#!/usr/bin/env python3 from mpi4py import MPI from baselines.common import set_global_seeds from baselines import logger from baselines.common.cmd_util import make_robotics_env, robotics_arg_parser import mujoco_py def train(env_id, num_timesteps, seed): from baselines.ppo1 import mlp_policy, pposgd_simple import baselines.common.tf_util as U rank = MPI.COMM_WORLD.Get_rank() sess = U.single_threaded_session() sess.__enter__() mujoco_py.ignore_mujoco_warnings().__enter__() workerseed = seed + 10000 * rank set_global_seeds(workerseed) env = make_robotics_env(env_id, workerseed, rank=rank) def policy_fn(name, ob_space, ac_space): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=256, num_hid_layers=3) pposgd_simple.learn(env, policy_fn, max_timesteps=num_timesteps, timesteps_per_actorbatch=2048, clip_param=0.2, entcoeff=0.0, optim_epochs=5, optim_stepsize=3e-4, optim_batchsize=256, gamma=0.99, lam=0.95, schedule='linear', ) env.close() def main(): args = robotics_arg_parser().parse_args() train(args.env, num_timesteps=args.num_timesteps, seed=args.seed) if __name__ == '__main__': main()