Mohamed Mekkouri
update
4db85a7
from ._ops import ops
import torch
def f32_bf16w_matmul(input: torch.Tensor,
weight_bf16: torch.Tensor,
bias_bf16: torch.Tensor,
output: torch.Tensor,
num_tokens: int,
num_cols: int,
num_rows: int,
threadgroup_size: int) -> torch.Tensor:
ops.f32_bf16w_matmul(input, weight_bf16, bias_bf16, output,
num_tokens, num_cols, num_rows, threadgroup_size)
return output
def bf16_f32_embeddings(token_ids: torch.Tensor,
weight_bf16: torch.Tensor,
output: torch.Tensor,
threadgroup_size: int) -> torch.Tensor:
ops.bf16_f32_embeddings(token_ids, weight_bf16, output, threadgroup_size)
return output
def f32_bf16w_rmsnorm(input: torch.Tensor,
weight_bf16: torch.Tensor,
output: torch.Tensor,
epsilon: float) -> torch.Tensor:
ops.f32_bf16w_rmsnorm(input, weight_bf16, output, epsilon)
return output
def f32_bf16w_dense_matmul_qkv(input: torch.Tensor,
weight_bf16: torch.Tensor,
bias_bf16: torch.Tensor,
output: torch.Tensor) -> torch.Tensor:
ops.f32_bf16w_dense_matmul_qkv(input, weight_bf16, bias_bf16, output)
return output
def f32_bf16w_dense_matmul_attn_output(input: torch.Tensor,
weight_bf16: torch.Tensor,
bias_bf16: torch.Tensor,
output: torch.Tensor) -> torch.Tensor:
ops.f32_bf16w_dense_matmul_attn_output(input, weight_bf16, bias_bf16, output)
return output
def f32_bf16w_dense_matmul_mlp_gate(input: torch.Tensor,
weight_bf16: torch.Tensor,
bias_bf16: torch.Tensor,
output: torch.Tensor) -> torch.Tensor:
ops.f32_bf16w_dense_matmul_mlp_gate(input, weight_bf16, bias_bf16, output)
return output
def f32_rope(activations: torch.Tensor,
rope_base: float,
interpolation_scale: float,
yarn_offset: float,
yarn_scale: float,
yarn_multiplier: float,
num_tokens: int,
num_q_heads: int,
num_kv_heads: int,
attn_head_dim: int,
token_offset: int,
threadgroup_size: int) -> torch.Tensor:
ops.f32_rope(activations, rope_base, interpolation_scale, yarn_offset,
yarn_scale, yarn_multiplier, num_tokens, num_q_heads,
num_kv_heads, attn_head_dim, token_offset, threadgroup_size)
return activations
def f32_bf16w_matmul_qkv(input: torch.Tensor,
weight_bf16: torch.Tensor,
bias_bf16: torch.Tensor,
output: torch.Tensor,
kv_cache: torch.Tensor,
kv_cache_offset_bytes: int,
num_tokens: int,
num_cols: int,
num_q_heads: int,
num_kv_heads: int,
attn_head_dim: int,
token_offset: int,
max_tokens: int,
rope_base: float,
interpolation_scale: float,
yarn_offset: float,
yarn_scale: float,
yarn_multiplier: float,
threadgroup_size: int) -> torch.Tensor:
ops.f32_bf16w_matmul_qkv(input, weight_bf16, bias_bf16, output, kv_cache,
kv_cache_offset_bytes, num_tokens, num_cols,
num_q_heads, num_kv_heads, attn_head_dim,
token_offset, max_tokens, rope_base,
interpolation_scale, yarn_offset, yarn_scale,
yarn_multiplier, threadgroup_size)
return output
def f32_sdpa(q: torch.Tensor,
q_offset_bytes: int,
kv: torch.Tensor,
kv_offset_bytes: int,
s_bf16: torch.Tensor,
s_offset_bytes: int,
output: torch.Tensor,
output_offset_bytes: int,
window: int,
kv_stride: int,
num_q_tokens: int,
num_kv_tokens: int,
num_q_heads: int,
num_kv_heads: int,
head_dim: int) -> torch.Tensor:
ops.f32_sdpa(q, q_offset_bytes, kv, kv_offset_bytes, s_bf16, s_offset_bytes,
output, output_offset_bytes, window, kv_stride,
num_q_tokens, num_kv_tokens, num_q_heads, num_kv_heads, head_dim)
return output
def f32_topk(scores: torch.Tensor,
expert_ids: torch.Tensor,
expert_scores: torch.Tensor,
num_tokens: int,
num_experts: int,
num_active_experts: int) -> None:
ops.f32_topk(scores, expert_ids, expert_scores,
num_tokens, num_experts, num_active_experts)
def expert_routing_metadata(expert_ids: torch.Tensor,
expert_scores: torch.Tensor,
expert_offsets: torch.Tensor,
intra_expert_offsets: torch.Tensor,
num_tokens: int,
num_experts: int) -> None:
ops.expert_routing_metadata(expert_ids, expert_scores,
expert_offsets, intra_expert_offsets,
num_tokens, num_experts)
def f32_scatter(input: torch.Tensor,
expert_ids: torch.Tensor,
expert_scores: torch.Tensor,
expert_offsets: torch.Tensor,
intra_expert_offsets: torch.Tensor,
output: torch.Tensor,
num_channels: int,
num_tokens: int,
num_active_experts: int) -> torch.Tensor:
ops.f32_scatter(input, expert_ids, expert_scores,
expert_offsets, intra_expert_offsets,
output, num_channels, num_tokens, num_active_experts)
return output
def f32_bf16w_matmul_add(input: torch.Tensor,
weight_bf16: torch.Tensor,
bias_bf16: torch.Tensor,
output: torch.Tensor,
num_tokens: int,
num_cols: int,
num_rows: int,
threadgroup_size: int) -> torch.Tensor:
ops.f32_bf16w_matmul_add(input, weight_bf16, bias_bf16, output,
num_tokens, num_cols, num_rows, threadgroup_size)
return output
__all__ = [
"f32_bf16w_matmul",
"bf16_f32_embeddings",
"f32_bf16w_rmsnorm",
"f32_bf16w_dense_matmul_qkv",
"f32_bf16w_dense_matmul_attn_output",
"f32_bf16w_dense_matmul_mlp_gate",
"f32_rope",
"f32_bf16w_matmul_qkv",
"f32_sdpa",
"f32_topk",
"expert_routing_metadata",
"f32_scatter",
"f32_bf16w_matmul_add",
]