088
+ "grad_norm": 2.1206254959106445,
1089
+ "learning_rate": 2.6449912126537786e-05,
1090
+ "loss": 0.8475471138954163,
1091
+ "step": 302
1092
+ },
1093
+ {
1094
+ "epoch": 0.12827004219409283,
1095
+ "grad_norm": 1.885161280632019,
1096
+ "learning_rate": 2.6625659050966612e-05,
1097
+ "loss": 0.8643121123313904,
1098
+ "step": 304
1099
+ },
1100
+ {
1101
+ "epoch": 0.1291139240506329,
1102
+ "grad_norm": 3.1441781520843506,
1103
+ "learning_rate": 2.680140597539543e-05,
1104
+ "loss": 0.8804612159729004,
1105
+ "step": 306
1106
+ },
1107
+ {
1108
+ "epoch": 0.12995780590717299,
1109
+ "grad_norm": 1.953133225440979,
1110
+ "learning_rate": 2.6977152899824254e-05,
1111
+ "loss": 0.8348029255867004,
1112
+ "step": 308
1113
+ },
1114
+ {
1115
+ "epoch": 0.1308016877637131,
1116
+ "grad_norm": 2.3762667179107666,
1117
+ "learning_rate": 2.7152899824253076e-05,
1118
+ "loss": 0.8889057040214539,
1119
+ "step": 310
1120
+ },
1121
+ {
1122
+ "epoch": 0.13164556962025317,
1123
+ "grad_norm": 2.4651103019714355,
1124
+ "learning_rate": 2.7328646748681902e-05,
1125
+ "loss": 1.025565505027771,
1126
+ "step": 312
1127
+ },
1128
+ {
1129
+ "epoch": 0.13248945147679325,
1130
+ "grad_norm": 1.8522284030914307,
1131
+ "learning_rate": 2.7504393673110725e-05,
1132
+ "loss": 0.868915855884552,
1133
+ "step": 314
1134
+ },
1135
+ {
1136
+ "epoch": 0.13333333333333333,
1137
+ "grad_norm": 1.8048083782196045,
1138
+ "learning_rate": 2.7680140597539544e-05,
1139
+ "loss": 0.8821638226509094,
1140
+ "step": 316
1141
+ },
1142
+ {
1143
+ "epoch": 0.1341772151898734,
1144
+ "grad_norm": 1.9933605194091797,
1145
+ "learning_rate": 2.7855887521968367e-05,
1146
+ "loss": 0.8735360503196716,
1147
+ "step": 318
1148
+ },
1149
+ {
1150
+ "epoch": 0.1350210970464135,
1151
+ "grad_norm": 2.044337034225464,
1152
+ "learning_rate": 2.8031634446397186e-05,
1153
+ "loss": 0.8288834691047668,
1154
+ "step": 320
1155
+ },
1156
+ {
1157
+ "epoch": 0.1358649789029536,
1158
+ "grad_norm": 2.416067361831665,
1159
+ "learning_rate": 2.8207381370826015e-05,
1160
+ "loss": 0.9104969501495361,
1161
+ "step": 322
1162
+ },
1163
+ {
1164
+ "epoch": 0.13670886075949368,
1165
+ "grad_norm": 2.0731265544891357,
1166
+ "learning_rate": 2.8383128295254834e-05,
1167
+ "loss": 0.8689924478530884,
1168
+ "step": 324
1169
+ },
1170
+ {
1171
+ "epoch": 0.13755274261603376,
1172
+ "grad_norm": 2.049126386642456,
1173
+ "learning_rate": 2.8558875219683657e-05,
1174
+ "loss": 0.9312222003936768,
1175
+ "step": 326
1176
+ },
1177
+ {
1178
+ "epoch": 0.13839662447257384,
1179
+ "grad_norm": 2.131026268005371,
1180
+ "learning_rate": 2.8734622144112476e-05,
1181
+ "loss": 0.8933501839637756,
1182
+ "step": 328
1183
+ },
1184
+ {
1185
+ "epoch": 0.13924050632911392,
1186
+ "grad_norm": 1.766754150390625,
1187
+ "learning_rate": 2.8910369068541305e-05,
1188
+ "loss": 0.8998261094093323,
1189
+ "step": 330
1190
+ },
1191
+ {
1192
+ "epoch": 0.140084388185654,
1193
+ "grad_norm": 2.197706460952759,
1194
+ "learning_rate": 2.9086115992970124e-05,
1195
+ "loss": 0.8826426267623901,
1196
+ "step": 332
1197
+ },
1198
+ {
1199
+ "epoch": 0.1409282700421941,
1200
+ "grad_norm": 1.953715443611145,
1201
+ "learning_rate": 2.9261862917398947e-05,
1202
+ "loss": 0.8590307831764221,
1203
+ "step": 334
1204
+ },
1205
+ {
1206
+ "epoch": 0.14177215189873418,
1207
+ "grad_norm": 2.200929880142212,
1208
+ "learning_rate": 2.943760984182777e-05,
1209
+ "loss": 0.9317060708999634,
1210
+ "step": 336
1211
+ },
1212
+ {
1213
+ "epoch": 0.14261603375527426,
1214
+ "grad_norm": 2.1195082664489746,
1215
+ "learning_rate": 2.961335676625659e-05,
1216
+ "loss": 0.9965578317642212,
1217
+ "step": 338
1218
+ },
1219
+ {
1220
+ "epoch": 0.14345991561181434,
1221
+ "grad_norm": 2.3449771404266357,
1222
+ "learning_rate": 2.9789103690685414e-05,
1223
+ "loss": 0.8353848457336426,
1224
+ "step": 340
1225
+ },
1226
+ {
1227
+ "epoch": 0.14430379746835442,
1228
+ "grad_norm": 2.000497579574585,
1229
+ "learning_rate": 2.9964850615114237e-05,
1230
+ "loss": 0.9154735803604126,
1231
+ "step": 342
1232
+ },
1233
+ {
1234
+ "epoch": 0.1451476793248945,
1235
+ "grad_norm": 2.141890525817871,
1236
+ "learning_rate": 3.014059753954306e-05,
1237
+ "loss": 0.9530655741691589,
1238
+ "step": 344
1239
+ },
1240
+ {
1241
+ "epoch": 0.1459915611814346,
1242
+ "grad_norm": 1.7717392444610596,
1243
+ "learning_rate": 3.031634446397188e-05,
1244
+ "loss": 0.896998405456543,
1245
+ "step": 346
1246
+ },
1247
+ {
1248
+ "epoch": 0.1468354430379747,
1249
+ "grad_norm": 1.8796685934066772,
1250
+ "learning_rate": 3.0492091388400708e-05,
1251
+ "loss": 0.9084208011627197,
1252
+ "step": 348
1253
+ },
1254
+ {
1255
+ "epoch": 0.14767932489451477,
1256
+ "grad_norm": 2.0298709869384766,
1257
+ "learning_rate": 3.066783831282953e-05,
1258
+ "loss": 0.9183387756347656,
1259
+ "step": 350
1260
+ },
1261
+ {
1262
+ "epoch": 0.14852320675105485,
1263
+ "grad_norm": 1.9245645999908447,
1264
+ "learning_rate": 3.084358523725835e-05,
1265
+ "loss": 0.8624772429466248,
1266
+ "step": 352
1267
+ },
1268
+ {
1269
+ "epoch": 0.14936708860759493,
1270
+ "grad_norm": 2.325681209564209,
1271
+ "learning_rate": 3.101933216168717e-05,
1272
+ "loss": 0.9142400026321411,
1273
+ "step": 354
1274
+ },
1275
+ {
1276
+ "epoch": 0.150210970464135,
1277
+ "grad_norm": 2.1200530529022217,
1278
+ "learning_rate": 3.1195079086115995e-05,
1279
+ "loss": 0.9064018130302429,
1280
+ "step": 356
1281
+ },
1282
+ {
1283
+ "epoch": 0.15105485232067511,
1284
+ "grad_norm": 1.979314923286438,
1285
+ "learning_rate": 3.137082601054482e-05,
1286
+ "loss": 0.9199238419532776,
1287
+ "step": 358
1288
+ },
1289
+ {
1290
+ "epoch": 0.1518987341772152,
1291
+ "grad_norm": 2.1122689247131348,
1292
+ "learning_rate": 3.154657293497364e-05,
1293
+ "loss": 0.8030132055282593,
1294
+ "step": 360
1295
+ },
1296
+ {
1297
+ "epoch": 0.15274261603375527,
1298
+ "grad_norm": 2.105767250061035,
1299
+ "learning_rate": 3.172231985940246e-05,
1300
+ "loss": 0.9185854196548462,
1301
+ "step": 362
1302
+ },
1303
+ {
1304
+ "epoch": 0.15358649789029535,
1305
+ "grad_norm": 2.179471015930176,
1306
+ "learning_rate": 3.1898066783831285e-05,
1307
+ "loss": 0.9365083575248718,
1308
+ "step": 364
1309
+ },
1310
+ {
1311
+ "epoch": 0.15443037974683543,
1312
+ "grad_norm": 2.1444311141967773,
1313
+ "learning_rate": 3.207381370826011e-05,
1314
+ "loss": 0.8965140581130981,
1315
+ "step": 366
1316
+ },
1317
+ {
1318
+ "epoch": 0.15527426160337554,
1319
+ "grad_norm": 2.4171674251556396,
1320
+ "learning_rate": 3.224956063268893e-05,
1321
+ "loss": 0.8787504434585571,
1322
+ "step": 368
1323
+ },
1324
+ {
1325
+ "epoch": 0.15611814345991562,
1326
+ "grad_norm": 2.418628215789795,
1327
+ "learning_rate": 3.242530755711775e-05,
1328
+ "loss": 0.8925284147262573,
1329
+ "step": 370
1330
+ },
1331
+ {
1332
+ "epoch": 0.1569620253164557,
1333
+ "grad_norm": 2.2228314876556396,
1334
+ "learning_rate": 3.2601054481546575e-05,
1335
+ "loss": 0.876179039478302,
1336
+ "step": 372
1337
+ },
1338
+ {
1339
+ "epoch": 0.15780590717299578,
1340
+ "grad_norm": 2.324237108230591,
1341
+ "learning_rate": 3.27768014059754e-05,
1342
+ "loss": 0.8365707993507385,
1343
+ "step": 374
1344
+ },
1345
+ {
1346
+ "epoch": 0.15864978902953586,
1347
+ "grad_norm": 2.6344552040100098,
1348
+ "learning_rate": 3.295254833040422e-05,
1349
+ "loss": 0.7864399552345276,
1350
+ "step": 376
1351
+ },
1352
+ {
1353
+ "epoch": 0.15949367088607594,
1354
+ "grad_norm": 2.047536611557007,
1355
+ "learning_rate": 3.312829525483304e-05,
1356
+ "loss": 0.9271875023841858,
1357
+ "step": 378
1358
+ },
1359
+ {
1360
+ "epoch": 0.16033755274261605,
1361
+ "grad_norm": 2.120025157928467,
1362
+ "learning_rate": 3.3304042179261865e-05,
1363
+ "loss": 0.8799133896827698,
1364
+ "step": 380
1365
+ },
1366
+ {
1367
+ "epoch": 0.16118143459915613,
1368
+ "grad_norm": 2.363692045211792,
1369
+ "learning_rate": 3.347978910369069e-05,
1370
+ "loss": 0.8973530530929565,
1371
+ "step": 382
1372
+ },
1373
+ {
1374
+ "epoch": 0.1620253164556962,
1375
+ "grad_norm": 2.1796772480010986,
1376
+ "learning_rate": 3.365553602811951e-05,
1377
+ "loss": 1.0277652740478516,
1378
+ "step": 384
1379
+ },
1380
+ {
1381
+ "epoch": 0.16286919831223629,
1382
+ "grad_norm": 1.9192595481872559,
1383
+ "learning_rate": 3.383128295254833e-05,
1384
+ "loss": 0.8909643888473511,
1385
+ "step": 386
1386
+ },
1387
+ {
1388
+ "epoch": 0.16371308016877636,
1389
+ "grad_norm": 1.7874376773834229,
1390
+ "learning_rate": 3.4007029876977155e-05,
1391
+ "loss": 0.837049663066864,
1392
+ "step": 388
1393
+ },
1394
+ {
1395
+ "epoch": 0.16455696202531644,
1396
+ "grad_norm": 2.3402366638183594,
1397
+ "learning_rate": 3.4182776801405974e-05,
1398
+ "loss": 0.8625202775001526,
1399
+ "step": 390
1400
+ },
1401
+ {
1402
+ "epoch": 0.16540084388185655,
1403
+ "grad_norm": 2.1137185096740723,
1404
+ "learning_rate": 3.43585237258348e-05,
1405
+ "loss": 0.9288321137428284,
1406
+ "step": 392
1407
+ },
1408
+ {
1409
+ "epoch": 0.16624472573839663,
1410
+ "grad_norm": 2.3776895999908447,
1411
+ "learning_rate": 3.453427065026362e-05,
1412
+ "loss": 0.9328726530075073,
1413
+ "step": 394
1414
+ },
1415
+ {
1416
+ "epoch": 0.1670886075949367,
1417
+ "grad_norm": 2.34941029548645,
1418
+ "learning_rate": 3.4710017574692445e-05,
1419
+ "loss": 0.9273309707641602,
1420
+ "step": 396
1421
+ },
1422
+ {
1423
+ "epoch": 0.1679324894514768,
1424
+ "grad_norm": 2.1272573471069336,
1425
+ "learning_rate": 3.4885764499121264e-05,
1426
+ "loss": 0.8703887462615967,
1427
+ "step": 398
1428
+ },
1429
+ {
1430
+ "epoch": 0.16877637130801687,
1431
+ "grad_norm": 2.047290802001953,
1432
+ "learning_rate": 3.506151142355009e-05,
1433
+ "loss": 0.8808165788650513,
1434
+ "step": 400
1435
+ },
1436
+ {
1437
+ "epoch": 0.16877637130801687,
1438
+ "eval_loss": 0.9282881617546082,
1439
+ "eval_runtime": 869.6867,
1440
+ "eval_samples_per_second": 2.423,
1441
+ "eval_steps_per_second": 2.423,
1442
+ "step": 400
1443
+ },
1444
+ {
1445
+ "epoch": 0.16962025316455695,
1446
+ "grad_norm": 1.9874159097671509,
1447
+ "learning_rate": 3.5237258347978916e-05,
1448
+ "loss": 0.9643645286560059,
1449
+ "step": 402
1450
+ },
1451
+ {
1452
+ "epoch": 0.17046413502109706,
1453
+ "grad_norm": 1.9299919605255127,
1454
+ "learning_rate": 3.5413005272407735e-05,
1455
+ "loss": 0.9173495769500732,
1456
+ "step": 404
1457
+ },
1458
+ {
1459
+ "epoch": 0.17130801687763714,
1460
+ "grad_norm": 2.3379697799682617,
1461
+ "learning_rate": 3.5588752196836555e-05,
1462
+ "loss": 0.8998411893844604,
1463
+ "step": 406
1464
+ },
1465
+ {
1466
+ "epoch": 0.17215189873417722,
1467
+ "grad_norm": 2.241370916366577,
1468
+ "learning_rate": 3.5764499121265374e-05,
1469
+ "loss": 0.9310802221298218,
1470
+ "step": 408
1471
+ },
1472
+ {
1473
+ "epoch": 0.1729957805907173,
1474
+ "grad_norm": 2.4490108489990234,
1475
+ "learning_rate": 3.5940246045694206e-05,
1476
+ "loss": 0.9605053067207336,
1477
+ "step": 410
1478
+ },
1479
+ {
1480
+ "epoch": 0.17383966244725738,
1481
+ "grad_norm": 1.8247230052947998,
1482
+ "learning_rate": 3.6115992970123026e-05,
1483
+ "loss": 0.8485683798789978,
1484
+ "step": 412
1485
+ },
1486
+ {
1487
+ "epoch": 0.17468354430379746,
1488
+ "grad_norm": 2.4608843326568604,
1489
+ "learning_rate": 3.6291739894551845e-05,
1490
+ "loss": 0.9325968623161316,
1491
+ "step": 414
1492
+ },
1493
+ {
1494
+ "epoch": 0.17552742616033756,
1495
+ "grad_norm": 1.8923161029815674,
1496
+ "learning_rate": 3.646748681898067e-05,
1497
+ "loss": 0.9125096201896667,
1498
+ "step": 416
1499
+ },
1500
+ {
1501
+ "epoch": 0.17637130801687764,
1502
+ "grad_norm": 1.8502769470214844,
1503
+ "learning_rate": 3.6643233743409497e-05,
1504
+ "loss": 0.8852217197418213,
1505
+ "step": 418
1506
+ },
1507
+ {
1508
+ "epoch": 0.17721518987341772,
1509
+ "grad_norm": 1.9155100584030151,
1510
+ "learning_rate": 3.6818980667838316e-05,
1511
+ "loss": 0.9192792773246765,
1512
+ "step": 420
1513
+ },
1514
+ {
1515
+ "epoch": 0.1780590717299578,
1516
+ "grad_norm": 2.181476593017578,
1517
+ "learning_rate": 3.6994727592267135e-05,
1518
+ "loss": 0.8787404298782349,
1519
+ "step": 422
1520
+ },
1521
+ {
1522
+ "epoch": 0.17890295358649788,
1523
+ "grad_norm": 2.2469847202301025,
1524
+ "learning_rate": 3.717047451669596e-05,
1525
+ "loss": 0.9109582901000977,
1526
+ "step": 424
1527
+ },
1528
+ {
1529
+ "epoch": 0.17974683544303796,
1530
+ "grad_norm": 2.08145809173584,
1531
+ "learning_rate": 3.734622144112479e-05,
1532
+ "loss": 0.8560389280319214,
1533
+ "step": 426
1534
+ },
1535
+ {
1536
+ "epoch": 0.18059071729957807,
1537
+ "grad_norm": 4.121932506561279,
1538
+ "learning_rate": 3.7521968365553606e-05,
1539
+ "loss": 0.9456104040145874,
1540
+ "step": 428
1541
+ },
1542
+ {
1543
+ "epoch": 0.18143459915611815,
1544
+ "grad_norm": 2.177459478378296,
1545
+ "learning_rate": 3.7697715289982425e-05,
1546
+ "loss": 0.8421300649642944,
1547
+ "step": 430
1548
+ },
1549
+ {
1550
+ "epoch": 0.18227848101265823,
1551
+ "grad_norm": 2.324970245361328,
1552
+ "learning_rate": 3.787346221441125e-05,
1553
+ "loss": 0.9199858903884888,
1554
+ "step": 432
1555
+ },
1556
+ {
1557
+ "epoch": 0.1831223628691983,
1558
+ "grad_norm": 2.133718490600586,
1559
+ "learning_rate": 3.804920913884007e-05,
1560
+ "loss": 0.8953126668930054,
1561
+ "step": 434
1562
+ },
1563
+ {
1564
+ "epoch": 0.1839662447257384,
1565
+ "grad_norm": 1.8527995347976685,
1566
+ "learning_rate": 3.8224956063268896e-05,
1567
+ "loss": 0.8732239007949829,
1568
+ "step": 436
1569
+ },
1570
+ {
1571
+ "epoch": 0.1848101265822785,
1572
+ "grad_norm": 1.95817232131958,
1573
+ "learning_rate": 3.8400702987697715e-05,
1574
+ "loss": 0.8818746209144592,
1575
+ "step": 438
1576
+ },
1577
+ {
1578
+ "epoch": 0.18565400843881857,
1579
+ "grad_norm": 2.2107293605804443,
1580
+ "learning_rate": 3.857644991212654e-05,
1581
+ "loss": 0.9153507947921753,
1582
+ "step": 440
1583
+ },
1584
+ {
1585
+ "epoch": 0.18649789029535865,
1586
+ "grad_norm": 2.004754066467285,
1587
+ "learning_rate": 3.875219683655536e-05,
1588
+ "loss": 0.8960154056549072,
1589
+ "step": 442
1590
+ },
1591
+ {
1592
+ "epoch": 0.18734177215189873,
1593
+ "grad_norm": 2.1851706504821777,
1594
+ "learning_rate": 3.8927943760984186e-05,
1595
+ "loss": 0.909011721611023,
1596
+ "step": 444
1597
+ },
1598
+ {
1599
+ "epoch": 0.1881856540084388,
1600
+ "grad_norm": 2.4492485523223877,
1601
+ "learning_rate": 3.9103690685413005e-05,
1602
+ "loss": 0.8880158066749573,
1603
+ "step": 446
1604
+ },
1605
+ {
1606
+ "epoch": 0.1890295358649789,
1607
+ "grad_norm": 2.745453119277954,
1608
+ "learning_rate": 3.927943760984183e-05,
1609
+ "loss": 0.8500842452049255,
1610
+ "step": 448
1611
+ },
1612
+ {
1613
+ "epoch": 0.189873417721519,
1614
+ "grad_norm": 2.1924264430999756,
1615
+ "learning_rate": 3.945518453427065e-05,
1616
+ "loss": 0.9004045724868774,
1617
+ "step": 450
1618
+ },
1619
+ {
1620
+ "epoch": 0.19071729957805908,
1621
+ "grad_norm": 2.4051687717437744,
1622
+ "learning_rate": 3.9630931458699476e-05,
1623
+ "loss": 0.9020664095878601,
1624
+ "step": 452
1625
+ },
1626
+ {
1627
+ "epoch": 0.19156118143459916,
1628
+ "grad_norm": 1.8077667951583862,
1629
+ "learning_rate": 3.9806678383128295e-05,
1630
+ "loss": 0.8639500737190247,
1631
+ "step": 454
1632
+ },
1633
+ {
1634
+ "epoch": 0.19240506329113924,
1635
+ "grad_norm": 2.089043378829956,
1636
+ "learning_rate": 3.998242530755712e-05,
1637
+ "loss": 0.8642048239707947,
1638
+ "step": 456
1639
+ },
1640
+ {
1641
+ "epoch": 0.19324894514767932,
1642
+ "grad_norm": 2.029578447341919,
1643
+ "learning_rate": 4.015817223198594e-05,
1644
+ "loss": 0.9371927380561829,
1645
+ "step": 458
1646
+ },
1647
+ {
1648
+ "epoch": 0.1940928270042194,
1649
+ "grad_norm": 2.26582407951355,
1650
+ "learning_rate": 4.033391915641476e-05,
1651
+ "loss": 0.9120588302612305,
1652
+ "step": 460
1653
+ },
1654
+ {
1655
+ "epoch": 0.1949367088607595,
1656
+ "grad_norm": 1.8671411275863647,
1657
+ "learning_rate": 4.050966608084359e-05,
1658
+ "loss": 0.8758644461631775,
1659
+ "step": 462
1660
+ },
1661
+ {
1662
+ "epoch": 0.19578059071729959,
1663
+ "grad_norm": 1.9403492212295532,
1664
+ "learning_rate": 4.068541300527241e-05,
1665
+ "loss": 0.914577305316925,
1666
+ "step": 464
1667
+ },
1668
+ {
1669
+ "epoch": 0.19662447257383966,
1670
+ "grad_norm": 1.9939641952514648,
1671
+ "learning_rate": 4.086115992970123e-05,
1672
+ "loss": 0.8592531681060791,
1673
+ "step": 466
1674
+ },
1675
+ {
1676
+ "epoch": 0.19746835443037974,
1677
+ "grad_norm": 2.1511380672454834,
1678
+ "learning_rate": 4.103690685413005e-05,
1679
+ "loss": 0.9251965880393982,
1680
+ "step": 468
1681
+ },
1682
+ {
1683
+ "epoch": 0.19831223628691982,
1684
+ "grad_norm": 2.2260982990264893,
1685
+ "learning_rate": 4.121265377855888e-05,
1686
+ "loss": 0.8465172052383423,
1687
+ "step": 470
1688
+ },
1689
+ {
1690
+ "epoch": 0.1991561181434599,
1691
+ "grad_norm": 2.0510010719299316,
1692
+ "learning_rate": 4.13884007029877e-05,
1693
+ "loss": 0.8943672180175781,
1694
+ "step": 472
1695
+ },
1696
+ {
1697
+ "epoch": 0.2,
1698
+ "grad_norm": 2.2040133476257324,
1699
+ "learning_rate": 4.156414762741652e-05,
1700
+ "loss": 0.9594319462776184,
1701
+ "step": 474
1702
+ },
1703
+ {
1704
+ "epoch": 0.2008438818565401,
1705
+ "grad_norm": 2.355181932449341,
1706
+ "learning_rate": 4.173989455184534e-05,
1707
+ "loss": 0.9031813144683838,
1708
+ "step": 476
1709
+ },
1710
+ {
1711
+ "epoch": 0.20168776371308017,
1712
+ "grad_norm": 2.8434665203094482,
1713
+ "learning_rate": 4.1915641476274166e-05,
1714
+ "loss": 0.9225798845291138,
1715
+ "step": 478
1716
+ },
1717
+ {
1718
+ "epoch": 0.20253164556962025,
1719
+ "grad_norm": 2.1715340614318848,
1720
+ "learning_rate": 4.209138840070299e-05,
1721
+ "loss": 0.894163966178894,
1722
+ "step": 480
1723
+ },
1724
+ {
1725
+ "epoch": 0.20337552742616033,
1726
+ "grad_norm": 2.078916072845459,
1727
+ "learning_rate": 4.226713532513181e-05,
1728
+ "loss": 0.8424109816551208,
1729
+ "step": 482
1730
+ },
1731
+ {
1732
+ "epoch": 0.2042194092827004,
1733
+ "grad_norm": 1.9760961532592773,
1734
+ "learning_rate": 4.244288224956064e-05,
1735
+ "loss": 0.9102715849876404,
1736
+ "step": 484
1737
+ },
1738
+ {
1739
+ "epoch": 0.20506329113924052,
1740
+ "grad_norm": 1.9684507846832275,
1741
+ "learning_rate": 4.2618629173989456e-05,
1742
+ "loss": 0.8693854808807373,
1743
+ "step": 486
1744
+ },
1745
+ {
1746
+ "epoch": 0.2059071729957806,
1747
+ "grad_norm": 2.1633450984954834,
1748
+ "learning_rate": 4.279437609841828e-05,
1749
+ "loss": 0.8617543578147888,
1750
+ "step": 488
1751
+ },
1752
+ {
1753
+ "epoch": 0.20675105485232068,
1754
+ "grad_norm": 2.2695257663726807,
1755
+ "learning_rate": 4.29701230228471e-05,
1756
+ "loss": 0.9167086482048035,
1757
+ "step": 490
1758
+ },
1759
+ {
1760
+ "epoch": 0.20759493670886076,
1761
+ "grad_norm": 2.4180049896240234,
1762
+ "learning_rate": 4.314586994727593e-05,
1763
+ "loss": 0.8333520889282227,
1764
+ "step": 492
1765
+ },
1766
+ {
1767
+ "epoch": 0.20843881856540084,
1768
+ "grad_norm": 2.2942769527435303,
1769
+ "learning_rate": 4.3321616871704746e-05,
1770
+ "loss": 0.918351411819458,
1771
+ "step": 494
1772
+ },
1773
+ {
1774
+ "epoch": 0.20928270042194091,
1775
+ "grad_norm": 1.826458215713501,
1776
+ "learning_rate": 4.349736379613357e-05,
1777
+ "loss": 0.8565171957015991,
1778
+ "step": 496
1779
+ },
1780
+ {
1781
+ "epoch": 0.21012658227848102,
1782
+ "grad_norm": 1.9694055318832397,
1783
+ "learning_rate": 4.367311072056239e-05,
1784
+ "loss": 0.8684167861938477,
1785
+ "step": 498
1786
+ },
1787
+ {
1788
+ "epoch": 0.2109704641350211,
1789
+ "grad_norm": 1.892659306526184,
1790
+ "learning_rate": 4.384885764499122e-05,
1791
+ "loss": 0.7752788662910461,
1792
+ "step": 500
1793
+ },
1794
+ {
1795
+ "epoch": 0.2109704641350211,
1796
+ "eval_loss": 0.9080732464790344,
1797
+ "eval_runtime": 857.0753,
1798
+ "eval_samples_per_second": 2.458,
1799
+ "eval_steps_per_second": 2.458,
1800
+ "step": 500
1801
+ },
1802
+ {
1803
+ "epoch": 0.21181434599156118,
1804
+ "grad_norm": 1.9322253465652466,
1805
+ "learning_rate": 4.4024604569420036e-05,
1806
+ "loss": 0.948570728302002,
1807
+ "step": 502
1808
+ },
1809
+ {
1810
+ "epoch": 0.21265822784810126,
1811
+ "grad_norm": 2.0456058979034424,
1812
+ "learning_rate": 4.4200351493848855e-05,
1813
+ "loss": 0.8741024732589722,
1814
+ "step": 504
1815
+ },
1816
+ {
1817
+ "epoch": 0.21350210970464134,
1818
+ "grad_norm": 2.2406177520751953,
1819
+ "learning_rate": 4.437609841827768e-05,
1820
+ "loss": 0.9053841829299927,
1821
+ "step": 506
1822
+ },
1823
+ {
1824
+ "epoch": 0.21434599156118145,
1825
+ "grad_norm": 2.013934850692749,
1826
+ "learning_rate": 4.455184534270651e-05,
1827
+ "loss": 0.8886576294898987,
1828
+ "step": 508
1829
+ },
1830
+ {
1831
+ "epoch": 0.21518987341772153,
1832
+ "grad_norm": 1.9771125316619873,
1833
+ "learning_rate": 4.4727592267135326e-05,
1834
+ "loss": 0.8834167718887329,
1835
+ "step": 510
1836
+ },
1837
+ {
1838
+ "epoch": 0.2160337552742616,
1839
+ "grad_norm": 1.785905361175537,
1840
+ "learning_rate": 4.4903339191564146e-05,
1841
+ "loss": 0.7938863039016724,
1842
+ "step": 512
1843
+ },
1844
+ {
1845
+ "epoch": 0.2168776371308017,
1846
+ "grad_norm": 1.7946031093597412,
1847
+ "learning_rate": 4.507908611599297e-05,
1848
+ "loss": 0.8071596026420593,
1849
+ "step": 514
1850
+ },
1851
+ {
1852
+ "epoch": 0.21772151898734177,
1853
+ "grad_norm": 2.2217721939086914,
1854
+ "learning_rate": 4.52548330404218e-05,
1855
+ "loss": 0.797417163848877,
1856
+ "step": 516
1857
+ },
1858
+ {
1859
+ "epoch": 0.21856540084388185,
1860
+ "grad_norm": 1.9022471904754639,
1861
+ "learning_rate": 4.5430579964850617e-05,
1862
+ "loss": 0.8109536170959473,
1863
+ "step": 518
1864
+ },
1865
+ {
1866
+ "epoch": 0.21940928270042195,
1867
+ "grad_norm": 1.8988343477249146,
1868
+ "learning_rate": 4.5606326889279436e-05,
1869
+ "loss": 0.8647034168243408,
1870
+ "step": 520
1871
+ },
1872
+ {
1873
+ "epoch": 0.22025316455696203,
1874
+ "grad_norm": 2.6014881134033203,
1875
+ "learning_rate": 4.578207381370827e-05,
1876
+ "loss": 0.8763713240623474,
1877
+ "step": 522
1878
+ },
1879
+ {
1880
+ "epoch": 0.2210970464135021,
1881
+ "grad_norm": 1.9512032270431519,
1882
+ "learning_rate": 4.595782073813709e-05,
1883
+ "loss": 0.9525764584541321,
1884
+ "step": 524
1885
+ },
1886
+ {
1887
+ "epoch": 0.2219409282700422,
1888
+ "grad_norm": 1.9246160984039307,
1889
+ "learning_rate": 4.613356766256591e-05,
1890
+ "loss": 0.8839208483695984,
1891
+ "step": 526
1892
+ },
1893
+ {
1894
+ "epoch": 0.22278481012658227,
1895
+ "grad_norm": 1.9713703393936157,
1896
+ "learning_rate": 4.6309314586994726e-05,
1897
+ "loss": 0.8888868093490601,
1898
+ "step": 528
1899
+ },
1900
+ {
1901
+ "epoch": 0.22362869198312235,
1902
+ "grad_norm": 2.1175239086151123,
1903
+ "learning_rate": 4.648506151142355e-05,
1904
+ "loss": 0.8123540878295898,
1905
+ "step": 530
1906
+ },
1907
+ {
1908
+ "epoch": 0.22447257383966246,
1909
+ "grad_norm": 1.7656135559082031,
1910
+ "learning_rate": 4.666080843585238e-05,
1911
+ "loss": 0.7447702884674072,
1912
+ "step": 532
1913
+ },
1914
+ {
1915
+ "epoch": 0.22531645569620254,
1916
+ "grad_norm": 2.15748929977417,
1917
+ "learning_rate": 4.68365553602812e-05,
1918
+ "loss": 0.8778411746025085,
1919
+ "step": 534
1920
+ },
1921
+ {
1922
+ "epoch": 0.22616033755274262,
1923
+ "grad_norm": 2.1733345985412598,
1924
+ "learning_rate": 4.7012302284710016e-05,
1925
+ "loss": 0.8985894918441772,
1926
+ "step": 536
1927
+ },
1928
+ {
1929
+ "epoch": 0.2270042194092827,
1930
+ "grad_norm": 1.7182204723358154,
1931
+ "learning_rate": 4.718804920913884e-05,
1932
+ "loss": 0.8031114339828491,
1933
+ "step": 538
1934
+ },
1935
+ {
1936
+ "epoch": 0.22784810126582278,
1937
+ "grad_norm": 1.8586329221725464,
1938
+ "learning_rate": 4.736379613356767e-05,
1939
+ "loss": 0.9399706721305847,
1940
+ "step": 540
1941
+ },
1942
+ {
1943
+ "epoch": 0.22869198312236286,
1944
+ "grad_norm": 2.105637311935425,
1945
+ "learning_rate": 4.753954305799649e-05,
1946
+ "loss": 0.8672119975090027,
1947
+ "step": 542
1948
+ },
1949
+ {
1950
+ "epoch": 0.22953586497890296,
1951
+ "grad_norm": 1.760584831237793,
1952
+ "learning_rate": 4.771528998242531e-05,
1953
+ "loss": 0.8663905262947083,
1954
+ "step": 544
1955
+ },
1956
+ {
1957
+ "epoch": 0.23037974683544304,
1958
+ "grad_norm": 1.579990267753601,
1959
+ "learning_rate": 4.789103690685413e-05,
1960
+ "loss": 0.8575801849365234,
1961
+ "step": 546
1962
+ },
1963
+ {
1964
+ "epoch": 0.23122362869198312,
1965
+ "grad_norm": 1.9242485761642456,
1966
+ "learning_rate": 4.806678383128295e-05,
1967
+ "loss": 0.828412652015686,
1968
+ "step": 548
1969
+ },
1970
+ {
1971
+ "epoch": 0.2320675105485232,
1972
+ "grad_norm": 1.812137246131897,
1973
+ "learning_rate": 4.824253075571178e-05,
1974
+ "loss": 0.8183464407920837,
1975
+ "step": 550
1976
+ },
1977
+ {
1978
+ "epoch": 0.23291139240506328,
1979
+ "grad_norm": 1.804733395576477,
1980
+ "learning_rate": 4.84182776801406e-05,
1981
+ "loss": 0.7822491526603699,
1982
+ "step": 552
1983
+ },
1984
+ {
1985
+ "epoch": 0.23375527426160336,
1986
+ "grad_norm": 2.052257537841797,
1987
+ "learning_rate": 4.859402460456942e-05,
1988
+ "loss": 0.9050943851470947,
1989
+ "step": 554
1990
+ },
1991
+ {
1992
+ "epoch": 0.23459915611814347,
1993
+ "grad_norm": 1.9803621768951416,
1994
+ "learning_rate": 4.876977152899824e-05,
1995
+ "loss": 0.8846852779388428,
1996
+ "step": 556
1997
+ },
1998
+ {
1999
+ "epoch": 0.23544303797468355,
2000
+ "grad_norm": 1.820125937461853,
2001
+ "learning_rate": 4.894551845342707e-05,
2002
+ "loss": 0.8649531602859497,
2003
+ "step": 558
2004
+ },
2005
+ {
2006
+ "epoch": 0.23628691983122363,
2007
+ "grad_norm": 2.0963921546936035,
2008
+ "learning_rate": 4.912126537785589e-05,
2009
+ "loss": 0.9307748079299927,
2010
+ "step": 560
2011
+ },
2012
+ {
2013
+ "epoch": 0.2371308016877637,
2014
+ "grad_norm": 2.079697847366333,
2015
+ "learning_rate": 4.929701230228471e-05,
2016
+ "loss": 0.9092473387718201,
2017
+ "step": 562
2018
+ },
2019
+ {
2020
+ "epoch": 0.2379746835443038,
2021
+ "grad_norm": 2.0291287899017334,
2022
+ "learning_rate": 4.947275922671353e-05,
2023
+ "loss": 0.8976567983627319,
2024
+ "step": 564
2025
+ },
2026
+ {
2027
+ "epoch": 0.23881856540084387,
2028
+ "grad_norm": 1.9636707305908203,
2029
+ "learning_rate": 4.964850615114236e-05,
2030
+ "loss": 0.8931006193161011,
2031
+ "step": 566
2032
+ },
2033
+ {
2034
+ "epoch": 0.23966244725738398,
2035
+ "grad_norm": 1.922049880027771,
2036
+ "learning_rate": 4.982425307557118e-05,
2037
+ "loss": 0.829562246799469,
2038
+ "step": 568
2039
+ },
2040
+ {
2041
+ "epoch": 0.24050632911392406,
2042
+ "grad_norm": 2.150334596633911,
2043
+ "learning_rate": 5e-05,
2044
+ "loss": 0.8568030595779419,
2045
+ "step": 570
2046
+ },
2047
+ {
2048
+ "epoch": 0.24135021097046414,
2049
+ "grad_norm": 2.024437427520752,
2050
+ "learning_rate": 5.017574692442882e-05,
2051
+ "loss": 0.8623508810997009,
2052
+ "step": 572
2053
+ },
2054
+ {
2055
+ "epoch": 0.24219409282700421,
2056
+ "grad_norm": 1.8312673568725586,
2057
+ "learning_rate": 5.035149384885765e-05,
2058
+ "loss": 0.7853795886039734,
2059
+ "step": 574
2060
+ },
2061
+ {
2062
+ "epoch": 0.2430379746835443,
2063
+ "grad_norm": 1.9271961450576782,
2064
+ "learning_rate": 5.0527240773286467e-05,
2065
+ "loss": 0.9727587103843689,
2066
+ "step": 576
2067
+ },
2068
+ {
2069
+ "epoch": 0.2438818565400844,
2070
+ "grad_norm": 1.931249976158142,
2071
+ "learning_rate": 5.0702987697715286e-05,
2072
+ "loss": 0.8859632015228271,
2073
+ "step": 578
2074
+ },
2075
+ {
2076
+ "epoch": 0.24472573839662448,
2077
+ "grad_norm": 1.8195210695266724,
2078
+ "learning_rate": 5.087873462214412e-05,
2079
+ "loss": 0.8959492444992065,
2080
+ "step": 580
2081
+ },
2082
+ {
2083
+ "epoch": 0.24556962025316456,
2084
+ "grad_norm": 2.0018749237060547,
2085
+ "learning_rate": 5.105448154657294e-05,
2086
+ "loss": 0.8146185874938965,
2087
+ "step": 582
2088
+ },
2089
+ {
2090
+ "epoch": 0.24641350210970464,
2091
+ "grad_norm": 2.09798526763916,
2092
+ "learning_rate": 5.1230228471001764e-05,
2093
+ "loss": 0.8545317053794861,
2094
+ "step": 584
2095
+ },
2096
+ {
2097
+ "epoch": 0.24725738396624472,
2098
+ "grad_norm": 1.8063944578170776,
2099
+ "learning_rate": 5.140597539543058e-05,
2100
+ "loss": 0.8650105595588684,
2101
+ "step": 586
2102
+ },
2103
+ {
2104
+ "epoch": 0.2481012658227848,
2105
+ "grad_norm": 1.8535740375518799,
2106
+ "learning_rate": 5.15817223198594e-05,
2107
+ "loss": 0.8395693302154541,
2108
+ "step": 588
2109
+ },
2110
+ {
2111
+ "epoch": 0.2489451476793249,
2112
+ "grad_norm": 2.1443960666656494,
2113
+ "learning_rate": 5.175746924428823e-05,
2114
+ "loss": 0.8267397284507751,
2115
+ "step": 590
2116
+ },
2117
+ {
2118
+ "epoch": 0.249789029535865,
2119
+ "grad_norm": 1.9637391567230225,
2120
+ "learning_rate": 5.193321616871705e-05,
2121
+ "loss": 0.8500015139579773,
2122
+ "step": 592
2123
+ },
2124
+ {
2125
+ "epoch": 0.25063291139240507,
2126
+ "grad_norm": 1.9457582235336304,
2127
+ "learning_rate": 5.2108963093145866e-05,
2128
+ "loss": 0.887481153011322,
2129
+ "step": 594
2130
+ },
2131
+ {
2132
+ "epoch": 0.2514767932489452,
2133
+ "grad_norm": 1.7458715438842773,
2134
+ "learning_rate": 5.228471001757469e-05,
2135
+ "loss": 0.8444154858589172,
2136
+ "step": 596
2137
+ },
2138
+ {
2139
+ "epoch": 0.2523206751054852,
2140
+ "grad_norm": 1.8341439962387085,
2141
+ "learning_rate": 5.2460456942003525e-05,
2142
+ "loss": 0.8301781415939331,
2143
+ "step": 598
2144
+ },
2145
+ {
2146
+ "epoch": 0.25316455696202533,
2147
+ "grad_norm": 2.127747058868408,
2148
+ "learning_rate": 5.2636203866432344e-05,
2149
+ "loss": 0.8921551704406738,
2150
+ "step": 600
2151
+ },
2152
+ {
2153
+ "epoch": 0.25316455696202533,
2154
+ "eval_loss": 0.8903881311416626,
2155
+ "eval_runtime": 845.9969,
2156
+ "eval_samples_per_second": 2.491,
2157
+ "eval_steps_per_second": 2.491,
2158
+ "step": 600
2159
+ },
2160
+ {
2161
+ "epoch": 0.2540084388185654,
2162
+ "grad_norm": 2.421459674835205,
2163
+ "learning_rate": 5.281195079086116e-05,
2164
+ "loss": 0.8678019642829895,
2165
+ "step": 602
2166
+ },
2167
+ {
2168
+ "epoch": 0.2548523206751055,
2169
+ "grad_norm": 1.7736057043075562,
2170
+ "learning_rate": 5.298769771528999e-05,
2171
+ "loss": 0.8564275503158569,
2172
+ "step": 604
2173
+ },
2174
+ {
2175
+ "epoch": 0.25569620253164554,
2176
+ "grad_norm": 2.28430438041687,
2177
+ "learning_rate": 5.316344463971881e-05,
2178
+ "loss": 0.8529049158096313,
2179
+ "step": 606
2180
+ },
2181
+ {
2182
+ "epoch": 0.25654008438818565,
2183
+ "grad_norm": 1.8892366886138916,
2184
+ "learning_rate": 5.333919156414763e-05,
2185
+ "loss": 0.8672881126403809,
2186
+ "step": 608
2187
+ },
2188
+ {
2189
+ "epoch": 0.25738396624472576,
2190
+ "grad_norm": 1.9059702157974243,
2191
+ "learning_rate": 5.3514938488576446e-05,
2192
+ "loss": 0.9094445109367371,
2193
+ "step": 610
2194
+ },
2195
+ {
2196
+ "epoch": 0.2582278481012658,
2197
+ "grad_norm": 2.0657339096069336,
2198
+ "learning_rate": 5.369068541300527e-05,
2199
+ "loss": 0.8361946940422058,
2200
+ "step": 612
2201
+ },
2202
+ {
2203
+ "epoch": 0.2590717299578059,
2204
+ "grad_norm": 1.8987553119659424,
2205
+ "learning_rate": 5.3866432337434105e-05,
2206
+ "loss": 0.8319925665855408,
2207
+ "step": 614
2208
+ },
2209
+ {
2210
+ "epoch": 0.25991561181434597,
2211
+ "grad_norm": 2.1176226139068604,
2212
+ "learning_rate": 5.4042179261862924e-05,
2213
+ "loss": 0.9818069934844971,
2214
+ "step": 616
2215
+ },
2216
+ {
2217
+ "epoch": 0.2607594936708861,
2218
+ "grad_norm": 2.142096519470215,
2219
+ "learning_rate": 5.421792618629174e-05,
2220
+ "loss": 0.8675919771194458,
2221
+ "step": 618
2222
+ },
2223
+ {
2224
+ "epoch": 0.2616033755274262,
2225
+ "grad_norm": 1.9527089595794678,
2226
+ "learning_rate": 5.439367311072057e-05,
2227
+ "loss": 0.8845479488372803,
2228
+ "step": 620
2229
+ },
2230
+ {
2231
+ "epoch": 0.26244725738396624,
2232
+ "grad_norm": 1.7071453332901,
2233
+ "learning_rate": 5.456942003514939e-05,
2234
+ "loss": 0.809393048286438,
2235
+ "step": 622
2236
+ },
2237
+ {
2238
+ "epoch": 0.26329113924050634,
2239
+ "grad_norm": 1.9133527278900146,
2240
+ "learning_rate": 5.474516695957821e-05,
2241
+ "loss": 0.8262377977371216,
2242
+ "step": 624
2243
+ },
2244
+ {
2245
+ "epoch": 0.2641350210970464,
2246
+ "grad_norm": 2.0217554569244385,
2247
+ "learning_rate": 5.492091388400703e-05,
2248
+ "loss": 0.9006736278533936,
2249
+ "step": 626
2250
+ },
2251
+ {
2252
+ "epoch": 0.2649789029535865,
2253
+ "grad_norm": 1.773273229598999,
2254
+ "learning_rate": 5.509666080843585e-05,
2255
+ "loss": 0.8243603110313416,
2256
+ "step": 628
2257
+ },
2258
+ {
2259
+ "epoch": 0.26582278481012656,
2260
+ "grad_norm": 1.6580880880355835,
2261
+ "learning_rate": 5.527240773286467e-05,
2262
+ "loss": 0.8112778663635254,
2263
+ "step": 630
2264
+ },
2265
+ {
2266
+ "epoch": 0.26666666666666666,
2267
+ "grad_norm": 1.8342082500457764,
2268
+ "learning_rate": 5.5448154657293504e-05,
2269
+ "loss": 0.8390820622444153,
2270
+ "step": 632
2271
+ },
2272
+ {
2273
+ "epoch": 0.26751054852320677,
2274
+ "grad_norm": 1.863695502281189,
2275
+ "learning_rate": 5.5623901581722323e-05,
2276
+ "loss": 0.8264521360397339,
2277
+ "step": 634
2278
+ },
2279
+ {
2280
+ "epoch": 0.2683544303797468,
2281
+ "grad_norm": 1.9462928771972656,
2282
+ "learning_rate": 5.579964850615115e-05,
2283
+ "loss": 0.9512701630592346,
2284
+ "step": 636
2285
+ },
2286
+ {
2287
+ "epoch": 0.26919831223628693,
2288
+ "grad_norm": 1.7776058912277222,
2289
+ "learning_rate": 5.597539543057997e-05,
2290
+ "loss": 0.9422703981399536,
2291
+ "step": 638
2292
+ },
2293
+ {
2294
+ "epoch": 0.270042194092827,
2295
+ "grad_norm": 2.9457077980041504,
2296
+ "learning_rate": 5.615114235500879e-05,
2297
+ "loss": 0.7991042137145996,
2298
+ "step": 640
2299
+ },
2300
+ {
2301
+ "epoch": 0.2708860759493671,
2302
+ "grad_norm": 1.445265531539917,
2303
+ "learning_rate": 5.6326889279437614e-05,
2304
+ "loss": 0.8188099265098572,
2305
+ "step": 642
2306
+ },
2307
+ {
2308
+ "epoch": 0.2717299578059072,
2309
+ "grad_norm": 2.063850164413452,
2310
+ "learning_rate": 5.650263620386643e-05,
2311
+ "loss": 0.9799772500991821,
2312
+ "step": 644
2313
+ },
2314
+ {
2315
+ "epoch": 0.27257383966244725,
2316
+ "grad_norm": 2.0488009452819824,
2317
+ "learning_rate": 5.667838312829525e-05,
2318
+ "loss": 0.8462742567062378,
2319
+ "step": 646
2320
+ },
2321
+ {
2322
+ "epoch": 0.27341772151898736,
2323
+ "grad_norm": 1.8747851848602295,
2324
+ "learning_rate": 5.685413005272408e-05,
2325
+ "loss": 0.8226412534713745,
2326
+ "step": 648
2327
+ },
2328
+ {
2329
+ "epoch": 0.2742616033755274,
2330
+ "grad_norm": 1.849074125289917,
2331
+ "learning_rate": 5.702987697715291e-05,
2332
+ "loss": 0.9146338105201721,
2333
+ "step": 650
2334
+ },
2335
+ {
2336
+ "epoch": 0.2751054852320675,
2337
+ "grad_norm": 1.7738500833511353,
2338
+ "learning_rate": 5.720562390158173e-05,
2339
+ "loss": 0.7574424147605896,
2340
+ "step": 652
2341
+ },
2342
+ {
2343
+ "epoch": 0.2759493670886076,
2344
+ "grad_norm": 1.911102294921875,
2345
+ "learning_rate": 5.738137082601055e-05,
2346
+ "loss": 0.8930003046989441,
2347
+ "step": 654
2348
+ },
2349
+ {
2350
+ "epoch": 0.2767932489451477,
2351
+ "grad_norm": 1.5716617107391357,
2352
+ "learning_rate": 5.755711775043937e-05,
2353
+ "loss": 0.7578965425491333,
2354
+ "step": 656
2355
+ },
2356
+ {
2357
+ "epoch": 0.2776371308016878,
2358
+ "grad_norm": 1.789036512374878,
2359
+ "learning_rate": 5.7732864674868194e-05,
2360
+ "loss": 0.8149038553237915,
2361
+ "step": 658
2362
+ },
2363
+ {
2364
+ "epoch": 0.27848101265822783,
2365
+ "grad_norm": 1.68622624874115,
2366
+ "learning_rate": 5.790861159929701e-05,
2367
+ "loss": 0.8265765905380249,
2368
+ "step": 660
2369
+ },
2370
+ {
2371
+ "epoch": 0.27932489451476794,
2372
+ "grad_norm": 2.078423261642456,
2373
+ "learning_rate": 5.808435852372583e-05,
2374
+ "loss": 0.9651970267295837,
2375
+ "step": 662
2376
+ },
2377
+ {
2378
+ "epoch": 0.280168776371308,
2379
+ "grad_norm": 1.7878645658493042,
2380
+ "learning_rate": 5.826010544815466e-05,
2381
+ "loss": 0.8295148015022278,
2382
+ "step": 664
2383
+ },
2384
+ {
2385
+ "epoch": 0.2810126582278481,
2386
+ "grad_norm": 1.970838189125061,
2387
+ "learning_rate": 5.843585237258348e-05,
2388
+ "loss": 0.7778491377830505,
2389
+ "step": 666
2390
+ },
2391
+ {
2392
+ "epoch": 0.2818565400843882,
2393
+ "grad_norm": 1.943596363067627,
2394
+ "learning_rate": 5.861159929701231e-05,
2395
+ "loss": 0.9818071722984314,
2396
+ "step": 668
2397
+ },
2398
+ {
2399
+ "epoch": 0.28270042194092826,
2400
+ "grad_norm": 1.8793812990188599,
2401
+ "learning_rate": 5.878734622144113e-05,
2402
+ "loss": 0.9297797083854675,
2403
+ "step": 670
2404
+ },
2405
+ {
2406
+ "epoch": 0.28354430379746837,
2407
+ "grad_norm": 1.8813483715057373,
2408
+ "learning_rate": 5.8963093145869955e-05,
2409
+ "loss": 0.8748109936714172,
2410
+ "step": 672
2411
+ },
2412
+ {
2413
+ "epoch": 0.2843881856540084,
2414
+ "grad_norm": 1.7658562660217285,
2415
+ "learning_rate": 5.9138840070298774e-05,
2416
+ "loss": 0.8505244851112366,
2417
+ "step": 674
2418
+ },
2419
+ {
2420
+ "epoch": 0.2852320675105485,
2421
+ "grad_norm": 1.6767617464065552,
2422
+ "learning_rate": 5.931458699472759e-05,
2423
+ "loss": 0.8476597666740417,
2424
+ "step": 676
2425
+ },
2426
+ {
2427
+ "epoch": 0.28607594936708863,
2428
+ "grad_norm": 2.703104257583618,
2429
+ "learning_rate": 5.949033391915641e-05,
2430
+ "loss": 0.8775192499160767,
2431
+ "step": 678
2432
+ },
2433
+ {
2434
+ "epoch": 0.2869198312236287,
2435
+ "grad_norm": 1.9959728717803955,
2436
+ "learning_rate": 5.966608084358524e-05,
2437
+ "loss": 0.855262279510498,
2438
+ "step": 680
2439
+ },
2440
+ {
2441
+ "epoch": 0.2877637130801688,
2442
+ "grad_norm": 1.9093716144561768,
2443
+ "learning_rate": 5.984182776801406e-05,
2444
+ "loss": 0.7574936151504517,
2445
+ "step": 682
2446
+ },
2447
+ {
2448
+ "epoch": 0.28860759493670884,
2449
+ "grad_norm": 1.9829599857330322,
2450
+ "learning_rate": 6.001757469244289e-05,
2451
+ "loss": 0.8630690574645996,
2452
+ "step": 684
2453
+ },
2454
+ {
2455
+ "epoch": 0.28945147679324895,
2456
+ "grad_norm": 1.8777490854263306,
2457
+ "learning_rate": 6.019332161687171e-05,
2458
+ "loss": 0.8513249158859253,
2459
+ "step": 686
2460
+ },
2461
+ {
2462
+ "epoch": 0.290295358649789,
2463
+ "grad_norm": 1.9453173875808716,
2464
+ "learning_rate": 6.0369068541300535e-05,
2465
+ "loss": 0.9097008109092712,
2466
+ "step": 688
2467
+ },
2468
+ {
2469
+ "epoch": 0.2911392405063291,
2470
+ "grad_norm": 1.8527908325195312,
2471
+ "learning_rate": 6.0544815465729354e-05,
2472
+ "loss": 0.8291722536087036,
2473
+ "step": 690
2474
+ },
2475
+ {
2476
+ "epoch": 0.2919831223628692,
2477
+ "grad_norm": 1.9255812168121338,
2478
+ "learning_rate": 6.0720562390158174e-05,
2479
+ "loss": 0.880009651184082,
2480
+ "step": 692
2481
+ },
2482
+ {
2483
+ "epoch": 0.29282700421940927,
2484
+ "grad_norm": 1.6637977361679077,
2485
+ "learning_rate": 6.0896309314587e-05,
2486
+ "loss": 0.8791794180870056,
2487
+ "step": 694
2488
+ },
2489
+ {
2490
+ "epoch": 0.2936708860759494,
2491
+ "grad_norm": 1.825940728187561,
2492
+ "learning_rate": 6.107205623901582e-05,
2493
+ "loss": 0.8662407398223877,
2494
+ "step": 696
2495
+ },
2496
+ {
2497
+ "epoch": 0.29451476793248943,
2498
+ "grad_norm": 1.9348198175430298,
2499
+ "learning_rate": 6.124780316344464e-05,
2500
+ "loss": 0.8984515070915222,
2501
+ "step": 698
2502
+ },
2503
+ {
2504
+ "epoch": 0.29535864978902954,
2505
+ "grad_norm": 1.659345030784607,
2506
+ "learning_rate": 6.142355008787346e-05,
2507
+ "loss": 0.827385663986206,
2508
+ "step": 700
2509
+ },
2510
+ {
2511
+ "epoch": 0.29535864978902954,
2512
+ "eval_loss": 0.8730722069740295,
2513
+ "eval_runtime": 858.184,
2514
+ "eval_samples_per_second": 2.455,
2515
+ "eval_steps_per_second": 2.455,
2516
+ "step": 700
2517
+ },
2518
+ {
2519
+ "epoch": 0.29620253164556964,
2520
+ "grad_norm": 1.6531789302825928,
2521
+ "learning_rate": 6.159929701230229e-05,
2522
+ "loss": 0.9337764382362366,
2523
+ "step": 702
2524
+ },
2525
+ {
2526
+ "epoch": 0.2970464135021097,
2527
+ "grad_norm": 1.8269121646881104,
2528
+ "learning_rate": 6.177504393673111e-05,
2529
+ "loss": 0.8250943422317505,
2530
+ "step": 704
2531
+ },
2532
+ {
2533
+ "epoch": 0.2978902953586498,
2534
+ "grad_norm": 1.692808747291565,
2535
+ "learning_rate": 6.195079086115994e-05,
2536
+ "loss": 0.8657428026199341,
2537
+ "step": 706
2538
+ },
2539
+ {
2540
+ "epoch": 0.29873417721518986,
2541
+ "grad_norm": 1.6736913919448853,
2542
+ "learning_rate": 6.212653778558876e-05,
2543
+ "loss": 0.8889590501785278,
2544
+ "step": 708
2545
+ },
2546
+ {
2547
+ "epoch": 0.29957805907172996,
2548
+ "grad_norm": 1.6841140985488892,
2549
+ "learning_rate": 6.230228471001758e-05,
2550
+ "loss": 0.7822914123535156,
2551
+ "step": 710
2552
+ },
2553
+ {
2554
+ "epoch": 0.30042194092827,
2555
+ "grad_norm": 1.6644599437713623,
2556
+ "learning_rate": 6.24780316344464e-05,
2557
+ "loss": 0.8747053742408752,
2558
+ "step": 712
2559
+ },
2560
+ {
2561
+ "epoch": 0.3012658227848101,
2562
+ "grad_norm": 1.8187819719314575,
2563
+ "learning_rate": 6.265377855887522e-05,
2564
+ "loss": 0.8976446390151978,
2565
+ "step": 714
2566
+ },
2567
+ {
2568
+ "epoch": 0.30210970464135023,
2569
+ "grad_norm": 1.7845178842544556,
2570
+ "learning_rate": 6.282952548330404e-05,
2571
+ "loss": 0.9401160478591919,
2572
+ "step": 716
2573
+ },
2574
+ {
2575
+ "epoch": 0.3029535864978903,
2576
+ "grad_norm": 1.559773564338684,
2577
+ "learning_rate": 6.300527240773286e-05,
2578
+ "loss": 0.8754280209541321,
2579
+ "step": 718
2580
+ },
2581
+ {
2582
+ "epoch": 0.3037974683544304,
2583
+ "grad_norm": 1.5919631719589233,
2584
+ "learning_rate": 6.318101933216169e-05,
2585
+ "loss": 0.8278581500053406,
2586
+ "step": 720
2587
+ },
2588
+ {
2589
+ "epoch": 0.30464135021097044,
2590
+ "grad_norm": 1.8551076650619507,
2591
+ "learning_rate": 6.335676625659052e-05,
2592
+ "loss": 0.8868640065193176,
2593
+ "step": 722
2594
+ },
2595
+ {
2596
+ "epoch": 0.30548523206751055,
2597
+ "grad_norm": 1.6907769441604614,
2598
+ "learning_rate": 6.353251318101934e-05,
2599
+ "loss": 0.8631605505943298,
2600
+ "step": 724
2601
+ },
2602
+ {
2603
+ "epoch": 0.30632911392405066,
2604
+ "grad_norm": 1.820867657661438,
2605
+ "learning_rate": 6.370826010544816e-05,
2606
+ "loss": 0.9142873883247375,
2607
+ "step": 726
2608
+ },
2609
+ {
2610
+ "epoch": 0.3071729957805907,
2611
+ "grad_norm": 1.685154676437378,
2612
+ "learning_rate": 6.388400702987698e-05,
2613
+ "loss": 0.8258634805679321,
2614
+ "step": 728
2615
+ },
2616
+ {
2617
+ "epoch": 0.3080168776371308,
2618
+ "grad_norm": 1.9294627904891968,
2619
+ "learning_rate": 6.40597539543058e-05,
2620
+ "loss": 0.9545516967773438,
2621
+ "step": 730
2622
+ },
2623
+ {
2624
+ "epoch": 0.30886075949367087,
2625
+ "grad_norm": 1.6075409650802612,
2626
+ "learning_rate": 6.423550087873462e-05,
2627
+ "loss": 0.8370757699012756,
2628
+ "step": 732
2629
+ },
2630
+ {
2631
+ "epoch": 0.309704641350211,
2632
+ "grad_norm": 1.635750651359558,
2633
+ "learning_rate": 6.441124780316345e-05,
2634
+ "loss": 0.8356084823608398,
2635
+ "step": 734
2636
+ },
2637
+ {
2638
+ "epoch": 0.3105485232067511,
2639
+ "grad_norm": 1.6376131772994995,
2640
+ "learning_rate": 6.458699472759227e-05,
2641
+ "loss": 0.7579531669616699,
2642
+ "step": 736
2643
+ },
2644
+ {
2645
+ "epoch": 0.31139240506329113,
2646
+ "grad_norm": 1.7135766744613647,
2647
+ "learning_rate": 6.47627416520211e-05,
2648
+ "loss": 0.8436318039894104,
2649
+ "step": 738
2650
+ },
2651
+ {
2652
+ "epoch": 0.31223628691983124,
2653
+ "grad_norm": 1.7095093727111816,
2654
+ "learning_rate": 6.493848857644992e-05,
2655
+ "loss": 0.7998805046081543,
2656
+ "step": 740
2657
+ },
2658
+ {
2659
+ "epoch": 0.3130801687763713,
2660
+ "grad_norm": 1.782615303993225,
2661
+ "learning_rate": 6.511423550087874e-05,
2662
+ "loss": 0.915776789188385,
2663
+ "step": 742
2664
+ },
2665
+ {
2666
+ "epoch": 0.3139240506329114,
2667
+ "grad_norm": 1.8461172580718994,
2668
+ "learning_rate": 6.528998242530756e-05,
2669
+ "loss": 0.8300962448120117,
2670
+ "step": 744
2671
+ },
2672
+ {
2673
+ "epoch": 0.31476793248945145,
2674
+ "grad_norm": 1.5659871101379395,
2675
+ "learning_rate": 6.546572934973638e-05,
2676
+ "loss": 0.8239848017692566,
2677
+ "step": 746
2678
+ },
2679
+ {
2680
+ "epoch": 0.31561181434599156,
2681
+ "grad_norm": 1.9997349977493286,
2682
+ "learning_rate": 6.56414762741652e-05,
2683
+ "loss": 0.8236988186836243,
2684
+ "step": 748
2685
+ },
2686
+ {
2687
+ "epoch": 0.31645569620253167,
2688
+ "grad_norm": 1.9811526536941528,
2689
+ "learning_rate": 6.581722319859403e-05,
2690
+ "loss": 0.8516603112220764,
2691
+ "step": 750
2692
+ },
2693
+ {
2694
+ "epoch": 0.3172995780590717,
2695
+ "grad_norm": 1.9877923727035522,
2696
+ "learning_rate": 6.599297012302285e-05,
2697
+ "loss": 0.9037567973136902,
2698
+ "step": 752
2699
+ },
2700
+ {
2701
+ "epoch": 0.3181434599156118,
2702
+ "grad_norm": 1.6729352474212646,
2703
+ "learning_rate": 6.616871704745168e-05,
2704
+ "loss": 0.8350864052772522,
2705
+ "step": 754
2706
+ },
2707
+ {
2708
+ "epoch": 0.3189873417721519,
2709
+ "grad_norm": 1.9055802822113037,
2710
+ "learning_rate": 6.63444639718805e-05,
2711
+ "loss": 0.8246616125106812,
2712
+ "step": 756
2713
+ },
2714
+ {
2715
+ "epoch": 0.319831223628692,
2716
+ "grad_norm": 1.597999930381775,
2717
+ "learning_rate": 6.652021089630932e-05,
2718
+ "loss": 0.8014416098594666,
2719
+ "step": 758
2720
+ },
2721
+ {
2722
+ "epoch": 0.3206751054852321,
2723
+ "grad_norm": 1.7432531118392944,
2724
+ "learning_rate": 6.669595782073814e-05,
2725
+ "loss": 0.9199523329734802,
2726
+ "step": 760
2727
+ },
2728
+ {
2729
+ "epoch": 0.32151898734177214,
2730
+ "grad_norm": 1.820164442062378,
2731
+ "learning_rate": 6.687170474516696e-05,
2732
+ "loss": 0.7764829397201538,
2733
+ "step": 762
2734
+ },
2735
+ {
2736
+ "epoch": 0.32236286919831225,
2737
+ "grad_norm": 1.6408652067184448,
2738
+ "learning_rate": 6.704745166959578e-05,
2739
+ "loss": 0.8072620630264282,
2740
+ "step": 764
2741
+ },
2742
+ {
2743
+ "epoch": 0.3232067510548523,
2744
+ "grad_norm": 1.8894155025482178,
2745
+ "learning_rate": 6.722319859402461e-05,
2746
+ "loss": 0.9006885886192322,
2747
+ "step": 766
2748
+ },
2749
+ {
2750
+ "epoch": 0.3240506329113924,
2751
+ "grad_norm": 1.6903613805770874,
2752
+ "learning_rate": 6.739894551845343e-05,
2753
+ "loss": 0.7772189378738403,
2754
+ "step": 768
2755
+ },
2756
+ {
2757
+ "epoch": 0.32489451476793246,
2758
+ "grad_norm": 1.7540696859359741,
2759
+ "learning_rate": 6.757469244288225e-05,
2760
+ "loss": 0.8825590014457703,
2761
+ "step": 770
2762
+ },
2763
+ {
2764
+ "epoch": 0.32573839662447257,
2765
+ "grad_norm": 1.603008508682251,
2766
+ "learning_rate": 6.775043936731108e-05,
2767
+ "loss": 0.8376453518867493,
2768
+ "step": 772
2769
+ },
2770
+ {
2771
+ "epoch": 0.3265822784810127,
2772
+ "grad_norm": 1.5381462574005127,
2773
+ "learning_rate": 6.79261862917399e-05,
2774
+ "loss": 0.92608243227005,
2775
+ "step": 774
2776
+ },
2777
+ {
2778
+ "epoch": 0.32742616033755273,
2779
+ "grad_norm": 1.4815537929534912,
2780
+ "learning_rate": 6.810193321616872e-05,
2781
+ "loss": 0.6842183470726013,
2782
+ "step": 776
2783
+ },
2784
+ {
2785
+ "epoch": 0.32827004219409284,
2786
+ "grad_norm": 1.8543411493301392,
2787
+ "learning_rate": 6.827768014059754e-05,
2788
+ "loss": 0.8868235349655151,
2789
+ "step": 778
2790
+ },
2791
+ {
2792
+ "epoch": 0.3291139240506329,
2793
+ "grad_norm": 1.8895748853683472,
2794
+ "learning_rate": 6.845342706502637e-05,
2795
+ "loss": 0.8148112297058105,
2796
+ "step": 780
2797
+ },
2798
+ {
2799
+ "epoch": 0.329957805907173,
2800
+ "grad_norm": 1.8150591850280762,
2801
+ "learning_rate": 6.862917398945519e-05,
2802
+ "loss": 0.8760337829589844,
2803
+ "step": 782
2804
+ },
2805
+ {
2806
+ "epoch": 0.3308016877637131,
2807
+ "grad_norm": 1.6661378145217896,
2808
+ "learning_rate": 6.880492091388401e-05,
2809
+ "loss": 0.8266322612762451,
2810
+ "step": 784
2811
+ },
2812
+ {
2813
+ "epoch": 0.33164556962025316,
2814
+ "grad_norm": 2.2849128246307373,
2815
+ "learning_rate": 6.898066783831283e-05,
2816
+ "loss": 0.8599053025245667,
2817
+ "step": 786
2818
+ },
2819
+ {
2820
+ "epoch": 0.33248945147679326,
2821
+ "grad_norm": 1.7233171463012695,
2822
+ "learning_rate": 6.915641476274165e-05,
2823
+ "loss": 0.8312317132949829,
2824
+ "step": 788
2825
+ },
2826
+ {
2827
+ "epoch": 0.3333333333333333,
2828
+ "grad_norm": 1.7637618780136108,
2829
+ "learning_rate": 6.933216168717048e-05,
2830
+ "loss": 0.8379700779914856,
2831
+ "step": 790
2832
+ },
2833
+ {
2834
+ "epoch": 0.3341772151898734,
2835
+ "grad_norm": 1.7780474424362183,
2836
+ "learning_rate": 6.95079086115993e-05,
2837
+ "loss": 0.8994934558868408,
2838
+ "step": 792
2839
+ },
2840
+ {
2841
+ "epoch": 0.33502109704641353,
2842
+ "grad_norm": 1.5798883438110352,
2843
+ "learning_rate": 6.968365553602812e-05,
2844
+ "loss": 0.8021857738494873,
2845
+ "step": 794
2846
+ },
2847
+ {
2848
+ "epoch": 0.3358649789029536,
2849
+ "grad_norm": 1.7316070795059204,
2850
+ "learning_rate": 6.985940246045695e-05,
2851
+ "loss": 0.8814419507980347,
2852
+ "step": 796
2853
+ },
2854
+ {
2855
+ "epoch": 0.3367088607594937,
2856
+ "grad_norm": 1.711315631866455,
2857
+ "learning_rate": 7.003514938488577e-05,
2858
+ "loss": 0.8545029163360596,
2859
+ "step": 798
2860
+ },
2861
+ {
2862
+ "epoch": 0.33755274261603374,
2863
+ "grad_norm": 1.5023137331008911,
2864
+ "learning_rate": 7.021089630931459e-05,
2865
+ "loss": 0.8006189465522766,
2866
+ "step": 800
2867
+ },
2868
+ {
2869
+ "epoch": 0.33755274261603374,
2870
+ "eval_loss": 0.8635594248771667,
2871
+ "eval_runtime": 865.9348,
2872
+ "eval_samples_per_second": 2.433,
2873
+ "eval_steps_per_second": 2.433,
2874
+ "step": 800
2875
+ },
2876
+ {
2877
+ "epoch": 0.33839662447257385,
2878
+ "grad_norm": 1.8377124071121216,
2879
+ "learning_rate": 7.038664323374341e-05,
2880
+ "loss": 0.7625874280929565,
2881
+ "step": 802
2882
+ },
2883
+ {
2884
+ "epoch": 0.3392405063291139,
2885
+ "grad_norm": 1.5361332893371582,
2886
+ "learning_rate": 7.056239015817223e-05,
2887
+ "loss": 0.8490484356880188,
2888
+ "step": 804
2889
+ },
2890
+ {
2891
+ "epoch": 0.340084388185654,
2892
+ "grad_norm": 1.8727388381958008,
2893
+ "learning_rate": 7.073813708260105e-05,
2894
+ "loss": 0.8915753364562988,
2895
+ "step": 806
2896
+ },
2897
+ {
2898
+ "epoch": 0.3409282700421941,
2899
+ "grad_norm": 1.567700743675232,
2900
+ "learning_rate": 7.091388400702988e-05,
2901
+ "loss": 0.8902620077133179,
2902
+ "step": 808
2903
+ },
2904
+ {
2905
+ "epoch": 0.34177215189873417,
2906
+ "grad_norm": 1.5302914381027222,
2907
+ "learning_rate": 7.10896309314587e-05,
2908
+ "loss": 0.7897103428840637,
2909
+ "step": 810
2910
+ },
2911
+ {
2912
+ "epoch": 0.3426160337552743,
2913
+ "grad_norm": 1.8819153308868408,
2914
+ "learning_rate": 7.126537785588753e-05,
2915
+ "loss": 0.8648831248283386,
2916
+ "step": 812
2917
+ },
2918
+ {
2919
+ "epoch": 0.3434599156118143,
2920
+ "grad_norm": 1.5671379566192627,
2921
+ "learning_rate": 7.144112478031635e-05,
2922
+ "loss": 0.8449499607086182,
2923
+ "step": 814
2924
+ },
2925
+ {
2926
+ "epoch": 0.34430379746835443,
2927
+ "grad_norm": 1.6570971012115479,
2928
+ "learning_rate": 7.161687170474517e-05,
2929
+ "loss": 0.848559558391571,
2930
+ "step": 816
2931
+ },
2932
+ {
2933
+ "epoch": 0.34514767932489454,
2934
+ "grad_norm": 1.9108437299728394,
2935
+ "learning_rate": 7.179261862917399e-05,
2936
+ "loss": 0.8847543597221375,
2937
+ "step": 818
2938
+ },
2939
+ {
2940
+ "epoch": 0.3459915611814346,
2941
+ "grad_norm": 1.4909496307373047,
2942
+ "learning_rate": 7.196836555360281e-05,
2943
+ "loss": 0.7642563581466675,
2944
+ "step": 820
2945
+ },
2946
+ {
2947
+ "epoch": 0.3468354430379747,
2948
+ "grad_norm": 1.768518328666687,
2949
+ "learning_rate": 7.214411247803163e-05,
2950
+ "loss": 0.8714305758476257,
2951
+ "step": 822
2952
+ },
2953
+ {
2954
+ "epoch": 0.34767932489451475,
2955
+ "grad_norm": 1.715343952178955,
2956
+ "learning_rate": 7.231985940246046e-05,
2957
+ "loss": 0.7712987661361694,
2958
+ "step": 824
2959
+ },
2960
+ {
2961
+ "epoch": 0.34852320675105486,
2962
+ "grad_norm": 1.6687803268432617,
2963
+ "learning_rate": 7.24956063268893e-05,
2964
+ "loss": 0.8122798204421997,
2965
+ "step": 826
2966
+ },
2967
+ {
2968
+ "epoch": 0.3493670886075949,
2969
+ "grad_norm": 1.5160514116287231,
2970
+ "learning_rate": 7.267135325131811e-05,
2971
+ "loss": 0.793245792388916,
2972
+ "step": 828
2973
+ },
2974
+ {
2975
+ "epoch": 0.350210970464135,
2976
+ "grad_norm": 1.6449401378631592,
2977
+ "learning_rate": 7.284710017574693e-05,
2978
+ "loss": 0.8747497200965881,
2979
+ "step": 830
2980
+ },
2981
+ {
2982
+ "epoch": 0.3510548523206751,
2983
+ "grad_norm": 1.3907722234725952,
2984
+ "learning_rate": 7.302284710017575e-05,
2985
+ "loss": 0.6743978261947632,
2986
+ "step": 832
2987
+ },
2988
+ {
2989
+ "epoch": 0.3518987341772152,
2990
+ "grad_norm": 1.633555293083191,
2991
+ "learning_rate": 7.319859402460457e-05,
2992
+ "loss": 0.8524789214134216,
2993
+ "step": 834
2994
+ },
2995
+ {
2996
+ "epoch": 0.3527426160337553,
2997
+ "grad_norm": 1.5414257049560547,
2998
+ "learning_rate": 7.337434094903339e-05,
2999
+ "loss": 0.8045110702514648,
3000
+ "step": 836
3001
+ },
3002
+ {
3003
+ "epoch": 0.35358649789029534,
3004
+ "grad_norm": 1.8520616292953491,
3005
+ "learning_rate": 7.355008787346221e-05,
3006
+ "loss": 0.8319593071937561,
3007
+ "step": 838
3008
+ },
3009
+ {
3010
+ "epoch": 0.35443037974683544,
3011
+ "grad_norm": 1.6629763841629028,
3012
+ "learning_rate": 7.372583479789104e-05,
3013
+ "loss": 0.8188939094543457,
3014
+ "step": 840
3015
+ },
3016
+ {
3017
+ "epoch": 0.35527426160337555,
3018
+ "grad_norm": 1.804087519645691,
3019
+ "learning_rate": 7.390158172231987e-05,
3020
+ "loss": 0.8875360488891602,
3021
+ "step": 842
3022
+ },
3023
+ {
3024
+ "epoch": 0.3561181434599156,
3025
+ "grad_norm": 1.6031663417816162,
3026
+ "learning_rate": 7.407732864674869e-05,
3027
+ "loss": 0.8159612417221069,
3028
+ "step": 844
3029
+ },
3030
+ {
3031
+ "epoch": 0.3569620253164557,
3032
+ "grad_norm": 1.7413033246994019,
3033
+ "learning_rate": 7.425307557117751e-05,
3034
+ "loss": 0.8422684669494629,
3035
+ "step": 846
3036
+ },
3037
+ {
3038
+ "epoch": 0.35780590717299576,
3039
+ "grad_norm": 1.7699719667434692,
3040
+ "learning_rate": 7.442882249560633e-05,
3041
+ "loss": 0.9343502521514893,
3042
+ "step": 848
3043
+ },
3044
+ {
3045
+ "epoch": 0.35864978902953587,
3046
+ "grad_norm": 1.4613301753997803,
3047
+ "learning_rate": 7.460456942003515e-05,
3048
+ "loss": 0.8168979287147522,
3049
+ "step": 850
3050
+ },
3051
+ {
3052
+ "epoch": 0.3594936708860759,
3053
+ "grad_norm": 1.542431354522705,
3054
+ "learning_rate": 7.478031634446397e-05,
3055
+ "loss": 0.9014382362365723,
3056
+ "step": 852
3057
+ },
3058
+ {
3059
+ "epoch": 0.36033755274261603,
3060
+ "grad_norm": 1.6070159673690796,
3061
+ "learning_rate": 7.49560632688928e-05,
3062
+ "loss": 0.8162738084793091,
3063
+ "step": 854
3064
+ },
3065
+ {
3066
+ "epoch": 0.36118143459915614,
3067
+ "grad_norm": 1.7979451417922974,
3068
+ "learning_rate": 7.513181019332162e-05,
3069
+ "loss": 0.8354527950286865,
3070
+ "step": 856
3071
+ },
3072
+ {
3073
+ "epoch": 0.3620253164556962,
3074
+ "grad_norm": 2.327045202255249,
3075
+ "learning_rate": 7.530755711775044e-05,
3076
+ "loss": 0.8214042782783508,
3077
+ "step": 858
3078
+ },
3079
+ {
3080
+ "epoch": 0.3628691983122363,
3081
+ "grad_norm": 1.5085111856460571,
3082
+ "learning_rate": 7.548330404217927e-05,
3083
+ "loss": 0.7472147941589355,
3084
+ "step": 860
3085
+ },
3086
+ {
3087
+ "epoch": 0.36371308016877635,
3088
+ "grad_norm": 1.6006290912628174,
3089
+ "learning_rate": 7.565905096660809e-05,
3090
+ "loss": 0.7586950063705444,
3091
+ "step": 862
3092
+ },
3093
+ {
3094
+ "epoch": 0.36455696202531646,
3095
+ "grad_norm": 1.5170620679855347,
3096
+ "learning_rate": 7.583479789103691e-05,
3097
+ "loss": 0.8169914484024048,
3098
+ "step": 864
3099
+ },
3100
+ {
3101
+ "epoch": 0.36540084388185656,
3102
+ "grad_norm": 1.5848352909088135,
3103
+ "learning_rate": 7.601054481546573e-05,
3104
+ "loss": 0.8263922929763794,
3105
+ "step": 866
3106
+ },
3107
+ {
3108
+ "epoch": 0.3662447257383966,
3109
+ "grad_norm": 1.8502342700958252,
3110
+ "learning_rate": 7.618629173989455e-05,
3111
+ "loss": 0.8726240992546082,
3112
+ "step": 868
3113
+ },
3114
+ {
3115
+ "epoch": 0.3670886075949367,
3116
+ "grad_norm": 1.506847620010376,
3117
+ "learning_rate": 7.636203866432338e-05,
3118
+ "loss": 0.7220374941825867,
3119
+ "step": 870
3120
+ },
3121
+ {
3122
+ "epoch": 0.3679324894514768,
3123
+ "grad_norm": 1.5350452661514282,
3124
+ "learning_rate": 7.65377855887522e-05,
3125
+ "loss": 0.8028547167778015,
3126
+ "step": 872
3127
+ },
3128
+ {
3129
+ "epoch": 0.3687763713080169,
3130
+ "grad_norm": 1.5011043548583984,
3131
+ "learning_rate": 7.671353251318102e-05,
3132
+ "loss": 0.7659649848937988,
3133
+ "step": 874
3134
+ },
3135
+ {
3136
+ "epoch": 0.369620253164557,
3137
+ "grad_norm": 1.7019832134246826,
3138
+ "learning_rate": 7.688927943760984e-05,
3139
+ "loss": 0.8773653507232666,
3140
+ "step": 876
3141
+ },
3142
+ {
3143
+ "epoch": 0.37046413502109704,
3144
+ "grad_norm": 1.4918498992919922,
3145
+ "learning_rate": 7.706502636203867e-05,
3146
+ "loss": 0.7977569103240967,
3147
+ "step": 878
3148
+ },
3149
+ {
3150
+ "epoch": 0.37130801687763715,
3151
+ "grad_norm": 1.6422638893127441,
3152
+ "learning_rate": 7.724077328646749e-05,
3153
+ "loss": 0.7491976022720337,
3154
+ "step": 880
3155
+ },
3156
+ {
3157
+ "epoch": 0.3721518987341772,
3158
+ "grad_norm": 1.7590434551239014,
3159
+ "learning_rate": 7.741652021089631e-05,
3160
+ "loss": 0.8754181265830994,
3161
+ "step": 882
3162
+ },
3163
+ {
3164
+ "epoch": 0.3729957805907173,
3165
+ "grad_norm": 3.868894100189209,
3166
+ "learning_rate": 7.759226713532513e-05,
3167
+ "loss": 0.8482301235198975,
3168
+ "step": 884
3169
+ },
3170
+ {
3171
+ "epoch": 0.37383966244725736,
3172
+ "grad_norm": 2.111875534057617,
3173
+ "learning_rate": 7.776801405975396e-05,
3174
+ "loss": 0.8109031915664673,
3175
+ "step": 886
3176
+ },
3177
+ {
3178
+ "epoch": 0.37468354430379747,
3179
+ "grad_norm": 2.0838418006896973,
3180
+ "learning_rate": 7.794376098418278e-05,
3181
+ "loss": 0.8660775423049927,
3182
+ "step": 888
3183
+ },
3184
+ {
3185
+ "epoch": 0.3755274261603376,
3186
+ "grad_norm": 1.553022027015686,
3187
+ "learning_rate": 7.81195079086116e-05,
3188
+ "loss": 0.8418024778366089,
3189
+ "step": 890
3190
+ },
3191
+ {
3192
+ "epoch": 0.3763713080168776,
3193
+ "grad_norm": 1.334747314453125,
3194
+ "learning_rate": 7.829525483304042e-05,
3195
+ "loss": 0.7764869928359985,
3196
+ "step": 892
3197
+ },
3198
+ {
3199
+ "epoch": 0.37721518987341773,
3200
+ "grad_norm": 1.4692286252975464,
3201
+ "learning_rate": 7.847100175746925e-05,
3202
+ "loss": 0.7460401654243469,
3203
+ "step": 894
3204
+ },
3205
+ {
3206
+ "epoch": 0.3780590717299578,
3207
+ "grad_norm": 1.5374023914337158,
3208
+ "learning_rate": 7.864674868189807e-05,
3209
+ "loss": 0.7662873268127441,
3210
+ "step": 896
3211
+ },
3212
+ {
3213
+ "epoch": 0.3789029535864979,
3214
+ "grad_norm": 1.5662524700164795,
3215
+ "learning_rate": 7.882249560632689e-05,
3216
+ "loss": 0.8165306448936462,
3217
+ "step": 898
3218
+ },
3219
+ {
3220
+ "epoch": 0.379746835443038,
3221
+ "grad_norm": 4.498590469360352,
3222
+ "learning_rate": 7.899824253075572e-05,
3223
+ "loss": 0.7913232445716858,
3224
+ "step": 900
3225
+ },
3226
+ {
3227
+ "epoch": 0.379746835443038,
3228
+ "eval_loss": 0.8491304516792297,
3229
+ "eval_runtime": 852.6211,
3230
+ "eval_samples_per_second": 2.471,
3231
+ "eval_steps_per_second": 2.471,
3232
+ "step": 900
3233
+ },
3234
+ {
3235
+ "epoch": 0.38059071729957805,
3236
+ "grad_norm": 1.6320613622665405,
3237
+ "learning_rate": 7.917398945518454e-05,
3238
+ "loss": 0.8097161054611206,
3239
+ "step": 902
3240
+ },
3241
+ {
3242
+ "epoch": 0.38143459915611816,
3243
+ "grad_norm": 1.2562934160232544,
3244
+ "learning_rate": 7.934973637961336e-05,
3245
+ "loss": 0.786399781703949,
3246
+ "step": 904
3247
+ },
3248
+ {
3249
+ "epoch": 0.3822784810126582,
3250
+ "grad_norm": 1.6957594156265259,
3251
+ "learning_rate": 7.952548330404218e-05,
3252
+ "loss": 0.8385500311851501,
3253
+ "step": 906
3254
+ },
3255
+ {
3256
+ "epoch": 0.3831223628691983,
3257
+ "grad_norm": 1.6662386655807495,
3258
+ "learning_rate": 7.9701230228471e-05,
3259
+ "loss": 0.8157848715782166,
3260
+ "step": 908
3261
+ },
3262
+ {
3263
+ "epoch": 0.38396624472573837,
3264
+ "grad_norm": 1.6717777252197266,
3265
+ "learning_rate": 7.987697715289982e-05,
3266
+ "loss": 0.7937968373298645,
3267
+ "step": 910
3268
+ },
3269
+ {
3270
+ "epoch": 0.3848101265822785,
3271
+ "grad_norm": 1.399484395980835,
3272
+ "learning_rate": 8.005272407732865e-05,
3273
+ "loss": 0.7800109386444092,
3274
+ "step": 912
3275
+ },
3276
+ {
3277
+ "epoch": 0.3856540084388186,
3278
+ "grad_norm": 1.5671080350875854,
3279
+ "learning_rate": 8.022847100175747e-05,
3280
+ "loss": 0.8135939240455627,
3281
+ "step": 914
3282
+ },
3283
+ {
3284
+ "epoch": 0.38649789029535864,
3285
+ "grad_norm": 1.4427763223648071,
3286
+ "learning_rate": 8.04042179261863e-05,
3287
+ "loss": 0.7482035160064697,
3288
+ "step": 916
3289
+ },
3290
+ {
3291
+ "epoch": 0.38734177215189874,
3292
+ "grad_norm": 1.3314121961593628,
3293
+ "learning_rate": 8.057996485061512e-05,
3294
+ "loss": 0.7201873064041138,
3295
+ "step": 918
3296
+ },
3297
+ {
3298
+ "epoch": 0.3881856540084388,
3299
+ "grad_norm": 1.5695286989212036,
3300
+ "learning_rate": 8.075571177504394e-05,
3301
+ "loss": 0.7933040857315063,
3302
+ "step": 920
3303
+ },
3304
+ {
3305
+ "epoch": 0.3890295358649789,
3306
+ "grad_norm": 1.5091747045516968,
3307
+ "learning_rate": 8.093145869947276e-05,
3308
+ "loss": 0.8058338165283203,
3309
+ "step": 922
3310
+ },
3311
+ {
3312
+ "epoch": 0.389873417721519,
3313
+ "grad_norm": 1.6287630796432495,
3314
+ "learning_rate": 8.110720562390158e-05,
3315
+ "loss": 0.7617828249931335,
3316
+ "step": 924
3317
+ },
3318
+ {
3319
+ "epoch": 0.39071729957805906,
3320
+ "grad_norm": 1.6129482984542847,
3321
+ "learning_rate": 8.12829525483304e-05,
3322
+ "loss": 0.8710150122642517,
3323
+ "step": 926
3324
+ },
3325
+ {
3326
+ "epoch": 0.39156118143459917,
3327
+ "grad_norm": 1.6457173824310303,
3328
+ "learning_rate": 8.145869947275922e-05,
3329
+ "loss": 0.9122233390808105,
3330
+ "step": 928
3331
+ },
3332
+ {
3333
+ "epoch": 0.3924050632911392,
3334
+ "grad_norm": 1.6768827438354492,
3335
+ "learning_rate": 8.163444639718805e-05,
3336
+ "loss": 0.8339303731918335,
3337
+ "step": 930
3338
+ },
3339
+ {
3340
+ "epoch": 0.39324894514767933,
3341
+ "grad_norm": 1.5419740676879883,
3342
+ "learning_rate": 8.181019332161688e-05,
3343
+ "loss": 0.8220396041870117,
3344
+ "step": 932
3345
+ },
3346
+ {
3347
+ "epoch": 0.39409282700421944,
3348
+ "grad_norm": 1.4563747644424438,
3349
+ "learning_rate": 8.19859402460457e-05,
3350
+ "loss": 0.8531478047370911,
3351
+ "step": 934
3352
+ },
3353
+ {
3354
+ "epoch": 0.3949367088607595,
3355
+ "grad_norm": 1.6208328008651733,
3356
+ "learning_rate": 8.216168717047452e-05,
3357
+ "loss": 0.8330869078636169,
3358
+ "step": 936
3359
+ },
3360
+ {
3361
+ "epoch": 0.3957805907172996,
3362
+ "grad_norm": 1.6492482423782349,
3363
+ "learning_rate": 8.233743409490334e-05,
3364
+ "loss": 0.8011296987533569,
3365
+ "step": 938
3366
+ },
3367
+ {
3368
+ "epoch": 0.39662447257383965,
3369
+ "grad_norm": 2.1611905097961426,
3370
+ "learning_rate": 8.251318101933216e-05,
3371
+ "loss": 0.8111353516578674,
3372
+ "step": 940
3373
+ },
3374
+ {
3375
+ "epoch": 0.39746835443037976,
3376
+ "grad_norm": 1.7108231782913208,
3377
+ "learning_rate": 8.268892794376098e-05,
3378
+ "loss": 0.8282017111778259,
3379
+ "step": 942
3380
+ },
3381
+ {
3382
+ "epoch": 0.3983122362869198,
3383
+ "grad_norm": 1.543465495109558,
3384
+ "learning_rate": 8.286467486818981e-05,
3385
+ "loss": 0.7770059704780579,
3386
+ "step": 944
3387
+ },
3388
+ {
3389
+ "epoch": 0.3991561181434599,
3390
+ "grad_norm": 1.419969081878662,
3391
+ "learning_rate": 8.304042179261863e-05,
3392
+ "loss": 0.8646430373191833,
3393
+ "step": 946
3394
+ },
3395
+ {
3396
+ "epoch": 0.4,
3397
+ "grad_norm": 1.5002100467681885,
3398
+ "learning_rate": 8.321616871704746e-05,
3399
+ "loss": 0.7949403524398804,
3400
+ "step": 948
3401
+ },
3402
+ {
3403
+ "epoch": 0.4008438818565401,
3404
+ "grad_norm": 1.38933265209198,
3405
+ "learning_rate": 8.339191564147628e-05,
3406
+ "loss": 0.8124079704284668,
3407
+ "step": 950
3408
+ },
3409
+ {
3410
+ "epoch": 0.4016877637130802,
3411
+ "grad_norm": 1.5948443412780762,
3412
+ "learning_rate": 8.35676625659051e-05,
3413
+ "loss": 0.8634148836135864,
3414
+ "step": 952
3415
+ },
3416
+ {
3417
+ "epoch": 0.40253164556962023,
3418
+ "grad_norm": 1.4437624216079712,
3419
+ "learning_rate": 8.374340949033392e-05,
3420
+ "loss": 0.7410681247711182,
3421
+ "step": 954
3422
+ },
3423
+ {
3424
+ "epoch": 0.40337552742616034,
3425
+ "grad_norm": 1.3457095623016357,
3426
+ "learning_rate": 8.391915641476274e-05,
3427
+ "loss": 0.7680280208587646,
3428
+ "step": 956
3429
+ },
3430
+ {
3431
+ "epoch": 0.40421940928270045,
3432
+ "grad_norm": 1.610288143157959,
3433
+ "learning_rate": 8.409490333919156e-05,
3434
+ "loss": 0.7921904921531677,
3435
+ "step": 958
3436
+ },
3437
+ {
3438
+ "epoch": 0.4050632911392405,
3439
+ "grad_norm": 1.5321530103683472,
3440
+ "learning_rate": 8.427065026362039e-05,
3441
+ "loss": 0.8320037126541138,
3442
+ "step": 960
3443
+ },
3444
+ {
3445
+ "epoch": 0.4059071729957806,
3446
+ "grad_norm": 1.699881672859192,
3447
+ "learning_rate": 8.444639718804921e-05,
3448
+ "loss": 0.8303092122077942,
3449
+ "step": 962
3450
+ },
3451
+ {
3452
+ "epoch": 0.40675105485232066,
3453
+ "grad_norm": 1.591515064239502,
3454
+ "learning_rate": 8.462214411247804e-05,
3455
+ "loss": 0.9029796719551086,
3456
+ "step": 964
3457
+ },
3458
+ {
3459
+ "epoch": 0.40759493670886077,
3460
+ "grad_norm": 1.5930429697036743,
3461
+ "learning_rate": 8.479789103690686e-05,
3462
+ "loss": 0.8165359497070312,
3463
+ "step": 966
3464
+ },
3465
+ {
3466
+ "epoch": 0.4084388185654008,
3467
+ "grad_norm": 1.509774923324585,
3468
+ "learning_rate": 8.497363796133568e-05,
3469
+ "loss": 0.8276026248931885,
3470
+ "step": 968
3471
+ },
3472
+ {
3473
+ "epoch": 0.4092827004219409,
3474
+ "grad_norm": 1.3617016077041626,
3475
+ "learning_rate": 8.51493848857645e-05,
3476
+ "loss": 0.8159419894218445,
3477
+ "step": 970
3478
+ },
3479
+ {
3480
+ "epoch": 0.41012658227848103,
3481
+ "grad_norm": 1.3580708503723145,
3482
+ "learning_rate": 8.532513181019332e-05,
3483
+ "loss": 0.7882336378097534,
3484
+ "step": 972
3485
+ },
3486
+ {
3487
+ "epoch": 0.4109704641350211,
3488
+ "grad_norm": 1.3337358236312866,
3489
+ "learning_rate": 8.550087873462214e-05,
3490
+ "loss": 0.7462319731712341,
3491
+ "step": 974
3492
+ },
3493
+ {
3494
+ "epoch": 0.4118143459915612,
3495
+ "grad_norm": 1.450363278388977,
3496
+ "learning_rate": 8.567662565905097e-05,
3497
+ "loss": 0.7500866651535034,
3498
+ "step": 976
3499
+ },
3500
+ {
3501
+ "epoch": 0.41265822784810124,
3502
+ "grad_norm": 1.5305321216583252,
3503
+ "learning_rate": 8.585237258347979e-05,
3504
+ "loss": 0.8432503342628479,
3505
+ "step": 978
3506
+ },
3507
+ {
3508
+ "epoch": 0.41350210970464135,
3509
+ "grad_norm": 1.2097326517105103,
3510
+ "learning_rate": 8.602811950790861e-05,
3511
+ "loss": 0.8330482840538025,
3512
+ "step": 980
3513
+ },
3514
+ {
3515
+ "epoch": 0.41434599156118146,
3516
+ "grad_norm": 1.3916101455688477,
3517
+ "learning_rate": 8.620386643233744e-05,
3518
+ "loss": 0.8137149810791016,
3519
+ "step": 982
3520
+ },
3521
+ {
3522
+ "epoch": 0.4151898734177215,
3523
+ "grad_norm": 1.6411453485488892,
3524
+ "learning_rate": 8.637961335676626e-05,
3525
+ "loss": 0.8273854851722717,
3526
+ "step": 984
3527
+ },
3528
+ {
3529
+ "epoch": 0.4160337552742616,
3530
+ "grad_norm": 1.6734566688537598,
3531
+ "learning_rate": 8.655536028119508e-05,
3532
+ "loss": 0.794026255607605,
3533
+ "step": 986
3534
+ },
3535
+ {
3536
+ "epoch": 0.41687763713080167,
3537
+ "grad_norm": 1.352325677871704,
3538
+ "learning_rate": 8.67311072056239e-05,
3539
+ "loss": 0.7721655368804932,
3540
+ "step": 988
3541
+ },
3542
+ {
3543
+ "epoch": 0.4177215189873418,
3544
+ "grad_norm": 1.5368729829788208,
3545
+ "learning_rate": 8.690685413005273e-05,
3546
+ "loss": 0.8123438954353333,
3547
+ "step": 990
3548
+ },
3549
+ {
3550
+ "epoch": 0.41856540084388183,
3551
+ "grad_norm": 1.4903568029403687,
3552
+ "learning_rate": 8.708260105448155e-05,
3553
+ "loss": 0.8370974659919739,
3554
+ "step": 992
3555
+ },
3556
+ {
3557
+ "epoch": 0.41940928270042194,
3558
+ "grad_norm": 1.3405622243881226,
3559
+ "learning_rate": 8.725834797891037e-05,
3560
+ "loss": 0.780426561832428,
3561
+ "step": 994
3562
+ },
3563
+ {
3564
+ "epoch": 0.42025316455696204,
3565
+ "grad_norm": 1.4761021137237549,
3566
+ "learning_rate": 8.743409490333919e-05,
3567
+ "loss": 0.8304934501647949,
3568
+ "step": 996
3569
+ },
3570
+ {
3571
+ "epoch": 0.4210970464135021,
3572
+ "grad_norm": 1.520033359527588,
3573
+ "learning_rate": 8.760984182776801e-05,
3574
+ "loss": 0.7960568070411682,
3575
+ "step": 998
3576
+ },
3577
+ {
3578
+ "epoch": 0.4219409282700422,
3579
+ "grad_norm": 1.6916255950927734,
3580
+ "learning_rate": 8.778558875219684e-05,
3581
+ "loss": 0.7884663939476013,
3582
+ "step": 1000
3583
+ },
3584
+ {
3585
+ "epoch": 0.4219409282700422,
3586
+ "eval_loss": 0.8388314247131348,
3587
+ "eval_runtime": 847.4828,
3588
+ "eval_samples_per_second": 2.486,
3589
+ "eval_steps_per_second": 2.486,
3590
+ "step": 1000
3591
+ }
3592
+ ],
3593
+ "logging_steps": 2,
3594
+ "max_steps": 14220,
3595
+ "num_input_tokens_seen": 0,
3596
+ "num_train_epochs": 6,
3597
+ "save_steps": 500,
3598
+ "stateful_callbacks": {
3599
+ "EarlyStoppingCallback": {
3600
+ "args": {
3601
+ "early_stopping_patience": 5,
3602
+ "early_stopping_threshold": 0.001
3603
+ },
3604
+ "attributes": {
3605
+ "early_stopping_patience_counter": 0
3606
+ }
3607
+ },
3608
+ "TrainerControl": {
3609
+ "args": {
3610
+ "should_epoch_stop": false,
3611
+ "should_evaluate": false,
3612
+ "should_log": false,
3613
+ "should_save": true,
3614
+ "should_training_stop": false
3615
+ },
3616
+ "attributes": {}
3617
+ }
3618
+ },
3619
+ "total_flos": 1.0390224045010268e+18,
3620
+ "train_batch_size": 1,
3621
+ "trial_name": null,
3622
+ "trial_params": null
3623
+ }
sft_devstral_24B_v2/checkpoints/checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09df88fe57630482e911c5fab6026e3d20e4f37f6e48706f3566768f533d6d7
3
+ size 4792
sft_devstral_24B_v2/checkpoints/checkpoint-1500/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Models/Devstral-Small-2-24B-HS-CPT
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Models/Devstral-Small-2-24B-HS-CPT
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B_v2/checkpoints/checkpoint-1500/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Models/Devstral-Small-2-24B-HS-CPT",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "q_proj",
34
+ "o_proj",
35
+ "k_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B_v2/checkpoints/checkpoint-1500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:831a7d926d7f5df3964543a446004381a22b97659f1e9acb7da164b4155aa7db
3
+ size 45690960
sft_devstral_24B_v2/checkpoints/checkpoint-1500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:633ffc9a088e0005164ac58cc14f8eea176fdd2e4b9ebdd504fdddd3accc0a3d
3
+ size 78912442
sft_devstral_24B_v2/checkpoints/checkpoint-1500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a1ae23f994928215671a68d719c37e5eb1f321bb43710f6a94f783d81024ee9
3
+ size 14244
sft_devstral_24B_v2/checkpoints/checkpoint-1500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e0ab851b74630ec51d2dd1e28429156fa119043bf6e4acb868afec1778a8d36
3
+ size 1064
sft_devstral_24B_v2/checkpoints/checkpoint-1500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
sft_devstral_24B_v2/checkpoints/checkpoint-1500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09df88fe57630482e911c5fab6026e3d20e4f37f6e48706f3566768f533d6d7
3
+ size 4792
sft_devstral_24B_v2/checkpoints/checkpoint-2000/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Models/Devstral-Small-2-24B-HS-CPT
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Models/Devstral-Small-2-24B-HS-CPT
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B_v2/checkpoints/checkpoint-2000/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Models/Devstral-Small-2-24B-HS-CPT",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "q_proj",
34
+ "o_proj",
35
+ "k_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B_v2/checkpoints/checkpoint-2000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddae9fb556b6dafd5e51ffbdf7776618b5a2438b53191f850d3c060e448f3161
3
+ size 45690960
sft_devstral_24B_v2/checkpoints/checkpoint-2000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b78804d00938d938b90a599b8b0d8dcd8f09e8116b29fd8a7b96100a5696f346
3
+ size 78912442
sft_devstral_24B_v2/checkpoints/checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f05d71d3ab99767003aa382d142674f4d194421936f48f312a57e6f262a24b51
3
+ size 14244
sft_devstral_24B_v2/checkpoints/checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c4e41c084848d0f3091226abc7db74bacb76a784828650f35ffabc473a2c375
3
+ size 1064
sft_devstral_24B_v2/checkpoints/checkpoint-2000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
sft_devstral_24B_v2/checkpoints/checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09df88fe57630482e911c5fab6026e3d20e4f37f6e48706f3566768f533d6d7
3
+ size 4792
sft_devstral_24B_v2/checkpoints/checkpoint-2500/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Models/Devstral-Small-2-24B-HS-CPT
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Models/Devstral-Small-2-24B-HS-CPT
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B_v2/checkpoints/checkpoint-2500/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Models/Devstral-Small-2-24B-HS-CPT",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "q_proj",
34
+ "o_proj",
35
+ "k_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B_v2/checkpoints/checkpoint-2500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12ceefd222d6928d2451717456e57f756d9bff479938fd49324891727c39637e
3
+ size 45690960
sft_devstral_24B_v2/checkpoints/checkpoint-2500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:938980f0edbd2046c344e1b26fe96147ee0bfebc7f3495443c62b27002ce70c4
3
+ size 78912442
sft_devstral_24B_v2/checkpoints/checkpoint-2500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39b0d665c25c7b02a656e5cf197220cfb689931bbb6d4ae22b61d327d830a916
3
+ size 14244
sft_devstral_24B_v2/checkpoints/checkpoint-2500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4849064f0d6ca593dabdc277f5c88ce471853e22cd7c8abff162abca0907f0fc
3
+ size 1064
sft_devstral_24B_v2/checkpoints/checkpoint-2500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
sft_devstral_24B_v2/checkpoints/checkpoint-2500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09df88fe57630482e911c5fab6026e3d20e4f37f6e48706f3566768f533d6d7
3
+ size 4792
sft_devstral_24B_v2/checkpoints/checkpoint-3000/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Models/Devstral-Small-2-24B-HS-CPT
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Models/Devstral-Small-2-24B-HS-CPT
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B_v2/checkpoints/checkpoint-3000/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Models/Devstral-Small-2-24B-HS-CPT",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "q_proj",
34
+ "o_proj",
35
+ "k_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B_v2/checkpoints/checkpoint-3000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:572c1222d21c879d07f6653cb4605da12a85133cc0188c2b00b2221aaa62cfbe
3
+ size 45690960
sft_devstral_24B_v2/checkpoints/checkpoint-3000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d13c8293c1238c70e3998e56118b6e7dd7fa6bdfcb679007496a08a03d0b3023
3
+ size 78912442
sft_devstral_24B_v2/checkpoints/checkpoint-3000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60683ad220666ae109ec67d53325ffb9c9c5fcc7a868f2ef15b68e9723037766
3
+ size 14244
sft_devstral_24B_v2/checkpoints/checkpoint-3000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:387a3533fe4e8e1eeba51f1150cceef09f54bd06750ea51420287466c7ba0384
3
+ size 1064
sft_devstral_24B_v2/checkpoints/checkpoint-3000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
sft_devstral_24B_v2/checkpoints/checkpoint-3000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09df88fe57630482e911c5fab6026e3d20e4f37f6e48706f3566768f533d6d7
3
+ size 4792
sft_devstral_24B_v2/checkpoints/checkpoint-3500/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Models/Devstral-Small-2-24B-HS-CPT
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Models/Devstral-Small-2-24B-HS-CPT
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B_v2/checkpoints/checkpoint-3500/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Models/Devstral-Small-2-24B-HS-CPT",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "q_proj",
34
+ "o_proj",
35
+ "k_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B_v2/checkpoints/checkpoint-3500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:957eb2d5d1ffe73b7a84d0fb076e12576f526034973b97039ee4c03976bffe01
3
+ size 45690960
sft_devstral_24B_v2/checkpoints/checkpoint-3500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d1ba7e825bf8869398fcbd6f238d668c2d90eab33e298c3ae735600ed11395f
3
+ size 78912442
sft_devstral_24B_v2/checkpoints/checkpoint-3500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0f916096e49dbb7a03cf13b3f0a9c0dd359b939f3fc1e94d65073bd53e57e12
3
+ size 14244