|
|
import torch
|
|
|
import numpy as np
|
|
|
import networkx as nx
|
|
|
from typing import Optional, List
|
|
|
|
|
|
|
|
|
class Pooler:
|
|
|
def __init__(self, pooling_types: List[str]):
|
|
|
self.pooling_types = pooling_types
|
|
|
self.pooling_options = {
|
|
|
'mean': self.mean_pooling,
|
|
|
'max': self.max_pooling,
|
|
|
'norm': self.norm_pooling,
|
|
|
'median': self.median_pooling,
|
|
|
'std': self.std_pooling,
|
|
|
'var': self.var_pooling,
|
|
|
'cls': self.cls_pooling,
|
|
|
'parti': self._pool_parti,
|
|
|
}
|
|
|
|
|
|
def _create_pooled_matrices_across_layers(self, attentions: torch.Tensor) -> torch.Tensor:
|
|
|
maxed_attentions = torch.max(attentions, dim=1)[0]
|
|
|
return maxed_attentions
|
|
|
|
|
|
def _page_rank(self, attention_matrix, personalization=None, nstart=None, prune_type="top_k_outdegree"):
|
|
|
|
|
|
|
|
|
|
|
|
G = self._convert_to_graph(attention_matrix)
|
|
|
if G.number_of_nodes() != attention_matrix.shape[0]:
|
|
|
raise Exception(
|
|
|
f"The number of nodes in the graph should be equal to the number of tokens in sequence! You have {G.number_of_nodes()} nodes for {attention_matrix.shape[0]} tokens.")
|
|
|
if G.number_of_edges() == 0:
|
|
|
raise Exception(f"You don't seem to have any attention edges left in the graph.")
|
|
|
|
|
|
return nx.pagerank(G, alpha=0.85, tol=1e-06, weight='weight', personalization=personalization, nstart=nstart, max_iter=100)
|
|
|
|
|
|
def _convert_to_graph(self, matrix):
|
|
|
|
|
|
|
|
|
G = nx.from_numpy_array(matrix, create_using=nx.DiGraph)
|
|
|
return G
|
|
|
|
|
|
def _calculate_importance_weights(self, dict_importance, attention_mask: Optional[torch.Tensor] = None):
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
for k in list(dict_importance.keys()):
|
|
|
if attention_mask[k] == 0:
|
|
|
del dict_importance[k]
|
|
|
|
|
|
|
|
|
|
|
|
total = sum(dict_importance.values())
|
|
|
return np.array([v / total for _, v in dict_importance.items()])
|
|
|
|
|
|
def _pool_parti(self, emb: torch.Tensor, attentions: torch.Tensor, attention_mask: Optional[torch.Tensor] = None):
|
|
|
maxed_attentions = self._create_pooled_matrices_across_layers(attentions).numpy()
|
|
|
|
|
|
emb_pooled = []
|
|
|
for e, a, mask in zip(emb, maxed_attentions, attention_mask):
|
|
|
dict_importance = self._page_rank(a)
|
|
|
importance_weights = self._calculate_importance_weights(dict_importance, mask)
|
|
|
num_tokens = int(mask.sum().item())
|
|
|
emb_pooled.append(np.average(e[:num_tokens], weights=importance_weights, axis=0))
|
|
|
pooled = torch.tensor(np.array(emb_pooled))
|
|
|
return pooled
|
|
|
|
|
|
def mean_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs):
|
|
|
if attention_mask is None:
|
|
|
return emb.mean(dim=1)
|
|
|
else:
|
|
|
attention_mask = attention_mask.unsqueeze(-1)
|
|
|
return (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
|
|
|
|
|
def max_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs):
|
|
|
if attention_mask is None:
|
|
|
return emb.max(dim=1).values
|
|
|
else:
|
|
|
attention_mask = attention_mask.unsqueeze(-1)
|
|
|
return (emb * attention_mask).max(dim=1).values
|
|
|
|
|
|
def norm_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs):
|
|
|
if attention_mask is None:
|
|
|
return emb.norm(dim=1, p=2)
|
|
|
else:
|
|
|
attention_mask = attention_mask.unsqueeze(-1)
|
|
|
return (emb * attention_mask).norm(dim=1, p=2)
|
|
|
|
|
|
def median_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs):
|
|
|
if attention_mask is None:
|
|
|
return emb.median(dim=1).values
|
|
|
else:
|
|
|
attention_mask = attention_mask.unsqueeze(-1)
|
|
|
return (emb * attention_mask).median(dim=1).values
|
|
|
|
|
|
def std_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs):
|
|
|
if attention_mask is None:
|
|
|
return emb.std(dim=1)
|
|
|
else:
|
|
|
|
|
|
var = self.var_pooling(emb, attention_mask, **kwargs)
|
|
|
return torch.sqrt(var)
|
|
|
|
|
|
def var_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs):
|
|
|
if attention_mask is None:
|
|
|
return emb.var(dim=1)
|
|
|
else:
|
|
|
|
|
|
attention_mask = attention_mask.unsqueeze(-1)
|
|
|
|
|
|
mean = (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
|
|
mean = mean.unsqueeze(1)
|
|
|
|
|
|
squared_diff = (emb - mean) ** 2
|
|
|
|
|
|
var = (squared_diff * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
|
|
return var
|
|
|
|
|
|
def cls_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs):
|
|
|
return emb[:, 0, :]
|
|
|
|
|
|
def __call__(
|
|
|
self,
|
|
|
emb: torch.Tensor,
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
attentions: Optional[torch.Tensor] = None
|
|
|
):
|
|
|
final_emb = []
|
|
|
for pooling_type in self.pooling_types:
|
|
|
final_emb.append(self.pooling_options[pooling_type](emb=emb, attention_mask=attention_mask, attentions=attentions))
|
|
|
return torch.cat(final_emb, dim=-1)
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
pooler = Pooler(pooling_types=['max', 'parti'])
|
|
|
|
|
|
batch_size = 8
|
|
|
seq_len = 64
|
|
|
hidden_size = 128
|
|
|
num_layers = 12
|
|
|
emb = torch.randn(batch_size, seq_len, hidden_size)
|
|
|
attentions = torch.randn(batch_size, num_layers, seq_len, seq_len)
|
|
|
attention_mask = torch.ones(batch_size, seq_len)
|
|
|
|
|
|
y = pooler(emb=emb, attention_mask=attention_mask, attentions=attentions)
|
|
|
print(y.shape)
|
|
|
|