
Study Mode - Temporal Difference Learning

Temporal Difference Learning

Great choice, Karthik — Temporal Difference (TD) Learning is a core concept in

reinforcement learning (RL), and it'll really boost your understanding of how agents learn

from experience without needing full trajectories. Let’s break this down step-by-step.

🌱 Step 1: Build the base — Do you remember these?

Before we dive in, can you quickly confirm:

What’s a state and an action?

Do you know what a reward is in reinforcement learning?

Have you heard about value functions, like or ?

If you're unsure about any, let me know — I’ll explain that part first. Otherwise, we’ll

proceed.

🚶 Step 2: What is Temporal Difference Learning?

TD Learning is about learning predictions (like value functions) based on other learned

predictions, rather than waiting until the end of an episode (like Monte Carlo methods).

So instead of saying:

TD says:

This is bootstrapping — learning from incomplete experience.

🧠 Formula: TD(0) Update

We focus first on TD(0) (the simplest form). Here's the core update rule:

V (s) Q(s, a)

"I'll only update my value of state after reaching the end of the game"s

"I'll update my value of using the reward I just got + my estimate of the next state’s
value."

s

V (s ​) ←t V (s ​) +t α r ​ + γV (s ​) − V (s ​)[t+1 t+1 t]

1/21

Let’s break it down:

Term Meaning

current state

reward received after moving

from

value estimate of current state

value estimate of next state

learning rate

discount factor (importance of

future rewards)

The term inside the brackets is called the TD error:

🧪 Quick Check: Can you explain what TD error represents?

What does the TD error tell us about our prediction?

Try answering in your own words. (I’ll wait before continuing.)

If you’re unsure, I’ll walk you through it with an example.

s ​t

r ​t+1

s ​t

V (s ​)t

V (s ​)t+1

α

γ

δ = r ​ +t+1 γV (s ​) −t+1 V (s ​)t

What’s a state and an action?

Do you know what a reward is in reinforcement learning?

Have you heard about value functions, like
𝑉
(
𝑠
)
V(s) or

2/21

𝑄
(
𝑠
,
𝑎
)
Q(s,a)?

i dont know these please explain and then continue with
the TDL

Perfect, Karthik — let’s build this from the ground up. You’ll see how TD Learning fits

naturally once these core concepts are clear. I’ll keep things simple, like how you'd explain

a game to a friend.

🎮 Think of an RL agent like a gamer:

Imagine a game-playing agent (like your Jarvis AI or a character in Fortnite). Every time

it plays, it moves through situations and learns what to do to win. Now let's define:

📍 1. State — "Where am I now?"

A state is the current situation the agent is in.

In chess: a state is the full board at that moment.

In self-driving: a state could be the car’s location, speed, nearby obstacles.

In your AI assistant: a state could be the current screen, open apps, user instruction.

🎮 2. Action — "What can I do now?"

An action is a choice the agent can make in that state.

In chess: move the queen, or castle.

In self-driving: turn left, brake, accelerate.

In your assistant: click a button, fill a form, wait, or ask for more info.

s

It’s like pressing pause in a game and looking at what’s happening.

a

It's like choosing your next move in a paused game.

3/21

💰 3. Reward — "Was that a good move?"

A reward is the feedback the agent gets after taking an action.

In games: +1 for reaching a goal, -1 for dying.

In your case: +10 for submitting a form successfully, -5 for filling it wrong.

📈 4. Value Function

A value function tells how good a state is — meaning, how much total reward we can

expect in the future if we start from state .

Example: If you're in a state where you're 1 step away from winning, is high.

So:

🎯 5. Action-Value Function

This is like an upgraded version:

It’s super useful because it helps the agent decide:

✅ QUICK CHECK:

Let’s see if it’s making sense before I explain Temporal Difference Learning again:

Try answering these:

1. If your AI is on a screen with a submit button, what could be the state?

2. What’s one possible action?

3. If the action works well, what might be a reward?

4. What would the value of that screen represent?

r

Rewards teach the agent what’s good or bad.

V (s)

s

V (s)

V (s) = Expected future rewards starting from state s

Q(s, a)

Q(s, a) = Expected reward if you take action a in state s

“If I’m in state , which action will give me the best reward over time?”s a

4/21

You try! I'll guide from there.

1. action state
2. dont know
3. postive reward may be better points than non reward
4. state

Awesome attempt, Karthik — you're on the right track! Let me guide and refine each

answer so the full picture becomes crystal clear:

✅ 1. If your AI is on a screen with a submit button, what is the state?

Your answer: “action state”

🔁 Fix: The state is the full situation or environment the AI sees right now.

Correct example:

It includes all relevant info — like which app is open, what text is filled, where the mouse

is, etc.

✅ 2. What is one possible action in that state?

You said: "don't know" — totally okay!

Answer:

Other possible actions:

Do nothing

Clear the form

Scroll down

So:

➡️ State = screen info

➡️ Action = what AI decides to do

State = A screen with a filled form and a “Submit” button visible.

Action = Click the “Submit” button

5/21

✅ 3. What is a possible reward after an action?

You said: "positive reward, maybe better points than non reward"

Yes! 🔥

Example:

Rewards are just numbers that tell the agent how good/bad its action was.

✅ 4. What would the value of that screen represent?

You said: “state” — almost there, but here’s a clearer version:

The value of a state tells:

So if submitting from here gives a reward soon, the value is high.

If nothing useful can happen from here, the value is low.

🌟 Summary of all four:

Concept Example

State “Screen with a filled form and

submit button”

Action Click “Submit”

Reward +10 if success, -5 if error

Value How good this screen is, in

terms of future rewards

Reward = +10 if form submitted successfully
Reward = -5 if error message appears

“How good is it to be on this screen, assuming the AI acts smart from now on?”

V (s)

6/21

✅ Now You're Ready: Let’s Revisit Temporal Difference Learning

Remember this formula?

What this means:

Part What it means for your AI

Your current guess of how good

the screen is

Reward after submitting

How good the next screen is

 = TD Error "Oops! I thought this screen was

worth 5, but I just saw it was

worth 10!"

Next Steps

Wanna try a mini walkthrough example using this formula?

I’ll give fake numbers and walk you through how value updates over time.

Let me know — or if you’re ready for Q-Learning or TD(λ), we can level up 🚀

V (s ​) ←t V (s ​) +t α r ​ + γV (s ​) − V (s ​)[t+1 t+1 t]

V (s ​)t

r ​t+1

V (s ​)t+1

δ

nice lets move on to TD Learning

Perfect, Karthik! Now that you fully understand state, action, reward, value, let's walk

through Temporal Difference Learning (TD Learning) step by step using real numbers.

🔁 Temporal Difference (TD) Learning Recap

TD Learning updates the value of a state based on the reward you get + your current

guess of the next state.

TD(0) Update Rule:

7/21

Where:

: value of current state

: value of next state

: reward after taking action

: learning rate (e.g., 0.1)

: discount factor (e.g., 0.9)

🧪 Let’s try a full example (your AI assistant scenario)

🎮 Scenario:

Your AI is submitting forms. It goes through 3 states:

: Form filled, ready to submit

: Submission successful screen

: Dashboard after success

Let’s say your value estimates and rewards are:

State
Reward on entering
next state

5.0

6.0

8.0 final state,

Let’s say:

🔁 TD Update Step-by-Step

Step 1: From

V (s ​) ←t V (s ​) +t α ​

TD Error

​[r ​ + γV (s ​) − V (s ​)]t+1 t+1 t

V (s ​)t
V (s ​)t+1

r ​t+1

α
γ

s ​1

s ​2

s ​3

V (s)

s ​1 r = +0

s ​2 r = +10

s ​3 r = 0

α = 0.1
γ = 0.9

s ​ →1 s ​2

TD Error = r + γV (s ​) −2 V (s ​) =1 0 + 0.9 ⋅ 6.0 − 5.0 = 5.4 − 5.0 = 0.4

8/21

Now update :

Step 2: From

Update :

Updated Value Table

State Old New

5.0 5.04

6.0 7.12

8.0 unchanged

🧠 What Happened?
 got a small value bump since it led to a slightly better state.

 got a big value bump because it led to a big reward and even better state.

TD learning works on-the-fly — no need to wait till the episode ends.

🚀 Summary
Term Meaning

TD Error What we learned compared to

what we expected

Learning Rate How fast we learn

Discount Factor How much future matters

V (s ​)1

V (s ​) =1 5.0 + 0.1 ⋅ 0.4 = 5.0 + 0.04 = ​5.04

s ​ →2 s ​3

TD Error = 10 + 0.9 ⋅ 8.0 − 6.0 = 10 + 7.2 − 6 = 11.2

V (s ​)2

V (s ​) =2 6.0 + 0.1 ⋅ 11.2 = 6.0 + 1.12 = ​7.12

V V

s ​1

s ​2

s ​3

s ​1

s ​2

δ

α

γ

9/21

✅ Next: Want to try coding this in Python step-by-step?

Or shall we move to Q-Learning, which extends this to learning values for actions (i.e.,

)?

Let me know!

Q(s, a)

move to Q-Learning, which extends this to learning values
for actions (i.e.,
𝑄
(
𝑠
,
𝑎
)
Q(s,a))?

Great move, Karthik 🔥 — let’s now level up from TD Learning to Q-Learning, which

teaches the agent what action to take, not just how good a state is.

🎯 What is Q-Learning?

Q-Learning learns the value of taking a specific action in a specific state — i.e., it

learns the optimal policy.

✅ Instead of just:

we now learn:

This helps the agent decide the best action at every step.

🧠 Q-Learning Update Rule:

V (s) = How good is this state?

Q(s, a) = How good is it to take action a in state s?

10/21

Term Meaning

current guess of value for (state,

action)

reward received

best possible value from next

state

learning rate

discount factor

Whole RHS called the TD error for Q-

learning

🧪 Example Walkthrough

🎮 Let’s say:

You are in state: s = "SubmitScreen"

Two actions: "ClickSubmit" and "DoNothing"

You choose "ClickSubmit" and move to "SuccessScreen" and get reward

Initial Q-values:

State Action Q(s, a)

SubmitScreen ClickSubmit 5.0

SubmitScreen DoNothing 2.0

SuccessScreen ClickAnything 4.0

Now apply Q-learning update:

Step-by-step:

Q(s ​, a ​) ←t t Q(s ​, a ​) +t t α r ​ + γ ​ Q(s ​, a) − Q(s ​, a ​)[t+1
a′

max t+1
′

t t]

Q(s ​, a ​)t t

r ​t+1

max ​ Q(s ​, a)a′ t+1
′

α

γ

r = 10

s ​ =t SubmitScreen
a =t ClickSubmit

11/21

,

🔁 Updated Q Table:
State Action Q(s, a)

SubmitScreen ClickSubmit 5.86

SubmitScreen DoNothing 2.0

SuccessScreen ClickAnything 4.0

🧭 How the Agent Learns?
At every step: it tries different actions, gets rewards, and updates Q-values.

Eventually, it learns the best action for every state:

✅ Next Steps?

Would you like to:

1. See this Q-learning logic in Python with a dummy environment?

2. Learn about ε-greedy exploration, which helps the agent try new actions?

3. Move on to Deep Q-Networks (DQN) where we use neural nets to approximate Q?

Your call, boss 😎

r = 10
s ​ =t+1 SuccessScreen
max ​ Q(SuccessScreen, a) =a′

′ 4.0
Q(SubmitScreen, ClickSubmit) = 5.0
α = 0.1 γ = 0.9

TD Error = 10 + 0.9 ⋅ 4.0 − 5.0 = 10 + 3.6 − 5 = 8.6

Q(SubmitScreen, ClickSubmit) = 5.0 + 0.1 ⋅ 8.6 = ​5.86

π (s) =∗ arg ​ Q(s, a)
a

max

now difference between RL,TDL and QL in tabular manner

12/21

Here you go, Karthik — a clean, no-fluff comparison between Reinforcement Learning

(RL), Temporal Difference Learning (TDL), and Q-Learning (QL) in a tabular format:

🧠 Comparison: RL vs TDL vs QL

Aspect
Reinforcement
Learning (RL)

Temporal Difference
Learning (TDL) Q-Learning (QL)

What it is Broad field focused

on training agents

through rewards

A method to estimate value

functions from incomplete

episodes

A specific TDL-based algorithm

to learn optimal action values

Goal Learn optimal

behavior through

interaction with

environment

Learn state values

using bootstrapped rewards

Learn optimal policy

Learns Policy , Value

, or Action-

Value

Value function Action-value function

Update

equation

Depends on

algorithm (e.g.,

Monte Carlo, TD,

etc.)

Type Umbrella concept

(includes TDL, QL,

etc.)

Model-free, on-policy value

prediction

Model-free, off-policy control

Needs full

episode?

Not always ❌ No (uses partial

experience)

❌ No (updates at each step)

Bootstrapping? Varies ✅ Yes ✅ Yes

Target Depends on specific

method

Reward + estimated future

value

Reward + best next action valu

Exploration

needed?

Yes (often with

exploration

strategies like ε-

greedy)

Not required (for prediction

only)

✅ Yes (e.g., ε-greedy)

V (s) π(s) =
arg max ​ Q(s, a)a

π(s)
V (s)

Q(s, a)

V (s) Q(s, a)

V (s) ← V (s) + α[r +
γV (s) −′ V (s)]

Q(s, a) ← Q(s, a) + α[r +
γ max ​ Q(s , a) −a′ ′ ′ Q(s, a)]

13/21

Aspect
Reinforcement
Learning (RL)

Temporal Difference
Learning (TDL) Q-Learning (QL)

Used for Games, robotics, AI

agents

Value estimation in large

MDPs

Learning optimal action policy i

unknown environments

🎯 In Simple Terms:

RL is the umbrella field — like the entire

school.

TDL is a method in that school to predict "how

good a place (state) is".

QL is a student who not only learns how good

the place is, but also which path (action) to

take at every turn.

Let me know if you want a real-world analogy table (like gaming or your AI assistant). Or

ready to move into code?

Deep Q-Networks (DQN)
now explain about this

Alright Karthik — now you're stepping into Deep Q-Networks (DQN) — where we bring in

neural networks to approximate Q-values, especially when the state or action space is

too large to use tables.

🧠 What is a DQN?

A Deep Q-Network is a neural network that learns to predict Q-values:

Instead of using a Q-table, we use a neural net with parameters .

Q(s, a; θ) ≈ Expected future reward

θ

14/21

This allows DQN to handle complex, high-dimensional states (like images, screen

pixels, etc.)

🎮 Why DQN?

Problem with Q-Learning:

In simple problems: Q-table is fine (just store in a matrix).

In real-world problems: millions of states and actions — table is impossible.

Solution:

Use a neural network: Input = state, Output = Q-values for all actions.

🧱 DQN Architecture

For each state , the network outputs a Q-value for each possible action .

Architecture:

Input: State vector (or pixels if image-based)

Output: Vector of Q-values for all possible actions

🔁 DQN Update Rule

Still based on Q-Learning update, but with neural nets:

Where:

Target

 = current Q-network parameters

 = target network parameters (frozen for stability)

Q(s, a)

s a

css

State s ──► [Fully Connected Layers] ──► Output: Q(s, a1), Q(s, a2), ..., Q(s, an)

Loss = y − Q(s, a; θ)[]2

y = r + γ ⋅max ​ Q(s , a ; θ)a′
′ ′ −

θ
θ−

15/21

🛠 Key Components of DQN
Component Purpose

Q-network Main model that predicts

Target network Copy of Q-network, updated

slowly to stabilize learning

Replay buffer Stores past experiences

 for training

Mini-batch updates Train on random samples from

the buffer for efficiency

ε-greedy policy Balances exploration vs

exploitation during training

🧪 Example Flow:
1. Agent observes state

2. Chooses action using ε-greedy strategy

3. Executes action, gets reward and next state

4. Stores in replay buffer

5. Sample a batch and train:

Calculate target:

Update weights to minimize loss

🔥 Key Innovations by DeepMind in 2015:
Applied DQN to Atari games with raw pixel input

Used experience replay and target networks to stabilize training

Outperformed humans on many games!

✅ Summary: DQN vs Q-Learning

Q(s, a)

(s, a, r, s)′

s
a

r s′

(s, a, r, s)′

y = r + γ ⋅max Q(s , a ; θ)′ ′ −

16/21

Feature Q-Learning DQN

Q-values Stored in table Predicted using neural

network

Suitable for Small state/action

space

Large/continuous

spaces

Data usage Online Replay buffer (batch)

Stability Can diverge Target network

improves stability

🚀 Want to continue?

I can now:

1. Give you a PyTorch implementation of DQN step-by-step

2. Explain Double DQN or Dueling DQN (improvements)

3. Show how this ties to your personal AI assistant project

Which path do you want to go next?

now please explain me the coding part for these 4 topics
in pytorch

Awesome, Karthik — we’ll go one by one through clean PyTorch implementations of these

4 key reinforcement learning topics:

✅ 1. Reinforcement Learning (Basic Setup)

🎮 Dummy Environment

python

import random

class SimpleEnv:

 def __init__(self):

17/21

✅ 2. Temporal Difference Learning (TD Learning)

✅ 3. Q-Learning (Table-based)

 self.state = 0

 def reset(self):

 self.state = 0

 return self.state

 def step(self, action):

 reward = 1 if action == self.state % 2 else 0

 self.state += 1

 done = self.state >= 5

 return self.state, reward, done

python

import numpy as np

states = list(range(6))

V = {s: 0.0 for s in states}

alpha = 0.1

gamma = 0.9

env = SimpleEnv()

for episode in range(100):

 s = env.reset()

 done = False

 while not done:

 a = random.choice([0, 1])

 s_next, r, done = env.step(a)

 V[s] += alpha * (r + gamma * V[s_next] - V[s])

 s = s_next

print("State Values:", V)

python

18/21

✅ 4. Deep Q-Networks (DQN) — PyTorch

Q = {(s, a): 0.0 for s in range(6) for a in [0, 1]}

epsilon = 0.1

alpha = 0.1

gamma = 0.9

env = SimpleEnv()

for episode in range(100):

 s = env.reset()

 done = False

 while not done:

 if random.random() < epsilon:

 a = random.choice([0, 1])

 else:

 a = max([0, 1], key=lambda x: Q[(s, x)])

 s_next, r, done = env.step(a)

 best_next_q = max(Q[(s_next, a2)] for a2 in [0, 1])

 Q[(s, a)] += alpha * (r + gamma * best_next_q - Q[(s, a)])

 s = s_next

print("Q-Table:", Q)

python

import torch

import torch.nn as nn

import torch.optim as optim

import random

from collections import deque

class DQN(nn.Module):

 def __init__(self):

 super().__init__()

 self.net = nn.Sequential(

 nn.Linear(1, 64),

 nn.ReLU(),

 nn.Linear(64, 2)

)

19/21

 def forward(self, x):

 return self.net(x)

Initialize

env = SimpleEnv()

model = DQN()

target = DQN()

target.load_state_dict(model.state_dict())

optimizer = optim.Adam(model.parameters(), lr=0.001)

replay_buffer = deque(maxlen=1000)

gamma = 0.9

epsilon = 0.1

batch_size = 16

def select_action(state):

 if random.random() < epsilon:

 return random.randint(0, 1)

 with torch.no_grad():

 return model(torch.tensor([[state]], dtype=torch.float32)).argmax().item()

def train():

 if len(replay_buffer) < batch_size:

 return

 batch = random.sample(replay_buffer, batch_size)

 states, actions, rewards, next_states = zip(*batch)

 states = torch.tensor(states, dtype=torch.float32).unsqueeze(1)

 actions = torch.tensor(actions).unsqueeze(1)

 rewards = torch.tensor(rewards, dtype=torch.float32)

 next_states = torch.tensor(next_states, dtype=torch.float32).unsqueeze(1)

 q_values = model(states).gather(1, actions).squeeze()

 with torch.no_grad():

 max_next_q = target(next_states).max(1)[0]

 targets = rewards + gamma * max_next_q

 loss = nn.MSELoss()(q_values, targets)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

20/21

Each example builds from basic logic to deep learning-based solutions. Want me to walk

you through each one with visualization or logging? Or do you want Double DQN or

Dueling DQN next?

Training loop

for episode in range(200):

 state = env.reset()

 done = False

 while not done:

 action = select_action(state)

 next_state, reward, done = env.step(action)

 replay_buffer.append((state, action, reward, next_state))

 train()

 state = next_state

 if episode % 20 == 0:

 target.load_state_dict(model.state_dict())

print("Trained Q-Network.")

21/21

