Study Mode - Temporal Difference Learning

1/21

Temporal Difference Learning

Great choice, Karthik — Temporal Difference (TD) Learning is a core concept in
reinforcement learning (RL), and it'll really boost your understanding of how agents learn

from experience without needing full trajectories. Let’s break this down step-by-step.

Step 1: Build the base — Do you remember these?

Before we dive in, can you quickly confirm:

e What's a state and an action?
e Do you know what a reward is in reinforcement learning?
« Have you heard about value functions, like V (S) or Q(s, a)?

If you're unsure about any, let me know — I'll explain that part first. Otherwise, we’ll

proceed.

Step 2: What is Temporal Difference Learning?

TD Learning is about learning predictions (like value functions) based on other learned

predictions, rather than waiting until the end of an episode (like Monte Carlo methods).

So instead of saying:

"I'l only update my value of state S after reaching the end of the game"

TD says:

"I'l update my value of S using the reward | just got + my estimate of the next state’s
value."

This is bootstrapping — learning from incomplete experience.

Formula: TD(0) Update

We focus first on TD(0) (the simplest form). Here's the core update rule:

V(S)) « V(s)+alrus + YV (Se1) — V(so)]

Let’s break it down:

Term Meaning

St current state

] reward received after moving
from S;

V(s value estimate of current state

V (St+1) value estimate of next state

a learning rate

1% discount factor (importance of

future rewards)

The term inside the brackets is called the TD error:

0 =ru1 + YV (St+1) — V(St)

Quick Check: Can you explain what TD error represents?

What does the TD error tell us about our prediction?
Try answering in your own words. (I'll wait before continuing.)

If you're unsure, I'll walk you through it with an example.

What's a state and an action?
Do you know what a reward is in reinforcement learning?

Have you heard about value functions, like
Vv

2/21

a

)
Q(s,a)?

I dont know these please explain and then continue with
the TDL

Perfect, Karthik — let’s build this from the ground up. You'll see how TD Learning fits
naturally once these core concepts are clear. I'll keep things simple, like how you'd explain

a game to a friend.

Think of an RL agent like a gamer:

Imagine a game-playing agent (like your Jarvis Al or a character in Fortnite). Every time

it plays, it moves through situations and learns what to do to win. Now let's define:

1. State S — "Where am | now?"

A state is the current situation the agent is in.

¢ In chess: a state is the full board at that moment.
o In self-driving: a state could be the car’s location, speed, nearby obstacles.

¢ Inyour Al assistant: a state could be the current screen, open apps, user instruction.

It's like pressing pause in a game and looking at what's happening.

2. Action @ — "What can | do now?"

An action is a choice the agent can make in that state.

* In chess: move the queen, or castle.
e In self-driving: turn left, brake, accelerate.

» Inyour assistant: click a button, fill a form, wait, or ask for more info.

It's like choosing your next move in a paused game.

3/21

4/21

3. Reward — "Was that a good move?"

A reward is the feedback the agent gets after taking an action.

e In games: +1 for reaching a goal, -1 for dying.

e Inyour case: +10 for submitting a form successfully, -5 for filling it wrong.

Rewards teach the agent what's good or bad.

4. Value Function V (S)

A value function tells how good a state is — meaning, how much total reward we can

expect in the future if we start from state S.

o Example: If you're in a state where you're 1 step away from winning, V/ (S) is high.

So:

V (s) = Expected future rewards starting from state s

5. Action-Value Function Q(S, a)

This is like an upgraded version:

Q(s, a) = Expected reward if you take action a in state s
It's super useful because it helps the agent decide:

“If I'm in state S, which action a will give me the best reward over time?”

QUICK CHECK:

Let's see if it's making sense before | explain Temporal Difference Learning again:
Try answering these:

If your Al is on a screen with a submit button, what could be the state?
What's one possible action?

If the action works well, what might be a reward?

P 0 b PR

What would the value of that screen represent?

5/21

You try! I'll guide from there.

1. action state

2. dont know

3. postive reward may be better points than non reward
4. state

Awesome attempt, Karthik — you're on the right track! Let me guide and refine each

answer so the full picture becomes crystal clear:

1. If your Al is on a screen with a submit button, what is the state?
Your answer: “action state”

@ Fix: The state is the full situation or environment the Al sees right now.

Correct example:

State = A screen with a filled form and a “Submit” button visible.

It includes all relevant info — like which app is open, what text is filled, where the mouse

is, etc.

2. What is one possible action in that state?

You said: "don't know" — totally okay!

Answer:

Action = Click the “Submit” button

Other possible actions:
e Do nothing
o Clear the form

e Scroll down

So:
B state = screen info
B Action = what Al decides to do

3. What is a possible reward after an action?

You said: "positive reward, maybe better points than non reward"
Yes! @

Example:

Reward = +10 if form submitted successfully
Reward = -5 if error message appears

Rewards are just numbers that tell the agent how good/bad its action was.

4. What would the value of that screen represent?

You said: “state” — almost there, but here’s a clearer version:

The value of a state tells:

“How good is it to be on this screen, assuming the Al acts smart from now on?”

So if submitting from here gives a reward soon, the value is high.

If nothing useful can happen from here, the value is low.

Summary of all four:

Concept Example

State “Screen with a filled form and

submit button”

Action Click “Submit”
Reward +10 if success, -5 if error
Value V (S) How good this screen is, in

terms of future rewards

6/21

7/21

Now You're Ready: Let’s Revisit Temporal Difference Learning
Remember this formula?
V(st) < V(s)) +afras +yV(Se1) — V(Sh)]
What this means:
Part What it means for your Al

V (sy) Your current guess of how good

the screen is

It Reward after submitting
V (St+1) How good the next screen is
O = TD Error "Oops! | thought this screen was

worth 5, but | just saw it was
worth 10!"

Next Steps

Wanna try a mini walkthrough example using this formula?

I'll give fake numbers and walk you through how value updates over time.

Let me know — or if you're ready for Q-Learning or TD(A), we can level up #

nice lets move on to TD Learning

Perfect, Karthik! Now that you fully understand state, action, reward, value, let's walk

through Temporal Difference Learning (TD Learning) step by step using real numbers.

Temporal Difference (TD) Learning Recap

TD Learning updates the value of a state based on the reward you get + your current

guess of the next state.

TD(0) Update Rule:

8/21

V(st) <« V(s + a[rt+1 +yV (St1) — V(St)l

TD Error

Where:

o V/(St): value of current state
oV (St+1): value of next state

e [It+1: reward after taking action
e {: learning rate (e.g., 0.1)

e Y:discount factor (e.g., 0.9)

Let’s try a full example (your Al assistant scenario)

Scenario:

Your Al is submitting forms. It goes through 3 states:

e Si: Form filled, ready to submit
e So: Submission successful screen

e S3: Dashboard after success

Let's say your value estimates and rewards are:

Reward on entering

State V(s) next state
S1 5.0 r=+0
So 6.0 r=+10
S3 8.0 final state, r = 0
Let’s say:
e 0=0.1
« y=0.9

TD Update Step-by-Step
Step 1: FromS; — Sy

TD Error =r+yV(s2)-V(s1)=0+09-6.0-50=54-5.0=04

Now update V/ (S1):

V(s1)=5.0+0.1-0.4=5.0+0.04 =[5.04

Step 2: From S, — S3
TD Error=10+0.9:-8.0-6.0=10+7.2-6=11.2

Update V/ (S>2):

V(s2)=6.0+0.1-11.2=6.0+1.12=|7.12

Updated Value Table

State old V New V

S1 5.0 5.04

S2 6.0 7.12

S3 8.0 unchanged

What Happened?
e S4 got a small value bump since it led to a slightly better state.
e Sy got a big value bump because it led to a big reward and even better state.

e TD learning works on-the-fly — no need to wait till the episode ends.

Summary
Term Meaning
TD Error 0 What we learned compared to
what we expected
Learning Rate O How fast we learn
Discount Factor Yy How much future matters

9/21

Next: Want to try coding this in Python step-by-step?

Or shall we move to Q-Learning, which extends this to learning values for actions (i.e.,

Q(s, a))?

Let me know!

move to Q-Learning, which extends this to learning values
for actions (i.e.,

0
(

S

a

)
Q(s.a))?

Great move, Karthik @ — let's now level up from TD Learning to Q-Learning, which

teaches the agent what action to take, not just how good a state is.

What is Q-Learning?
Q-Learning learns the value of taking a specific action in a specific state —i.e., it

learns the optimal policy.

Instead of just:
V (s) = How good is this state?
we now learn:
Q(s, a) = How good is it to take action a in state s?

This helps the agent decide the best action at every step.

Q-Learning Update Rule:

10/21

Q(st,ar) — Q(sp,ar) +afrwty maax Q(St+1, @) — Q(St, ar)]

Term Meaning

Q(st, ar) current guess of value for (state,
action)

I't+1 reward received

maxa Q(St+1,a) best possible value from next
state

a learning rate

1% discount factor

Whole RHS called the TD error for Q-
learning

Example Walkthrough

Let’s say:
e You are in state: s = "SubmitScreen"
e Two actions: "ClickSubmit" and "DoNothing"

e You choose "ClickSubmit" and move to "SuccessScreen" and getreward r = 10

Initial Q-values:

State Action Q(s, a)
SubmitScreen ClickSubmit 5.0
SubmitScreen DoNothing 2.0

SuccessScreen ClickAnything 4.0

Now apply Q-learning update:

Step-by-step:
e S; = SubmitScreen
o a; = ClickSubmit

11/21

e r=10

e Sg1 = SuccessScreen

« maxy Q(SuccessScreen, a) = 4.0

o Q(SubmitScreen, ClickSubmit) =5.0
« 0=0.1,y=0.9

TD Error=10+0.9-40-5.0=10+3.6-5=8.6

Q(SubmitScreen, ClickSubmit) =5.0+ 0.1 - 8.6 =|5.86

Updated Q Table:

State Action Q(s, a)
SubmitScreen ClickSubmit 5.86
SubmitScreen DoNothing 2.0

SuccessScreen ClickAnything 4.0

How the Agent Learns?

o At every step: it tries different actions, gets rewards, and updates Q-values.

e Eventually, it learns the best action for every state:

m*(s) = arg max Q(s,a)

Next Steps?

Would you like to:

1. See this Q-learning logic in Python with a dummy environment?
2. Learn about e-greedy exploration, which helps the agent try new actions?

3. Move on to Deep Q-Networks (DQN) where we use neural nets to approximate Q?

Your call, boss &

now difference between RL,TDL and QL in tabular manner

12/21

Here you go, Karthik — a clean, no-fluff comparison between Reinforcement Learning

(RL), Temporal Difference Learning (TDL), and Q-Learning (QL) in a tabular format:

Comparison: RL vs TDL vs QL

Aspect

What it is

Goal

Learns

Update

equation

Type

Needs full

episode?

Bootstrapping?

Target

Exploration

needed?

13/21

Reinforcement
Learning (RL)

Broad field focused
on training agents

through rewards

Learn optimal
behavior through
interaction with

environment

Policy 77(S), Value
V/ (S), or Action-
Value Q(S, a)

Depends on
algorithm (e.g.,
Monte Carlo, TD,

etc.)

Umbrella concept
(includes TDL, QL,

etc.)

Not always

Varies

Depends on specific

method

Yes (often with
exploration
strategies like €-

greedy)

Temporal Difference
Learning (TDL)

A method to estimate value
functions from incomplete

episodes

Learn state values V/ (S)

using bootstrapped rewards

Value function V/ (S)

V(s) - V(s)+alr+
Y (s)-Vs)

Model-free, on-policy value

prediction

< No (uses partial

experience)

W Yes

Reward + estimated future

value

Not required (for prediction

only)

Q-Learning (QL)

A specific TDL-based algorithn

to learn optimal action values

Learn optimal policy 77(S) =
arg max, Q(s, a)

Action-value function Q(S, @)

Q(s,a) - Q(s,a) +alr+
y maxg Q(s, a) - Q(s, a)]

Model-free, off-policy control

< No (updates at each step)

W Yes

Reward + best next action valu

M Yes (e.g., e-greedy)

Reinforcement

Aspect Learning (RL)
Used for Games, robotics, Al
agents

In Simple Terms:

RL is the umbrella field — like the entire

school.

TDL is a method in that school to predict "how

good a place (state) is".

QL is a student who not only learns how good

the place is, but also which path (action) to

take at every turn.

Temporal Difference
Learning (TDL)

Value estimation in large
MDPs

Q-Learning (QL)

Learning optimal action policy i

unknown environments

Let me know if you want a real-world analogy table (like gaming or your Al assistant). Or

ready to move into code?

Deep Q-Networks (DQN)
now explain about this

Alright Karthik — now you're stepping into Deep Q-Networks (DQN) — where we bring in

neural networks to approximate Q-values, especially when the state or action space is

too large to use tables.

What is a DQN?

A Deep Q-Network is a neural network that learns to predict Q-values:

Q(s, a; 6) = Expected future reward

 Instead of using a Q-table, we use a neural net with parameters 6.

14/21

o This allows DQN to handle complex, high-dimensional states (like images, screen

pixels, etc.)

Why DQN?

Problem with Q-Learning:

o In simple problems: Q-table is fine (just store Q(S, &) in a matrix).

e In real-world problems: millions of states and actions — table is impossible.

Solution:

¢ Use a neural network: Input = state, Output = Q-values for all actions.

DQN Architecture

For each state S, the network outputs a Q-value for each possible action a.
Architecture:

CSs

States —» —» Output: Q(s, al), Q(s, a2), ..., Q(s, an)

e Input: State vector (or pixels if image-based)

e Output: Vector of Q-values for all possible actions

DQN Update Rule
Still based on Q-Learning update, but with neural nets:
Loss = [y - Q(s, &; 6)]°

Where:
e Targety =r+y-maxy Q(s,a;8")
o 0O = current Q-network parameters

o 0O =target network parameters (frozen for stability)

15/21

% Key Components of DQN

Component Purpose

Q-network Main model that predicts
Q(s, a)

Target network Copy of Q-network, updated

slowly to stabilize learning

Replay buffer Stores past experiences
(s,a,r,s) for training

Mini-batch updates Train on random samples from

the buffer for efficiency

e-greedy policy Balances exploration vs

exploitation during training

Example Flow:

Agent observes state S

Chooses action a using e-greedy strategy
Executes action, gets reward I and next state 5
Stores (S, @, I, S) in replay buffer

Gl em DY =

Sample a batch and train:
« Calculate target: Y =r+y -maxQ(s,a; 6")

o Update weights to minimize loss

Key Innovations by DeepMind in 2015:
e Applied DQN to Atari games with raw pixel input
* Used experience replay and target networks to stabilize training

e Outperformed humans on many games!

Summary: DQN vs Q-Learning

16/21

Feature

Q-values

Suitable for

Data usage

Stability

Q-Learning

Stored in table

Small state/action

space

Online

Can diverge

Want to continue?

| can now:

DQN

Predicted using neural

network

Large/continuous

spaces

Replay buffer (batch)

Target network

improves stability

1. Give you a PyTorch implementation of DQN step-by-step

2. Explain Double DQN or Dueling DQN (improvements)

3. Show how this ties to your personal Al assistant project

Which path do you want to go next?

now please explain me the coding part for these 4 topics
in pytorch

Awesome, Karthik — we’ll go one by one through clean PyTorch implementations of these

4 key reinforcement learning topics:

1. Reinforcement Learning (Basic Setup)

Dummy Environment

python

random

17/21

(self):

self.state =

(self):
self.state =

self.state

(self, action):
reward = action == self.state %
self.state +=
done = self.state >=

self.state, reward, done

2. Temporal Difference Learning (TD Learning)

python
numpy as np

states = list(range(6))
V={s: s in states}
alpha =

gamma =

env = SimpleEnv()

episode in range(100):
s = env.reset()
done =
done:
a = random.choice([0, 1])
s_next, r, done = env.step(a)
V[s] += alpha * (r + gamma * V[s_next] - V[s])

S =s_next

print(, V)

3. Q-Learning (Table-based)

python

18/21

Q={(s, a): s in range(6) for ain [0, 1]}
epsilon =

alpha =

gamma =

env = SimpleEnv()

episode in range(100):
s = env.reset()
done =
done:
random.random() < epsilon:

a = random.choice([0, 1])
a = max([0, 1], key= x: Q[(s, X)])

s_next, r, done = env.step(a)
best_next_q = max(Q[(s_next, a2)] for a2 in [0, 1])
Q[(s, a)] += alpha * (r + gamma * best_next_q - Q[(s, a)])

s =s_next

print(, Q)

4. Deep Q-Networks (DQN) — PyTorch

python

torch

torch.nn as nn
torch.optim as optim
random

collections deque

(nn.Module):
(self):
super().__init__ ()
self.net = nn.Sequential(
nn.Linear(1, 64),
nn.ReLU(),

nn.Linear(64, 2)

19/21

20/21

(self, x):

self.net(x)

Initialize

env = SimpleEnv()
model = DQN()
target = DQN()

target.load_state dict(model.state dict())

optimizer = optim.Adam(model.parameters(), Ir=)
replay_buffer = deque(maxlen=)
gamma =
epsilon =
batch_size =
(state):

random.random() < epsilon:
random.randint(0, 1)
torch.no_grad():
model(torch.tensor([[state]], dtype=torch.float32)).argmax().item()

0:

len(replay_buffer) < batch_size:

batch = random.sample(replay_buffer, batch_size)

states, actions, rewards, next_states = zip(*batch)

states = torch.tensor(states, dtype=torch.float32).unsqueeze(1)
actions = torch.tensor(actions).unsqueeze(1)
rewards = torch.tensor(rewards, dtype=torch.float32)

next_states = torch.tensor(next_states, dtype=torch.float32).unsqueeze(1)

g_values = model(states).gather(1, actions).squeeze()
torch.no_grad():
max_next_q = target(next_states).max(1)[0]

targets = rewards + gamma * max_next_q

loss = nn.MSELoss()(g_values, targets)
optimizer.zero_grad()
loss.backward()

optimizer.step()

Training loop

episode in range(200):

state = env.reset()

done =

done:

action = select_action(state)
next_state, reward, done = env.step(action)
replay_buffer.append((state, action, reward, next_state))
train()
state = next_state
episode % 20 ==

target.load_state dict(model.state dict())

print()

Each example builds from basic logic to deep learning-based solutions. Want me to walk
you through each one with visualization or logging? Or do you want Double DQN or
Dueling DQN next?

21/21

