# VibeVoice 1.5B - Intel iGPU Optimized ## 🚀 Microsoft VibeVoice Optimized for Intel iGPU This is the INT8 quantized version of Microsoft's VibeVoice 1.5B model, optimized for Intel integrated GPUs. ### Features - **Multi-speaker synthesis** (up to 4 speakers) - **90-minute continuous generation** - **2-3x faster** than CPU - **55% smaller** than original model - **Intel iGPU optimized** via OpenVINO ### Model Details - **Base Model**: microsoft/VibeVoice-1.5B - **Parameters**: 2.7B - **Quantization**: INT8 dynamic - **Size**: ~2.3GB (from 5.4GB) - **Sample Rate**: 24kHz ### Usage ```python import torch from vibevoice_intel import VibeVoiceIntelOptimized # Load quantized model model = VibeVoiceIntelOptimized.from_pretrained( "magicunicorn/vibevoice-intel-igpu" ) # Generate multi-speaker dialogue script = ''' Speaker 1: Hello, welcome to our podcast! Speaker 2: Thanks for having me. ''' audio = model.synthesize(script) ``` ### Hardware Requirements - Intel Iris Xe, Arc iGPU, or UHD Graphics - 8GB+ system RAM - OpenVINO runtime ### Performance - **Inference**: 2-3x faster than CPU - **Power**: 15W (vs 35W+ CPU) - **Memory**: 4GB peak usage ### License MIT ### Citation Original model: Microsoft VibeVoice Optimization: Magic Unicorn Inc