import numpy as np import matplotlib matplotlib.use('TkAgg') # Can change to 'Agg' for non-interactive mode import matplotlib.pyplot as plt plt.rcParams['svg.fonttype'] = 'none' from baselines.common import plot_util X_TIMESTEPS = 'timesteps' X_EPISODES = 'episodes' X_WALLTIME = 'walltime_hrs' Y_REWARD = 'reward' Y_TIMESTEPS = 'timesteps' POSSIBLE_X_AXES = [X_TIMESTEPS, X_EPISODES, X_WALLTIME] EPISODES_WINDOW = 100 COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink', 'brown', 'orange', 'teal', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue'] def rolling_window(a, window): shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) def window_func(x, y, window, func): yw = rolling_window(y, window) yw_func = func(yw, axis=-1) return x[window-1:], yw_func def ts2xy(ts, xaxis, yaxis): if xaxis == X_TIMESTEPS: x = np.cumsum(ts.l.values) elif xaxis == X_EPISODES: x = np.arange(len(ts)) elif xaxis == X_WALLTIME: x = ts.t.values / 3600. else: raise NotImplementedError if yaxis == Y_REWARD: y = ts.r.values elif yaxis == Y_TIMESTEPS: y = ts.l.values else: raise NotImplementedError return x, y def plot_curves(xy_list, xaxis, yaxis, title): fig = plt.figure(figsize=(8,2)) maxx = max(xy[0][-1] for xy in xy_list) minx = 0 for (i, (x, y)) in enumerate(xy_list): color = COLORS[i % len(COLORS)] plt.scatter(x, y, s=2) x, y_mean = window_func(x, y, EPISODES_WINDOW, np.mean) #So returns average of last EPISODE_WINDOW episodes plt.plot(x, y_mean, color=color) plt.xlim(minx, maxx) plt.title(title) plt.xlabel(xaxis) plt.ylabel(yaxis) plt.tight_layout() fig.canvas.mpl_connect('resize_event', lambda event: plt.tight_layout()) plt.grid(True) def split_by_task(taskpath): return taskpath['dirname'].split('/')[-1].split('-')[0] def plot_results(dirs, num_timesteps=10e6, xaxis=X_TIMESTEPS, yaxis=Y_REWARD, title='', split_fn=split_by_task): results = plot_util.load_results(dirs) plot_util.plot_results(results, xy_fn=lambda r: ts2xy(r['monitor'], xaxis, yaxis), split_fn=split_fn, average_group=True, resample=int(1e6)) # Example usage in jupyter-notebook # from baselines.results_plotter import plot_results # %matplotlib inline # plot_results("./log") # Here ./log is a directory containing the monitor.csv files def main(): import argparse import os parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--dirs', help='List of log directories', nargs = '*', default=['./log']) parser.add_argument('--num_timesteps', type=int, default=int(10e6)) parser.add_argument('--xaxis', help = 'Varible on X-axis', default = X_TIMESTEPS) parser.add_argument('--yaxis', help = 'Varible on Y-axis', default = Y_REWARD) parser.add_argument('--task_name', help = 'Title of plot', default = 'Breakout') args = parser.parse_args() args.dirs = [os.path.abspath(dir) for dir in args.dirs] plot_results(args.dirs, args.num_timesteps, args.xaxis, args.yaxis, args.task_name) plt.show() if __name__ == '__main__': main()