mastari commited on
Commit
e3b2ec4
·
0 Parent(s):

Rebuilt repo cleanly with fresh model under LFS

Browse files
Files changed (7) hide show
  1. .gitattributes +35 -0
  2. README.md +226 -0
  3. birefnet.py +2252 -0
  4. config.json +20 -0
  5. handler.py +162 -0
  6. model.safetensors +3 -0
  7. requirements.txt +16 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: birefnet
3
+ tags:
4
+ - background-removal
5
+ - mask-generation
6
+ - Dichotomous Image Segmentation
7
+ - Camouflaged Object Detection
8
+ - Salient Object Detection
9
+ - pytorch_model_hub_mixin
10
+ - model_hub_mixin
11
+ - transformers
12
+ repo_url: https://github.com/ZhengPeng7/BiRefNet
13
+ pipeline_tag: image-segmentation
14
+ license: mit
15
+ ---
16
+ <h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
17
+
18
+ <div align='center'>
19
+ <a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,&thinsp;
20
+ <a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,&thinsp;
21
+ <a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>,&thinsp;
22
+ <a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>,&thinsp;
23
+ <a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>,&thinsp;
24
+ <a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>,&thinsp;
25
+ <a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
26
+ </div>
27
+
28
+ <div align='center'>
29
+ <sup>1 </sup>Nankai University&ensp; <sup>2 </sup>Northwestern Polytechnical University&ensp; <sup>3 </sup>National University of Defense Technology&ensp; <sup>4 </sup>Aalto University&ensp; <sup>5 </sup>Shanghai AI Laboratory&ensp; <sup>6 </sup>University of Trento&ensp;
30
+ </div>
31
+
32
+ <div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
33
+ <a href='https://www.sciopen.com/article/pdf/10.26599/AIR.2024.9150038.pdf'><img src='https://img.shields.io/badge/Journal-Paper-red'></a>&ensp;
34
+ <a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a>&ensp;
35
+ <a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a>&ensp;
36
+ <a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a>&ensp;
37
+ <a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a>&ensp;
38
+ <a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>&ensp;
39
+ <a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a>&ensp;
40
+ <a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a>&ensp;
41
+ <a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
42
+ <a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
43
+ </div>
44
+
45
+
46
+ | *DIS-Sample_1* | *DIS-Sample_2* |
47
+ | :------------------------------: | :-------------------------------: |
48
+ | <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
49
+
50
+ This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___CAAI AIR 2024___).
51
+
52
+ Visit our GitHub repo: [https://github.com/ZhengPeng7/BiRefNet](https://github.com/ZhengPeng7/BiRefNet) for more details -- **codes**, **docs**, and **model zoo**!
53
+
54
+ ## How to use
55
+
56
+ ### 0. Install Packages:
57
+ ```
58
+ pip install -qr https://raw.githubusercontent.com/ZhengPeng7/BiRefNet/main/requirements.txt
59
+ ```
60
+
61
+ ### 1. Load BiRefNet:
62
+
63
+ #### Use codes + weights from HuggingFace
64
+ > Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest).
65
+
66
+ ```python
67
+ # Load BiRefNet with weights
68
+ from transformers import AutoModelForImageSegmentation
69
+ birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
70
+ ```
71
+
72
+ #### Use codes from GitHub + weights from HuggingFace
73
+ > Only use the weights on HuggingFace -- Pro: codes are always latest; Con: Need to clone the BiRefNet repo from my GitHub.
74
+
75
+ ```shell
76
+ # Download codes
77
+ git clone https://github.com/ZhengPeng7/BiRefNet.git
78
+ cd BiRefNet
79
+ ```
80
+
81
+ ```python
82
+ # Use codes locally
83
+ from models.birefnet import BiRefNet
84
+
85
+ # Load weights from Hugging Face Models
86
+ birefnet = BiRefNet.from_pretrained('ZhengPeng7/BiRefNet')
87
+ ```
88
+
89
+ #### Use codes from GitHub + weights from local space
90
+ > Only use the weights and codes both locally.
91
+
92
+ ```python
93
+ # Use codes and weights locally
94
+ import torch
95
+ from utils import check_state_dict
96
+
97
+ birefnet = BiRefNet(bb_pretrained=False)
98
+ state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu')
99
+ state_dict = check_state_dict(state_dict)
100
+ birefnet.load_state_dict(state_dict)
101
+ ```
102
+
103
+ #### Use the loaded BiRefNet for inference
104
+ ```python
105
+ # Imports
106
+ from PIL import Image
107
+ import matplotlib.pyplot as plt
108
+ import torch
109
+ from torchvision import transforms
110
+ from models.birefnet import BiRefNet
111
+
112
+ birefnet = ... # -- BiRefNet should be loaded with codes above, either way.
113
+ torch.set_float32_matmul_precision(['high', 'highest'][0])
114
+ birefnet.to('cuda')
115
+ birefnet.eval()
116
+ birefnet.half()
117
+
118
+ def extract_object(birefnet, imagepath):
119
+ # Data settings
120
+ image_size = (1024, 1024)
121
+ transform_image = transforms.Compose([
122
+ transforms.Resize(image_size),
123
+ transforms.ToTensor(),
124
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
125
+ ])
126
+
127
+ image = Image.open(imagepath)
128
+ input_images = transform_image(image).unsqueeze(0).to('cuda').half()
129
+
130
+ # Prediction
131
+ with torch.no_grad():
132
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
133
+ pred = preds[0].squeeze()
134
+ pred_pil = transforms.ToPILImage()(pred)
135
+ mask = pred_pil.resize(image.size)
136
+ image.putalpha(mask)
137
+ return image, mask
138
+
139
+ # Visualization
140
+ plt.axis("off")
141
+ plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0])
142
+ plt.show()
143
+
144
+ ```
145
+
146
+ ### 2. Use inference endpoint locally:
147
+ > You may need to click the *deploy* and set up the endpoint by yourself, which would make some costs.
148
+ ```
149
+ import requests
150
+ import base64
151
+ from io import BytesIO
152
+ from PIL import Image
153
+
154
+
155
+ YOUR_HF_TOKEN = 'xxx'
156
+ API_URL = "xxx"
157
+ headers = {
158
+ "Authorization": "Bearer {}".format(YOUR_HF_TOKEN)
159
+ }
160
+
161
+ def base64_to_bytes(base64_string):
162
+ # Remove the data URI prefix if present
163
+ if "data:image" in base64_string:
164
+ base64_string = base64_string.split(",")[1]
165
+
166
+ # Decode the Base64 string into bytes
167
+ image_bytes = base64.b64decode(base64_string)
168
+ return image_bytes
169
+
170
+ def bytes_to_base64(image_bytes):
171
+ # Create a BytesIO object to handle the image data
172
+ image_stream = BytesIO(image_bytes)
173
+
174
+ # Open the image using Pillow (PIL)
175
+ image = Image.open(image_stream)
176
+ return image
177
+
178
+ def query(payload):
179
+ response = requests.post(API_URL, headers=headers, json=payload)
180
+ return response.json()
181
+
182
+ output = query({
183
+ "inputs": "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg",
184
+ "parameters": {}
185
+ })
186
+
187
+ output_image = bytes_to_base64(base64_to_bytes(output))
188
+ output_image
189
+ ```
190
+
191
+
192
+ > This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
193
+
194
+ ## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_CAAI AIR 2024_).
195
+
196
+ This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).
197
+
198
+ Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)
199
+
200
+
201
+ #### Try our online demos for inference:
202
+
203
+ + Online **Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
204
+ + **Online Inference with GUI on Hugging Face** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
205
+ + **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
206
+ <img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" />
207
+
208
+ ## Acknowledgement:
209
+
210
+ + Many thanks to @Freepik for their generous support on GPU resources for training higher resolution BiRefNet models and more of my explorations.
211
+ + Many thanks to @fal for their generous support on GPU resources for training better general BiRefNet models.
212
+ + Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace.
213
+
214
+
215
+ ## Citation
216
+
217
+ ```
218
+ @article{zheng2024birefnet,
219
+ title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
220
+ author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
221
+ journal={CAAI Artificial Intelligence Research},
222
+ volume = {3},
223
+ pages = {9150038},
224
+ year={2024}
225
+ }
226
+ ```
birefnet.py ADDED
@@ -0,0 +1,2252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### config.py
2
+
3
+ import os
4
+ import math
5
+ from transformers import PretrainedConfig
6
+
7
+
8
+ class Config(PretrainedConfig):
9
+ def __init__(self) -> None:
10
+ # Compatible with the latest version of transformers
11
+ super().__init__()
12
+
13
+ # PATH settings
14
+ self.sys_home_dir = os.path.expanduser('~') # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
15
+
16
+ # TASK settings
17
+ self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
18
+ self.training_set = {
19
+ 'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
20
+ 'COD': 'TR-COD10K+TR-CAMO',
21
+ 'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
22
+ 'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
23
+ 'P3M-10k': 'TR-P3M-10k',
24
+ }[self.task]
25
+ self.prompt4loc = ['dense', 'sparse'][0]
26
+
27
+ # Faster-Training settings
28
+ self.load_all = True
29
+ self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
30
+ # Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
31
+ # 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
32
+ # 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
33
+ self.precisionHigh = True
34
+
35
+ # MODEL settings
36
+ self.ms_supervision = True
37
+ self.out_ref = self.ms_supervision and True
38
+ self.dec_ipt = True
39
+ self.dec_ipt_split = True
40
+ self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
41
+ self.mul_scl_ipt = ['', 'add', 'cat'][2]
42
+ self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
43
+ self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
44
+ self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
45
+
46
+ # TRAINING settings
47
+ self.batch_size = 4
48
+ self.IoU_finetune_last_epochs = [
49
+ 0,
50
+ {
51
+ 'DIS5K': -50,
52
+ 'COD': -20,
53
+ 'HRSOD': -20,
54
+ 'DIS5K+HRSOD+HRS10K': -20,
55
+ 'P3M-10k': -20,
56
+ }[self.task]
57
+ ][1] # choose 0 to skip
58
+ self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
59
+ self.size = 1024
60
+ self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
61
+
62
+ # Backbone settings
63
+ self.bb = [
64
+ 'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
65
+ 'swin_v1_t', 'swin_v1_s', # 3, 4
66
+ 'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
67
+ 'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
68
+ 'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
69
+ ][6]
70
+ self.lateral_channels_in_collection = {
71
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
72
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
73
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
74
+ 'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
75
+ 'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
76
+ }[self.bb]
77
+ if self.mul_scl_ipt == 'cat':
78
+ self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
79
+ self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
80
+
81
+ # MODEL settings - inactive
82
+ self.lat_blk = ['BasicLatBlk'][0]
83
+ self.dec_channels_inter = ['fixed', 'adap'][0]
84
+ self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
85
+ self.progressive_ref = self.refine and True
86
+ self.ender = self.progressive_ref and False
87
+ self.scale = self.progressive_ref and 2
88
+ self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
89
+ self.refine_iteration = 1
90
+ self.freeze_bb = False
91
+ self.model = [
92
+ 'BiRefNet',
93
+ ][0]
94
+ if self.dec_blk == 'HierarAttDecBlk':
95
+ self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
96
+
97
+ # TRAINING settings - inactive
98
+ self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
99
+ self.optimizer = ['Adam', 'AdamW'][1]
100
+ self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
101
+ self.lr_decay_rate = 0.5
102
+ # Loss
103
+ self.lambdas_pix_last = {
104
+ # not 0 means opening this loss
105
+ # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
106
+ 'bce': 30 * 1, # high performance
107
+ 'iou': 0.5 * 1, # 0 / 255
108
+ 'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
109
+ 'mse': 150 * 0, # can smooth the saliency map
110
+ 'triplet': 3 * 0,
111
+ 'reg': 100 * 0,
112
+ 'ssim': 10 * 1, # help contours,
113
+ 'cnt': 5 * 0, # help contours
114
+ 'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
115
+ }
116
+ self.lambdas_cls = {
117
+ 'ce': 5.0
118
+ }
119
+ # Adv
120
+ self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
121
+ self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
122
+
123
+ # PATH settings - inactive
124
+ self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
125
+ self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
126
+ self.weights = {
127
+ 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
128
+ 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
129
+ 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
130
+ 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
131
+ 'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
132
+ 'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
133
+ 'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
134
+ 'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
135
+ }
136
+
137
+ # Callbacks - inactive
138
+ self.verbose_eval = True
139
+ self.only_S_MAE = False
140
+ self.use_fp16 = False # Bugs. It may cause nan in training.
141
+ self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
142
+
143
+ # others
144
+ self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
145
+
146
+ self.batch_size_valid = 1
147
+ self.rand_seed = 7
148
+ # run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
149
+ # with open(run_sh_file[0], 'r') as f:
150
+ # lines = f.readlines()
151
+ # self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
152
+ # self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
153
+ # self.val_step = [0, self.save_step][0]
154
+
155
+ def print_task(self) -> None:
156
+ # Return task for choosing settings in shell scripts.
157
+ print(self.task)
158
+
159
+
160
+
161
+ ### models/backbones/pvt_v2.py
162
+
163
+ import torch
164
+ import torch.nn as nn
165
+ from functools import partial
166
+
167
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
168
+ from timm.models.registry import register_model
169
+
170
+ import math
171
+
172
+ # from config import Config
173
+
174
+ # config = Config()
175
+
176
+ class Mlp(nn.Module):
177
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
178
+ super().__init__()
179
+ out_features = out_features or in_features
180
+ hidden_features = hidden_features or in_features
181
+ self.fc1 = nn.Linear(in_features, hidden_features)
182
+ self.dwconv = DWConv(hidden_features)
183
+ self.act = act_layer()
184
+ self.fc2 = nn.Linear(hidden_features, out_features)
185
+ self.drop = nn.Dropout(drop)
186
+
187
+ self.apply(self._init_weights)
188
+
189
+ def _init_weights(self, m):
190
+ if isinstance(m, nn.Linear):
191
+ trunc_normal_(m.weight, std=.02)
192
+ if isinstance(m, nn.Linear) and m.bias is not None:
193
+ nn.init.constant_(m.bias, 0)
194
+ elif isinstance(m, nn.LayerNorm):
195
+ nn.init.constant_(m.bias, 0)
196
+ nn.init.constant_(m.weight, 1.0)
197
+ elif isinstance(m, nn.Conv2d):
198
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
199
+ fan_out //= m.groups
200
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
201
+ if m.bias is not None:
202
+ m.bias.data.zero_()
203
+
204
+ def forward(self, x, H, W):
205
+ x = self.fc1(x)
206
+ x = self.dwconv(x, H, W)
207
+ x = self.act(x)
208
+ x = self.drop(x)
209
+ x = self.fc2(x)
210
+ x = self.drop(x)
211
+ return x
212
+
213
+
214
+ class Attention(nn.Module):
215
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
216
+ super().__init__()
217
+ assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
218
+
219
+ self.dim = dim
220
+ self.num_heads = num_heads
221
+ head_dim = dim // num_heads
222
+ self.scale = qk_scale or head_dim ** -0.5
223
+
224
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
225
+ self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
226
+ self.attn_drop_prob = attn_drop
227
+ self.attn_drop = nn.Dropout(attn_drop)
228
+ self.proj = nn.Linear(dim, dim)
229
+ self.proj_drop = nn.Dropout(proj_drop)
230
+
231
+ self.sr_ratio = sr_ratio
232
+ if sr_ratio > 1:
233
+ self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
234
+ self.norm = nn.LayerNorm(dim)
235
+
236
+ self.apply(self._init_weights)
237
+
238
+ def _init_weights(self, m):
239
+ if isinstance(m, nn.Linear):
240
+ trunc_normal_(m.weight, std=.02)
241
+ if isinstance(m, nn.Linear) and m.bias is not None:
242
+ nn.init.constant_(m.bias, 0)
243
+ elif isinstance(m, nn.LayerNorm):
244
+ nn.init.constant_(m.bias, 0)
245
+ nn.init.constant_(m.weight, 1.0)
246
+ elif isinstance(m, nn.Conv2d):
247
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
248
+ fan_out //= m.groups
249
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
250
+ if m.bias is not None:
251
+ m.bias.data.zero_()
252
+
253
+ def forward(self, x, H, W):
254
+ B, N, C = x.shape
255
+ q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
256
+
257
+ if self.sr_ratio > 1:
258
+ x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
259
+ x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
260
+ x_ = self.norm(x_)
261
+ kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
262
+ else:
263
+ kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
264
+ k, v = kv[0], kv[1]
265
+
266
+ if config.SDPA_enabled:
267
+ x = torch.nn.functional.scaled_dot_product_attention(
268
+ q, k, v,
269
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
270
+ ).transpose(1, 2).reshape(B, N, C)
271
+ else:
272
+ attn = (q @ k.transpose(-2, -1)) * self.scale
273
+ attn = attn.softmax(dim=-1)
274
+ attn = self.attn_drop(attn)
275
+
276
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
277
+ x = self.proj(x)
278
+ x = self.proj_drop(x)
279
+
280
+ return x
281
+
282
+
283
+ class Block(nn.Module):
284
+
285
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
286
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
287
+ super().__init__()
288
+ self.norm1 = norm_layer(dim)
289
+ self.attn = Attention(
290
+ dim,
291
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
292
+ attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
293
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
294
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
295
+ self.norm2 = norm_layer(dim)
296
+ mlp_hidden_dim = int(dim * mlp_ratio)
297
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
298
+
299
+ self.apply(self._init_weights)
300
+
301
+ def _init_weights(self, m):
302
+ if isinstance(m, nn.Linear):
303
+ trunc_normal_(m.weight, std=.02)
304
+ if isinstance(m, nn.Linear) and m.bias is not None:
305
+ nn.init.constant_(m.bias, 0)
306
+ elif isinstance(m, nn.LayerNorm):
307
+ nn.init.constant_(m.bias, 0)
308
+ nn.init.constant_(m.weight, 1.0)
309
+ elif isinstance(m, nn.Conv2d):
310
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
311
+ fan_out //= m.groups
312
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
313
+ if m.bias is not None:
314
+ m.bias.data.zero_()
315
+
316
+ def forward(self, x, H, W):
317
+ x = x + self.drop_path(self.attn(self.norm1(x), H, W))
318
+ x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
319
+
320
+ return x
321
+
322
+
323
+ class OverlapPatchEmbed(nn.Module):
324
+ """ Image to Patch Embedding
325
+ """
326
+
327
+ def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
328
+ super().__init__()
329
+ img_size = to_2tuple(img_size)
330
+ patch_size = to_2tuple(patch_size)
331
+
332
+ self.img_size = img_size
333
+ self.patch_size = patch_size
334
+ self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
335
+ self.num_patches = self.H * self.W
336
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
337
+ padding=(patch_size[0] // 2, patch_size[1] // 2))
338
+ self.norm = nn.LayerNorm(embed_dim)
339
+
340
+ self.apply(self._init_weights)
341
+
342
+ def _init_weights(self, m):
343
+ if isinstance(m, nn.Linear):
344
+ trunc_normal_(m.weight, std=.02)
345
+ if isinstance(m, nn.Linear) and m.bias is not None:
346
+ nn.init.constant_(m.bias, 0)
347
+ elif isinstance(m, nn.LayerNorm):
348
+ nn.init.constant_(m.bias, 0)
349
+ nn.init.constant_(m.weight, 1.0)
350
+ elif isinstance(m, nn.Conv2d):
351
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
352
+ fan_out //= m.groups
353
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
354
+ if m.bias is not None:
355
+ m.bias.data.zero_()
356
+
357
+ def forward(self, x):
358
+ x = self.proj(x)
359
+ _, _, H, W = x.shape
360
+ x = x.flatten(2).transpose(1, 2)
361
+ x = self.norm(x)
362
+
363
+ return x, H, W
364
+
365
+
366
+ class PyramidVisionTransformerImpr(nn.Module):
367
+ def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
368
+ num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
369
+ attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
370
+ depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
371
+ super().__init__()
372
+ self.num_classes = num_classes
373
+ self.depths = depths
374
+
375
+ # patch_embed
376
+ self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
377
+ embed_dim=embed_dims[0])
378
+ self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
379
+ embed_dim=embed_dims[1])
380
+ self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
381
+ embed_dim=embed_dims[2])
382
+ self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
383
+ embed_dim=embed_dims[3])
384
+
385
+ # transformer encoder
386
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
387
+ cur = 0
388
+ self.block1 = nn.ModuleList([Block(
389
+ dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
390
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
391
+ sr_ratio=sr_ratios[0])
392
+ for i in range(depths[0])])
393
+ self.norm1 = norm_layer(embed_dims[0])
394
+
395
+ cur += depths[0]
396
+ self.block2 = nn.ModuleList([Block(
397
+ dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
398
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
399
+ sr_ratio=sr_ratios[1])
400
+ for i in range(depths[1])])
401
+ self.norm2 = norm_layer(embed_dims[1])
402
+
403
+ cur += depths[1]
404
+ self.block3 = nn.ModuleList([Block(
405
+ dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
406
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
407
+ sr_ratio=sr_ratios[2])
408
+ for i in range(depths[2])])
409
+ self.norm3 = norm_layer(embed_dims[2])
410
+
411
+ cur += depths[2]
412
+ self.block4 = nn.ModuleList([Block(
413
+ dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
414
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
415
+ sr_ratio=sr_ratios[3])
416
+ for i in range(depths[3])])
417
+ self.norm4 = norm_layer(embed_dims[3])
418
+
419
+ # classification head
420
+ # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
421
+
422
+ self.apply(self._init_weights)
423
+
424
+ def _init_weights(self, m):
425
+ if isinstance(m, nn.Linear):
426
+ trunc_normal_(m.weight, std=.02)
427
+ if isinstance(m, nn.Linear) and m.bias is not None:
428
+ nn.init.constant_(m.bias, 0)
429
+ elif isinstance(m, nn.LayerNorm):
430
+ nn.init.constant_(m.bias, 0)
431
+ nn.init.constant_(m.weight, 1.0)
432
+ elif isinstance(m, nn.Conv2d):
433
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
434
+ fan_out //= m.groups
435
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
436
+ if m.bias is not None:
437
+ m.bias.data.zero_()
438
+
439
+ def init_weights(self, pretrained=None):
440
+ if isinstance(pretrained, str):
441
+ logger = 1
442
+ #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
443
+
444
+ def reset_drop_path(self, drop_path_rate):
445
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
446
+ cur = 0
447
+ for i in range(self.depths[0]):
448
+ self.block1[i].drop_path.drop_prob = dpr[cur + i]
449
+
450
+ cur += self.depths[0]
451
+ for i in range(self.depths[1]):
452
+ self.block2[i].drop_path.drop_prob = dpr[cur + i]
453
+
454
+ cur += self.depths[1]
455
+ for i in range(self.depths[2]):
456
+ self.block3[i].drop_path.drop_prob = dpr[cur + i]
457
+
458
+ cur += self.depths[2]
459
+ for i in range(self.depths[3]):
460
+ self.block4[i].drop_path.drop_prob = dpr[cur + i]
461
+
462
+ def freeze_patch_emb(self):
463
+ self.patch_embed1.requires_grad = False
464
+
465
+ @torch.jit.ignore
466
+ def no_weight_decay(self):
467
+ return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
468
+
469
+ def get_classifier(self):
470
+ return self.head
471
+
472
+ def reset_classifier(self, num_classes, global_pool=''):
473
+ self.num_classes = num_classes
474
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
475
+
476
+ def forward_features(self, x):
477
+ B = x.shape[0]
478
+ outs = []
479
+
480
+ # stage 1
481
+ x, H, W = self.patch_embed1(x)
482
+ for i, blk in enumerate(self.block1):
483
+ x = blk(x, H, W)
484
+ x = self.norm1(x)
485
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
486
+ outs.append(x)
487
+
488
+ # stage 2
489
+ x, H, W = self.patch_embed2(x)
490
+ for i, blk in enumerate(self.block2):
491
+ x = blk(x, H, W)
492
+ x = self.norm2(x)
493
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
494
+ outs.append(x)
495
+
496
+ # stage 3
497
+ x, H, W = self.patch_embed3(x)
498
+ for i, blk in enumerate(self.block3):
499
+ x = blk(x, H, W)
500
+ x = self.norm3(x)
501
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
502
+ outs.append(x)
503
+
504
+ # stage 4
505
+ x, H, W = self.patch_embed4(x)
506
+ for i, blk in enumerate(self.block4):
507
+ x = blk(x, H, W)
508
+ x = self.norm4(x)
509
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
510
+ outs.append(x)
511
+
512
+ return outs
513
+
514
+ # return x.mean(dim=1)
515
+
516
+ def forward(self, x):
517
+ x = self.forward_features(x)
518
+ # x = self.head(x)
519
+
520
+ return x
521
+
522
+
523
+ class DWConv(nn.Module):
524
+ def __init__(self, dim=768):
525
+ super(DWConv, self).__init__()
526
+ self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
527
+
528
+ def forward(self, x, H, W):
529
+ B, N, C = x.shape
530
+ x = x.transpose(1, 2).view(B, C, H, W).contiguous()
531
+ x = self.dwconv(x)
532
+ x = x.flatten(2).transpose(1, 2)
533
+
534
+ return x
535
+
536
+
537
+ def _conv_filter(state_dict, patch_size=16):
538
+ """ convert patch embedding weight from manual patchify + linear proj to conv"""
539
+ out_dict = {}
540
+ for k, v in state_dict.items():
541
+ if 'patch_embed.proj.weight' in k:
542
+ v = v.reshape((v.shape[0], 3, patch_size, patch_size))
543
+ out_dict[k] = v
544
+
545
+ return out_dict
546
+
547
+
548
+ ## @register_model
549
+ class pvt_v2_b0(PyramidVisionTransformerImpr):
550
+ def __init__(self, **kwargs):
551
+ super(pvt_v2_b0, self).__init__(
552
+ patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
553
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
554
+ drop_rate=0.0, drop_path_rate=0.1)
555
+
556
+
557
+
558
+ ## @register_model
559
+ class pvt_v2_b1(PyramidVisionTransformerImpr):
560
+ def __init__(self, **kwargs):
561
+ super(pvt_v2_b1, self).__init__(
562
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
563
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
564
+ drop_rate=0.0, drop_path_rate=0.1)
565
+
566
+ ## @register_model
567
+ class pvt_v2_b2(PyramidVisionTransformerImpr):
568
+ def __init__(self, in_channels=3, **kwargs):
569
+ super(pvt_v2_b2, self).__init__(
570
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
571
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
572
+ drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
573
+
574
+ ## @register_model
575
+ class pvt_v2_b3(PyramidVisionTransformerImpr):
576
+ def __init__(self, **kwargs):
577
+ super(pvt_v2_b3, self).__init__(
578
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
579
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
580
+ drop_rate=0.0, drop_path_rate=0.1)
581
+
582
+ ## @register_model
583
+ class pvt_v2_b4(PyramidVisionTransformerImpr):
584
+ def __init__(self, **kwargs):
585
+ super(pvt_v2_b4, self).__init__(
586
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
587
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
588
+ drop_rate=0.0, drop_path_rate=0.1)
589
+
590
+
591
+ ## @register_model
592
+ class pvt_v2_b5(PyramidVisionTransformerImpr):
593
+ def __init__(self, **kwargs):
594
+ super(pvt_v2_b5, self).__init__(
595
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
596
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
597
+ drop_rate=0.0, drop_path_rate=0.1)
598
+
599
+
600
+
601
+ ### models/backbones/swin_v1.py
602
+
603
+ # --------------------------------------------------------
604
+ # Swin Transformer
605
+ # Copyright (c) 2021 Microsoft
606
+ # Licensed under The MIT License [see LICENSE for details]
607
+ # Written by Ze Liu, Yutong Lin, Yixuan Wei
608
+ # --------------------------------------------------------
609
+
610
+ import torch
611
+ import torch.nn as nn
612
+ import torch.nn.functional as F
613
+ import torch.utils.checkpoint as checkpoint
614
+ import numpy as np
615
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
616
+
617
+ # from config import Config
618
+
619
+
620
+ # config = Config()
621
+
622
+
623
+ class Mlp(nn.Module):
624
+ """ Multilayer perceptron."""
625
+
626
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
627
+ super().__init__()
628
+ out_features = out_features or in_features
629
+ hidden_features = hidden_features or in_features
630
+ self.fc1 = nn.Linear(in_features, hidden_features)
631
+ self.act = act_layer()
632
+ self.fc2 = nn.Linear(hidden_features, out_features)
633
+ self.drop = nn.Dropout(drop)
634
+
635
+ def forward(self, x):
636
+ x = self.fc1(x)
637
+ x = self.act(x)
638
+ x = self.drop(x)
639
+ x = self.fc2(x)
640
+ x = self.drop(x)
641
+ return x
642
+
643
+
644
+ def window_partition(x, window_size):
645
+ """
646
+ Args:
647
+ x: (B, H, W, C)
648
+ window_size (int): window size
649
+
650
+ Returns:
651
+ windows: (num_windows*B, window_size, window_size, C)
652
+ """
653
+ B, H, W, C = x.shape
654
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
655
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
656
+ return windows
657
+
658
+
659
+ def window_reverse(windows, window_size, H, W):
660
+ """
661
+ Args:
662
+ windows: (num_windows*B, window_size, window_size, C)
663
+ window_size (int): Window size
664
+ H (int): Height of image
665
+ W (int): Width of image
666
+
667
+ Returns:
668
+ x: (B, H, W, C)
669
+ """
670
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
671
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
672
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
673
+ return x
674
+
675
+
676
+ class WindowAttention(nn.Module):
677
+ """ Window based multi-head self attention (W-MSA) module with relative position bias.
678
+ It supports both of shifted and non-shifted window.
679
+
680
+ Args:
681
+ dim (int): Number of input channels.
682
+ window_size (tuple[int]): The height and width of the window.
683
+ num_heads (int): Number of attention heads.
684
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
685
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
686
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
687
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
688
+ """
689
+
690
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
691
+
692
+ super().__init__()
693
+ self.dim = dim
694
+ self.window_size = window_size # Wh, Ww
695
+ self.num_heads = num_heads
696
+ head_dim = dim // num_heads
697
+ self.scale = qk_scale or head_dim ** -0.5
698
+
699
+ # define a parameter table of relative position bias
700
+ self.relative_position_bias_table = nn.Parameter(
701
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
702
+
703
+ # get pair-wise relative position index for each token inside the window
704
+ coords_h = torch.arange(self.window_size[0])
705
+ coords_w = torch.arange(self.window_size[1])
706
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
707
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
708
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
709
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
710
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
711
+ relative_coords[:, :, 1] += self.window_size[1] - 1
712
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
713
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
714
+ self.register_buffer("relative_position_index", relative_position_index)
715
+
716
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
717
+ self.attn_drop_prob = attn_drop
718
+ self.attn_drop = nn.Dropout(attn_drop)
719
+ self.proj = nn.Linear(dim, dim)
720
+ self.proj_drop = nn.Dropout(proj_drop)
721
+
722
+ trunc_normal_(self.relative_position_bias_table, std=.02)
723
+ self.softmax = nn.Softmax(dim=-1)
724
+
725
+ def forward(self, x, mask=None):
726
+ """ Forward function.
727
+
728
+ Args:
729
+ x: input features with shape of (num_windows*B, N, C)
730
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
731
+ """
732
+ B_, N, C = x.shape
733
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
734
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
735
+
736
+ q = q * self.scale
737
+
738
+ if config.SDPA_enabled:
739
+ x = torch.nn.functional.scaled_dot_product_attention(
740
+ q, k, v,
741
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
742
+ ).transpose(1, 2).reshape(B_, N, C)
743
+ else:
744
+ attn = (q @ k.transpose(-2, -1))
745
+
746
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
747
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
748
+ ) # Wh*Ww, Wh*Ww, nH
749
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
750
+ attn = attn + relative_position_bias.unsqueeze(0)
751
+
752
+ if mask is not None:
753
+ nW = mask.shape[0]
754
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
755
+ attn = attn.view(-1, self.num_heads, N, N)
756
+ attn = self.softmax(attn)
757
+ else:
758
+ attn = self.softmax(attn)
759
+
760
+ attn = self.attn_drop(attn)
761
+
762
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
763
+ x = self.proj(x)
764
+ x = self.proj_drop(x)
765
+ return x
766
+
767
+
768
+ class SwinTransformerBlock(nn.Module):
769
+ """ Swin Transformer Block.
770
+
771
+ Args:
772
+ dim (int): Number of input channels.
773
+ num_heads (int): Number of attention heads.
774
+ window_size (int): Window size.
775
+ shift_size (int): Shift size for SW-MSA.
776
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
777
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
778
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
779
+ drop (float, optional): Dropout rate. Default: 0.0
780
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
781
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
782
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
783
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
784
+ """
785
+
786
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
787
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
788
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
789
+ super().__init__()
790
+ self.dim = dim
791
+ self.num_heads = num_heads
792
+ self.window_size = window_size
793
+ self.shift_size = shift_size
794
+ self.mlp_ratio = mlp_ratio
795
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
796
+
797
+ self.norm1 = norm_layer(dim)
798
+ self.attn = WindowAttention(
799
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
800
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
801
+
802
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
803
+ self.norm2 = norm_layer(dim)
804
+ mlp_hidden_dim = int(dim * mlp_ratio)
805
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
806
+
807
+ self.H = None
808
+ self.W = None
809
+
810
+ def forward(self, x, mask_matrix):
811
+ """ Forward function.
812
+
813
+ Args:
814
+ x: Input feature, tensor size (B, H*W, C).
815
+ H, W: Spatial resolution of the input feature.
816
+ mask_matrix: Attention mask for cyclic shift.
817
+ """
818
+ B, L, C = x.shape
819
+ H, W = self.H, self.W
820
+ assert L == H * W, "input feature has wrong size"
821
+
822
+ shortcut = x
823
+ x = self.norm1(x)
824
+ x = x.view(B, H, W, C)
825
+
826
+ # pad feature maps to multiples of window size
827
+ pad_l = pad_t = 0
828
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
829
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
830
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
831
+ _, Hp, Wp, _ = x.shape
832
+
833
+ # cyclic shift
834
+ if self.shift_size > 0:
835
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
836
+ attn_mask = mask_matrix
837
+ else:
838
+ shifted_x = x
839
+ attn_mask = None
840
+
841
+ # partition windows
842
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
843
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
844
+
845
+ # W-MSA/SW-MSA
846
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
847
+
848
+ # merge windows
849
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
850
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
851
+
852
+ # reverse cyclic shift
853
+ if self.shift_size > 0:
854
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
855
+ else:
856
+ x = shifted_x
857
+
858
+ if pad_r > 0 or pad_b > 0:
859
+ x = x[:, :H, :W, :].contiguous()
860
+
861
+ x = x.view(B, H * W, C)
862
+
863
+ # FFN
864
+ x = shortcut + self.drop_path(x)
865
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
866
+
867
+ return x
868
+
869
+
870
+ class PatchMerging(nn.Module):
871
+ """ Patch Merging Layer
872
+
873
+ Args:
874
+ dim (int): Number of input channels.
875
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
876
+ """
877
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
878
+ super().__init__()
879
+ self.dim = dim
880
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
881
+ self.norm = norm_layer(4 * dim)
882
+
883
+ def forward(self, x, H, W):
884
+ """ Forward function.
885
+
886
+ Args:
887
+ x: Input feature, tensor size (B, H*W, C).
888
+ H, W: Spatial resolution of the input feature.
889
+ """
890
+ B, L, C = x.shape
891
+ assert L == H * W, "input feature has wrong size"
892
+
893
+ x = x.view(B, H, W, C)
894
+
895
+ # padding
896
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
897
+ if pad_input:
898
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
899
+
900
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
901
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
902
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
903
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
904
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
905
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
906
+
907
+ x = self.norm(x)
908
+ x = self.reduction(x)
909
+
910
+ return x
911
+
912
+
913
+ class BasicLayer(nn.Module):
914
+ """ A basic Swin Transformer layer for one stage.
915
+
916
+ Args:
917
+ dim (int): Number of feature channels
918
+ depth (int): Depths of this stage.
919
+ num_heads (int): Number of attention head.
920
+ window_size (int): Local window size. Default: 7.
921
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
922
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
923
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
924
+ drop (float, optional): Dropout rate. Default: 0.0
925
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
926
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
927
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
928
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
929
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
930
+ """
931
+
932
+ def __init__(self,
933
+ dim,
934
+ depth,
935
+ num_heads,
936
+ window_size=7,
937
+ mlp_ratio=4.,
938
+ qkv_bias=True,
939
+ qk_scale=None,
940
+ drop=0.,
941
+ attn_drop=0.,
942
+ drop_path=0.,
943
+ norm_layer=nn.LayerNorm,
944
+ downsample=None,
945
+ use_checkpoint=False):
946
+ super().__init__()
947
+ self.window_size = window_size
948
+ self.shift_size = window_size // 2
949
+ self.depth = depth
950
+ self.use_checkpoint = use_checkpoint
951
+
952
+ # build blocks
953
+ self.blocks = nn.ModuleList([
954
+ SwinTransformerBlock(
955
+ dim=dim,
956
+ num_heads=num_heads,
957
+ window_size=window_size,
958
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
959
+ mlp_ratio=mlp_ratio,
960
+ qkv_bias=qkv_bias,
961
+ qk_scale=qk_scale,
962
+ drop=drop,
963
+ attn_drop=attn_drop,
964
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
965
+ norm_layer=norm_layer)
966
+ for i in range(depth)])
967
+
968
+ # patch merging layer
969
+ if downsample is not None:
970
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
971
+ else:
972
+ self.downsample = None
973
+
974
+ def forward(self, x, H, W):
975
+ """ Forward function.
976
+
977
+ Args:
978
+ x: Input feature, tensor size (B, H*W, C).
979
+ H, W: Spatial resolution of the input feature.
980
+ """
981
+
982
+ # calculate attention mask for SW-MSA
983
+ # Turn int to torch.tensor for the compatiability with torch.compile in PyTorch 2.5.
984
+ Hp = torch.ceil(torch.tensor(H) / self.window_size).to(torch.int64) * self.window_size
985
+ Wp = torch.ceil(torch.tensor(W) / self.window_size).to(torch.int64) * self.window_size
986
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
987
+ h_slices = (slice(0, -self.window_size),
988
+ slice(-self.window_size, -self.shift_size),
989
+ slice(-self.shift_size, None))
990
+ w_slices = (slice(0, -self.window_size),
991
+ slice(-self.window_size, -self.shift_size),
992
+ slice(-self.shift_size, None))
993
+ cnt = 0
994
+ for h in h_slices:
995
+ for w in w_slices:
996
+ img_mask[:, h, w, :] = cnt
997
+ cnt += 1
998
+
999
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1000
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1001
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1002
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)).to(x.dtype)
1003
+
1004
+ for blk in self.blocks:
1005
+ blk.H, blk.W = H, W
1006
+ if self.use_checkpoint:
1007
+ x = checkpoint.checkpoint(blk, x, attn_mask)
1008
+ else:
1009
+ x = blk(x, attn_mask)
1010
+ if self.downsample is not None:
1011
+ x_down = self.downsample(x, H, W)
1012
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
1013
+ return x, H, W, x_down, Wh, Ww
1014
+ else:
1015
+ return x, H, W, x, H, W
1016
+
1017
+
1018
+ class PatchEmbed(nn.Module):
1019
+ """ Image to Patch Embedding
1020
+
1021
+ Args:
1022
+ patch_size (int): Patch token size. Default: 4.
1023
+ in_channels (int): Number of input image channels. Default: 3.
1024
+ embed_dim (int): Number of linear projection output channels. Default: 96.
1025
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
1026
+ """
1027
+
1028
+ def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
1029
+ super().__init__()
1030
+ patch_size = to_2tuple(patch_size)
1031
+ self.patch_size = patch_size
1032
+
1033
+ self.in_channels = in_channels
1034
+ self.embed_dim = embed_dim
1035
+
1036
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
1037
+ if norm_layer is not None:
1038
+ self.norm = norm_layer(embed_dim)
1039
+ else:
1040
+ self.norm = None
1041
+
1042
+ def forward(self, x):
1043
+ """Forward function."""
1044
+ # padding
1045
+ _, _, H, W = x.size()
1046
+ if W % self.patch_size[1] != 0:
1047
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
1048
+ if H % self.patch_size[0] != 0:
1049
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
1050
+
1051
+ x = self.proj(x) # B C Wh Ww
1052
+ if self.norm is not None:
1053
+ Wh, Ww = x.size(2), x.size(3)
1054
+ x = x.flatten(2).transpose(1, 2)
1055
+ x = self.norm(x)
1056
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
1057
+
1058
+ return x
1059
+
1060
+
1061
+ class SwinTransformer(nn.Module):
1062
+ """ Swin Transformer backbone.
1063
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
1064
+ https://arxiv.org/pdf/2103.14030
1065
+
1066
+ Args:
1067
+ pretrain_img_size (int): Input image size for training the pretrained model,
1068
+ used in absolute postion embedding. Default 224.
1069
+ patch_size (int | tuple(int)): Patch size. Default: 4.
1070
+ in_channels (int): Number of input image channels. Default: 3.
1071
+ embed_dim (int): Number of linear projection output channels. Default: 96.
1072
+ depths (tuple[int]): Depths of each Swin Transformer stage.
1073
+ num_heads (tuple[int]): Number of attention head of each stage.
1074
+ window_size (int): Window size. Default: 7.
1075
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
1076
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
1077
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
1078
+ drop_rate (float): Dropout rate.
1079
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
1080
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
1081
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
1082
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
1083
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
1084
+ out_indices (Sequence[int]): Output from which stages.
1085
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
1086
+ -1 means not freezing any parameters.
1087
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
1088
+ """
1089
+
1090
+ def __init__(self,
1091
+ pretrain_img_size=224,
1092
+ patch_size=4,
1093
+ in_channels=3,
1094
+ embed_dim=96,
1095
+ depths=[2, 2, 6, 2],
1096
+ num_heads=[3, 6, 12, 24],
1097
+ window_size=7,
1098
+ mlp_ratio=4.,
1099
+ qkv_bias=True,
1100
+ qk_scale=None,
1101
+ drop_rate=0.,
1102
+ attn_drop_rate=0.,
1103
+ drop_path_rate=0.2,
1104
+ norm_layer=nn.LayerNorm,
1105
+ ape=False,
1106
+ patch_norm=True,
1107
+ out_indices=(0, 1, 2, 3),
1108
+ frozen_stages=-1,
1109
+ use_checkpoint=False):
1110
+ super().__init__()
1111
+
1112
+ self.pretrain_img_size = pretrain_img_size
1113
+ self.num_layers = len(depths)
1114
+ self.embed_dim = embed_dim
1115
+ self.ape = ape
1116
+ self.patch_norm = patch_norm
1117
+ self.out_indices = out_indices
1118
+ self.frozen_stages = frozen_stages
1119
+
1120
+ # split image into non-overlapping patches
1121
+ self.patch_embed = PatchEmbed(
1122
+ patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
1123
+ norm_layer=norm_layer if self.patch_norm else None)
1124
+
1125
+ # absolute position embedding
1126
+ if self.ape:
1127
+ pretrain_img_size = to_2tuple(pretrain_img_size)
1128
+ patch_size = to_2tuple(patch_size)
1129
+ patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
1130
+
1131
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
1132
+ trunc_normal_(self.absolute_pos_embed, std=.02)
1133
+
1134
+ self.pos_drop = nn.Dropout(p=drop_rate)
1135
+
1136
+ # stochastic depth
1137
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
1138
+
1139
+ # build layers
1140
+ self.layers = nn.ModuleList()
1141
+ for i_layer in range(self.num_layers):
1142
+ layer = BasicLayer(
1143
+ dim=int(embed_dim * 2 ** i_layer),
1144
+ depth=depths[i_layer],
1145
+ num_heads=num_heads[i_layer],
1146
+ window_size=window_size,
1147
+ mlp_ratio=mlp_ratio,
1148
+ qkv_bias=qkv_bias,
1149
+ qk_scale=qk_scale,
1150
+ drop=drop_rate,
1151
+ attn_drop=attn_drop_rate,
1152
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
1153
+ norm_layer=norm_layer,
1154
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
1155
+ use_checkpoint=use_checkpoint)
1156
+ self.layers.append(layer)
1157
+
1158
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
1159
+ self.num_features = num_features
1160
+
1161
+ # add a norm layer for each output
1162
+ for i_layer in out_indices:
1163
+ layer = norm_layer(num_features[i_layer])
1164
+ layer_name = f'norm{i_layer}'
1165
+ self.add_module(layer_name, layer)
1166
+
1167
+ self._freeze_stages()
1168
+
1169
+ def _freeze_stages(self):
1170
+ if self.frozen_stages >= 0:
1171
+ self.patch_embed.eval()
1172
+ for param in self.patch_embed.parameters():
1173
+ param.requires_grad = False
1174
+
1175
+ if self.frozen_stages >= 1 and self.ape:
1176
+ self.absolute_pos_embed.requires_grad = False
1177
+
1178
+ if self.frozen_stages >= 2:
1179
+ self.pos_drop.eval()
1180
+ for i in range(0, self.frozen_stages - 1):
1181
+ m = self.layers[i]
1182
+ m.eval()
1183
+ for param in m.parameters():
1184
+ param.requires_grad = False
1185
+
1186
+
1187
+ def forward(self, x):
1188
+ """Forward function."""
1189
+ x = self.patch_embed(x)
1190
+
1191
+ Wh, Ww = x.size(2), x.size(3)
1192
+ if self.ape:
1193
+ # interpolate the position embedding to the corresponding size
1194
+ absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
1195
+ x = (x + absolute_pos_embed) # B Wh*Ww C
1196
+
1197
+ outs = []#x.contiguous()]
1198
+ x = x.flatten(2).transpose(1, 2)
1199
+ x = self.pos_drop(x)
1200
+ for i in range(self.num_layers):
1201
+ layer = self.layers[i]
1202
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
1203
+
1204
+ if i in self.out_indices:
1205
+ norm_layer = getattr(self, f'norm{i}')
1206
+ x_out = norm_layer(x_out)
1207
+
1208
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
1209
+ outs.append(out)
1210
+
1211
+ return tuple(outs)
1212
+
1213
+ def train(self, mode=True):
1214
+ """Convert the model into training mode while keep layers freezed."""
1215
+ super(SwinTransformer, self).train(mode)
1216
+ self._freeze_stages()
1217
+
1218
+ def swin_v1_t():
1219
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
1220
+ return model
1221
+
1222
+ def swin_v1_s():
1223
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
1224
+ return model
1225
+
1226
+ def swin_v1_b():
1227
+ model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
1228
+ return model
1229
+
1230
+ def swin_v1_l():
1231
+ model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
1232
+ return model
1233
+
1234
+
1235
+
1236
+ ### models/modules/deform_conv.py
1237
+
1238
+ import torch
1239
+ import torch.nn as nn
1240
+ from torchvision.ops import deform_conv2d
1241
+
1242
+
1243
+ class DeformableConv2d(nn.Module):
1244
+ def __init__(self,
1245
+ in_channels,
1246
+ out_channels,
1247
+ kernel_size=3,
1248
+ stride=1,
1249
+ padding=1,
1250
+ bias=False):
1251
+
1252
+ super(DeformableConv2d, self).__init__()
1253
+
1254
+ assert type(kernel_size) == tuple or type(kernel_size) == int
1255
+
1256
+ kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
1257
+ self.stride = stride if type(stride) == tuple else (stride, stride)
1258
+ self.padding = padding
1259
+
1260
+ self.offset_conv = nn.Conv2d(in_channels,
1261
+ 2 * kernel_size[0] * kernel_size[1],
1262
+ kernel_size=kernel_size,
1263
+ stride=stride,
1264
+ padding=self.padding,
1265
+ bias=True)
1266
+
1267
+ nn.init.constant_(self.offset_conv.weight, 0.)
1268
+ nn.init.constant_(self.offset_conv.bias, 0.)
1269
+
1270
+ self.modulator_conv = nn.Conv2d(in_channels,
1271
+ 1 * kernel_size[0] * kernel_size[1],
1272
+ kernel_size=kernel_size,
1273
+ stride=stride,
1274
+ padding=self.padding,
1275
+ bias=True)
1276
+
1277
+ nn.init.constant_(self.modulator_conv.weight, 0.)
1278
+ nn.init.constant_(self.modulator_conv.bias, 0.)
1279
+
1280
+ self.regular_conv = nn.Conv2d(in_channels,
1281
+ out_channels=out_channels,
1282
+ kernel_size=kernel_size,
1283
+ stride=stride,
1284
+ padding=self.padding,
1285
+ bias=bias)
1286
+
1287
+ def forward(self, x):
1288
+ #h, w = x.shape[2:]
1289
+ #max_offset = max(h, w)/4.
1290
+
1291
+ offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
1292
+ modulator = 2. * torch.sigmoid(self.modulator_conv(x))
1293
+
1294
+ x = deform_conv2d(
1295
+ input=x,
1296
+ offset=offset,
1297
+ weight=self.regular_conv.weight,
1298
+ bias=self.regular_conv.bias,
1299
+ padding=self.padding,
1300
+ mask=modulator,
1301
+ stride=self.stride,
1302
+ )
1303
+ return x
1304
+
1305
+
1306
+
1307
+
1308
+ ### utils.py
1309
+
1310
+ import torch.nn as nn
1311
+
1312
+
1313
+ def build_act_layer(act_layer):
1314
+ if act_layer == 'ReLU':
1315
+ return nn.ReLU(inplace=True)
1316
+ elif act_layer == 'SiLU':
1317
+ return nn.SiLU(inplace=True)
1318
+ elif act_layer == 'GELU':
1319
+ return nn.GELU()
1320
+
1321
+ raise NotImplementedError(f'build_act_layer does not support {act_layer}')
1322
+
1323
+
1324
+ def build_norm_layer(dim,
1325
+ norm_layer,
1326
+ in_format='channels_last',
1327
+ out_format='channels_last',
1328
+ eps=1e-6):
1329
+ layers = []
1330
+ if norm_layer == 'BN':
1331
+ if in_format == 'channels_last':
1332
+ layers.append(to_channels_first())
1333
+ layers.append(nn.BatchNorm2d(dim))
1334
+ if out_format == 'channels_last':
1335
+ layers.append(to_channels_last())
1336
+ elif norm_layer == 'LN':
1337
+ if in_format == 'channels_first':
1338
+ layers.append(to_channels_last())
1339
+ layers.append(nn.LayerNorm(dim, eps=eps))
1340
+ if out_format == 'channels_first':
1341
+ layers.append(to_channels_first())
1342
+ else:
1343
+ raise NotImplementedError(
1344
+ f'build_norm_layer does not support {norm_layer}')
1345
+ return nn.Sequential(*layers)
1346
+
1347
+
1348
+ class to_channels_first(nn.Module):
1349
+
1350
+ def __init__(self):
1351
+ super().__init__()
1352
+
1353
+ def forward(self, x):
1354
+ return x.permute(0, 3, 1, 2)
1355
+
1356
+
1357
+ class to_channels_last(nn.Module):
1358
+
1359
+ def __init__(self):
1360
+ super().__init__()
1361
+
1362
+ def forward(self, x):
1363
+ return x.permute(0, 2, 3, 1)
1364
+
1365
+
1366
+
1367
+ ### dataset.py
1368
+
1369
+ _class_labels_TR_sorted = (
1370
+ 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
1371
+ 'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
1372
+ 'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
1373
+ 'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
1374
+ 'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
1375
+ 'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
1376
+ 'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
1377
+ 'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
1378
+ 'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
1379
+ 'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
1380
+ 'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
1381
+ 'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
1382
+ 'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
1383
+ 'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
1384
+ )
1385
+ class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
1386
+
1387
+
1388
+ ### models/backbones/build_backbones.py
1389
+
1390
+ import torch
1391
+ import torch.nn as nn
1392
+ from collections import OrderedDict
1393
+ from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
1394
+ # from models.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
1395
+ # from models.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
1396
+ # from config import Config
1397
+
1398
+
1399
+ config = Config()
1400
+
1401
+ def build_backbone(bb_name, pretrained=True, params_settings=''):
1402
+ if bb_name == 'vgg16':
1403
+ bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
1404
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
1405
+ elif bb_name == 'vgg16bn':
1406
+ bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
1407
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
1408
+ elif bb_name == 'resnet50':
1409
+ bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
1410
+ bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
1411
+ else:
1412
+ bb = eval('{}({})'.format(bb_name, params_settings))
1413
+ if pretrained:
1414
+ bb = load_weights(bb, bb_name)
1415
+ return bb
1416
+
1417
+ def load_weights(model, model_name):
1418
+ save_model = torch.load(config.weights[model_name], map_location='cpu')
1419
+ model_dict = model.state_dict()
1420
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
1421
+ # to ignore the weights with mismatched size when I modify the backbone itself.
1422
+ if not state_dict:
1423
+ save_model_keys = list(save_model.keys())
1424
+ sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
1425
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
1426
+ if not state_dict or not sub_item:
1427
+ print('Weights are not successully loaded. Check the state dict of weights file.')
1428
+ return None
1429
+ else:
1430
+ print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
1431
+ model_dict.update(state_dict)
1432
+ model.load_state_dict(model_dict)
1433
+ return model
1434
+
1435
+
1436
+
1437
+ ### models/modules/decoder_blocks.py
1438
+
1439
+ import torch
1440
+ import torch.nn as nn
1441
+ # from models.aspp import ASPP, ASPPDeformable
1442
+ # from config import Config
1443
+
1444
+
1445
+ # config = Config()
1446
+
1447
+
1448
+ class BasicDecBlk(nn.Module):
1449
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
1450
+ super(BasicDecBlk, self).__init__()
1451
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1452
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
1453
+ self.relu_in = nn.ReLU(inplace=True)
1454
+ if config.dec_att == 'ASPP':
1455
+ self.dec_att = ASPP(in_channels=inter_channels)
1456
+ elif config.dec_att == 'ASPPDeformable':
1457
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
1458
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
1459
+ self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
1460
+ self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1461
+
1462
+ def forward(self, x):
1463
+ x = self.conv_in(x)
1464
+ x = self.bn_in(x)
1465
+ x = self.relu_in(x)
1466
+ if hasattr(self, 'dec_att'):
1467
+ x = self.dec_att(x)
1468
+ x = self.conv_out(x)
1469
+ x = self.bn_out(x)
1470
+ return x
1471
+
1472
+
1473
+ class ResBlk(nn.Module):
1474
+ def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
1475
+ super(ResBlk, self).__init__()
1476
+ if out_channels is None:
1477
+ out_channels = in_channels
1478
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1479
+
1480
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
1481
+ self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
1482
+ self.relu_in = nn.ReLU(inplace=True)
1483
+
1484
+ if config.dec_att == 'ASPP':
1485
+ self.dec_att = ASPP(in_channels=inter_channels)
1486
+ elif config.dec_att == 'ASPPDeformable':
1487
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
1488
+
1489
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
1490
+ self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1491
+
1492
+ self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
1493
+
1494
+ def forward(self, x):
1495
+ _x = self.conv_resi(x)
1496
+ x = self.conv_in(x)
1497
+ x = self.bn_in(x)
1498
+ x = self.relu_in(x)
1499
+ if hasattr(self, 'dec_att'):
1500
+ x = self.dec_att(x)
1501
+ x = self.conv_out(x)
1502
+ x = self.bn_out(x)
1503
+ return x + _x
1504
+
1505
+
1506
+
1507
+ ### models/modules/lateral_blocks.py
1508
+
1509
+ import numpy as np
1510
+ import torch
1511
+ import torch.nn as nn
1512
+ import torch.nn.functional as F
1513
+ from functools import partial
1514
+
1515
+ # from config import Config
1516
+
1517
+
1518
+ # config = Config()
1519
+
1520
+
1521
+ class BasicLatBlk(nn.Module):
1522
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
1523
+ super(BasicLatBlk, self).__init__()
1524
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1525
+ self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
1526
+
1527
+ def forward(self, x):
1528
+ x = self.conv(x)
1529
+ return x
1530
+
1531
+
1532
+
1533
+ ### models/modules/aspp.py
1534
+
1535
+ import torch
1536
+ import torch.nn as nn
1537
+ import torch.nn.functional as F
1538
+ # from models.deform_conv import DeformableConv2d
1539
+ # from config import Config
1540
+
1541
+
1542
+ # config = Config()
1543
+
1544
+
1545
+ class _ASPPModule(nn.Module):
1546
+ def __init__(self, in_channels, planes, kernel_size, padding, dilation):
1547
+ super(_ASPPModule, self).__init__()
1548
+ self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
1549
+ stride=1, padding=padding, dilation=dilation, bias=False)
1550
+ self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
1551
+ self.relu = nn.ReLU(inplace=True)
1552
+
1553
+ def forward(self, x):
1554
+ x = self.atrous_conv(x)
1555
+ x = self.bn(x)
1556
+
1557
+ return self.relu(x)
1558
+
1559
+
1560
+ class ASPP(nn.Module):
1561
+ def __init__(self, in_channels=64, out_channels=None, output_stride=16):
1562
+ super(ASPP, self).__init__()
1563
+ self.down_scale = 1
1564
+ if out_channels is None:
1565
+ out_channels = in_channels
1566
+ self.in_channelster = 256 // self.down_scale
1567
+ if output_stride == 16:
1568
+ dilations = [1, 6, 12, 18]
1569
+ elif output_stride == 8:
1570
+ dilations = [1, 12, 24, 36]
1571
+ else:
1572
+ raise NotImplementedError
1573
+
1574
+ self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
1575
+ self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
1576
+ self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
1577
+ self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
1578
+
1579
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
1580
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
1581
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
1582
+ nn.ReLU(inplace=True))
1583
+ self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
1584
+ self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1585
+ self.relu = nn.ReLU(inplace=True)
1586
+ self.dropout = nn.Dropout(0.5)
1587
+
1588
+ def forward(self, x):
1589
+ x1 = self.aspp1(x)
1590
+ x2 = self.aspp2(x)
1591
+ x3 = self.aspp3(x)
1592
+ x4 = self.aspp4(x)
1593
+ x5 = self.global_avg_pool(x)
1594
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
1595
+ x = torch.cat((x1, x2, x3, x4, x5), dim=1)
1596
+
1597
+ x = self.conv1(x)
1598
+ x = self.bn1(x)
1599
+ x = self.relu(x)
1600
+
1601
+ return self.dropout(x)
1602
+
1603
+
1604
+ ##################### Deformable
1605
+ class _ASPPModuleDeformable(nn.Module):
1606
+ def __init__(self, in_channels, planes, kernel_size, padding):
1607
+ super(_ASPPModuleDeformable, self).__init__()
1608
+ self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
1609
+ stride=1, padding=padding, bias=False)
1610
+ self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
1611
+ self.relu = nn.ReLU(inplace=True)
1612
+
1613
+ def forward(self, x):
1614
+ x = self.atrous_conv(x)
1615
+ x = self.bn(x)
1616
+
1617
+ return self.relu(x)
1618
+
1619
+
1620
+ class ASPPDeformable(nn.Module):
1621
+ def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
1622
+ super(ASPPDeformable, self).__init__()
1623
+ self.down_scale = 1
1624
+ if out_channels is None:
1625
+ out_channels = in_channels
1626
+ self.in_channelster = 256 // self.down_scale
1627
+
1628
+ self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
1629
+ self.aspp_deforms = nn.ModuleList([
1630
+ _ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
1631
+ ])
1632
+
1633
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
1634
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
1635
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
1636
+ nn.ReLU(inplace=True))
1637
+ self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
1638
+ self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1639
+ self.relu = nn.ReLU(inplace=True)
1640
+ self.dropout = nn.Dropout(0.5)
1641
+
1642
+ def forward(self, x):
1643
+ x1 = self.aspp1(x)
1644
+ x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
1645
+ x5 = self.global_avg_pool(x)
1646
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
1647
+ x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
1648
+
1649
+ x = self.conv1(x)
1650
+ x = self.bn1(x)
1651
+ x = self.relu(x)
1652
+
1653
+ return self.dropout(x)
1654
+
1655
+
1656
+
1657
+ ### models/refinement/refiner.py
1658
+
1659
+ import torch
1660
+ import torch.nn as nn
1661
+ from collections import OrderedDict
1662
+ import torch
1663
+ import torch.nn as nn
1664
+ import torch.nn.functional as F
1665
+ from torchvision.models import vgg16, vgg16_bn
1666
+ from torchvision.models import resnet50
1667
+
1668
+ # from config import Config
1669
+ # from dataset import class_labels_TR_sorted
1670
+ # from models.build_backbone import build_backbone
1671
+ # from models.decoder_blocks import BasicDecBlk
1672
+ # from models.lateral_blocks import BasicLatBlk
1673
+ # from models.ing import *
1674
+ # from models.stem_layer import StemLayer
1675
+
1676
+
1677
+ class RefinerPVTInChannels4(nn.Module):
1678
+ def __init__(self, in_channels=3+1):
1679
+ super(RefinerPVTInChannels4, self).__init__()
1680
+ self.config = Config()
1681
+ self.epoch = 1
1682
+ self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
1683
+
1684
+ lateral_channels_in_collection = {
1685
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
1686
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
1687
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
1688
+ }
1689
+ channels = lateral_channels_in_collection[self.config.bb]
1690
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
1691
+
1692
+ self.decoder = Decoder(channels)
1693
+
1694
+ if 0:
1695
+ for key, value in self.named_parameters():
1696
+ if 'bb.' in key:
1697
+ value.requires_grad = False
1698
+
1699
+ def forward(self, x):
1700
+ if isinstance(x, list):
1701
+ x = torch.cat(x, dim=1)
1702
+ ########## Encoder ##########
1703
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
1704
+ x1 = self.bb.conv1(x)
1705
+ x2 = self.bb.conv2(x1)
1706
+ x3 = self.bb.conv3(x2)
1707
+ x4 = self.bb.conv4(x3)
1708
+ else:
1709
+ x1, x2, x3, x4 = self.bb(x)
1710
+
1711
+ x4 = self.squeeze_module(x4)
1712
+
1713
+ ########## Decoder ##########
1714
+
1715
+ features = [x, x1, x2, x3, x4]
1716
+ scaled_preds = self.decoder(features)
1717
+
1718
+ return scaled_preds
1719
+
1720
+
1721
+ class Refiner(nn.Module):
1722
+ def __init__(self, in_channels=3+1):
1723
+ super(Refiner, self).__init__()
1724
+ self.config = Config()
1725
+ self.epoch = 1
1726
+ self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
1727
+ self.bb = build_backbone(self.config.bb)
1728
+
1729
+ lateral_channels_in_collection = {
1730
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
1731
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
1732
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
1733
+ }
1734
+ channels = lateral_channels_in_collection[self.config.bb]
1735
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
1736
+
1737
+ self.decoder = Decoder(channels)
1738
+
1739
+ if 0:
1740
+ for key, value in self.named_parameters():
1741
+ if 'bb.' in key:
1742
+ value.requires_grad = False
1743
+
1744
+ def forward(self, x):
1745
+ if isinstance(x, list):
1746
+ x = torch.cat(x, dim=1)
1747
+ x = self.stem_layer(x)
1748
+ ########## Encoder ##########
1749
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
1750
+ x1 = self.bb.conv1(x)
1751
+ x2 = self.bb.conv2(x1)
1752
+ x3 = self.bb.conv3(x2)
1753
+ x4 = self.bb.conv4(x3)
1754
+ else:
1755
+ x1, x2, x3, x4 = self.bb(x)
1756
+
1757
+ x4 = self.squeeze_module(x4)
1758
+
1759
+ ########## Decoder ##########
1760
+
1761
+ features = [x, x1, x2, x3, x4]
1762
+ scaled_preds = self.decoder(features)
1763
+
1764
+ return scaled_preds
1765
+
1766
+
1767
+ class Decoder(nn.Module):
1768
+ def __init__(self, channels):
1769
+ super(Decoder, self).__init__()
1770
+ self.config = Config()
1771
+ DecoderBlock = eval('BasicDecBlk')
1772
+ LateralBlock = eval('BasicLatBlk')
1773
+
1774
+ self.decoder_block4 = DecoderBlock(channels[0], channels[1])
1775
+ self.decoder_block3 = DecoderBlock(channels[1], channels[2])
1776
+ self.decoder_block2 = DecoderBlock(channels[2], channels[3])
1777
+ self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
1778
+
1779
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
1780
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
1781
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
1782
+
1783
+ if self.config.ms_supervision:
1784
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
1785
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
1786
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
1787
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
1788
+
1789
+ def forward(self, features):
1790
+ x, x1, x2, x3, x4 = features
1791
+ outs = []
1792
+ p4 = self.decoder_block4(x4)
1793
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
1794
+ _p3 = _p4 + self.lateral_block4(x3)
1795
+
1796
+ p3 = self.decoder_block3(_p3)
1797
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
1798
+ _p2 = _p3 + self.lateral_block3(x2)
1799
+
1800
+ p2 = self.decoder_block2(_p2)
1801
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
1802
+ _p1 = _p2 + self.lateral_block2(x1)
1803
+
1804
+ _p1 = self.decoder_block1(_p1)
1805
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
1806
+ p1_out = self.conv_out1(_p1)
1807
+
1808
+ if self.config.ms_supervision:
1809
+ outs.append(self.conv_ms_spvn_4(p4))
1810
+ outs.append(self.conv_ms_spvn_3(p3))
1811
+ outs.append(self.conv_ms_spvn_2(p2))
1812
+ outs.append(p1_out)
1813
+ return outs
1814
+
1815
+
1816
+ class RefUNet(nn.Module):
1817
+ # Refinement
1818
+ def __init__(self, in_channels=3+1):
1819
+ super(RefUNet, self).__init__()
1820
+ self.encoder_1 = nn.Sequential(
1821
+ nn.Conv2d(in_channels, 64, 3, 1, 1),
1822
+ nn.Conv2d(64, 64, 3, 1, 1),
1823
+ nn.BatchNorm2d(64),
1824
+ nn.ReLU(inplace=True)
1825
+ )
1826
+
1827
+ self.encoder_2 = nn.Sequential(
1828
+ nn.MaxPool2d(2, 2, ceil_mode=True),
1829
+ nn.Conv2d(64, 64, 3, 1, 1),
1830
+ nn.BatchNorm2d(64),
1831
+ nn.ReLU(inplace=True)
1832
+ )
1833
+
1834
+ self.encoder_3 = nn.Sequential(
1835
+ nn.MaxPool2d(2, 2, ceil_mode=True),
1836
+ nn.Conv2d(64, 64, 3, 1, 1),
1837
+ nn.BatchNorm2d(64),
1838
+ nn.ReLU(inplace=True)
1839
+ )
1840
+
1841
+ self.encoder_4 = nn.Sequential(
1842
+ nn.MaxPool2d(2, 2, ceil_mode=True),
1843
+ nn.Conv2d(64, 64, 3, 1, 1),
1844
+ nn.BatchNorm2d(64),
1845
+ nn.ReLU(inplace=True)
1846
+ )
1847
+
1848
+ self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
1849
+ #####
1850
+ self.decoder_5 = nn.Sequential(
1851
+ nn.Conv2d(64, 64, 3, 1, 1),
1852
+ nn.BatchNorm2d(64),
1853
+ nn.ReLU(inplace=True)
1854
+ )
1855
+ #####
1856
+ self.decoder_4 = nn.Sequential(
1857
+ nn.Conv2d(128, 64, 3, 1, 1),
1858
+ nn.BatchNorm2d(64),
1859
+ nn.ReLU(inplace=True)
1860
+ )
1861
+
1862
+ self.decoder_3 = nn.Sequential(
1863
+ nn.Conv2d(128, 64, 3, 1, 1),
1864
+ nn.BatchNorm2d(64),
1865
+ nn.ReLU(inplace=True)
1866
+ )
1867
+
1868
+ self.decoder_2 = nn.Sequential(
1869
+ nn.Conv2d(128, 64, 3, 1, 1),
1870
+ nn.BatchNorm2d(64),
1871
+ nn.ReLU(inplace=True)
1872
+ )
1873
+
1874
+ self.decoder_1 = nn.Sequential(
1875
+ nn.Conv2d(128, 64, 3, 1, 1),
1876
+ nn.BatchNorm2d(64),
1877
+ nn.ReLU(inplace=True)
1878
+ )
1879
+
1880
+ self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
1881
+
1882
+ self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
1883
+
1884
+ def forward(self, x):
1885
+ outs = []
1886
+ if isinstance(x, list):
1887
+ x = torch.cat(x, dim=1)
1888
+ hx = x
1889
+
1890
+ hx1 = self.encoder_1(hx)
1891
+ hx2 = self.encoder_2(hx1)
1892
+ hx3 = self.encoder_3(hx2)
1893
+ hx4 = self.encoder_4(hx3)
1894
+
1895
+ hx = self.decoder_5(self.pool4(hx4))
1896
+ hx = torch.cat((self.upscore2(hx), hx4), 1)
1897
+
1898
+ d4 = self.decoder_4(hx)
1899
+ hx = torch.cat((self.upscore2(d4), hx3), 1)
1900
+
1901
+ d3 = self.decoder_3(hx)
1902
+ hx = torch.cat((self.upscore2(d3), hx2), 1)
1903
+
1904
+ d2 = self.decoder_2(hx)
1905
+ hx = torch.cat((self.upscore2(d2), hx1), 1)
1906
+
1907
+ d1 = self.decoder_1(hx)
1908
+
1909
+ x = self.conv_d0(d1)
1910
+ outs.append(x)
1911
+ return outs
1912
+
1913
+
1914
+
1915
+ ### models/stem_layer.py
1916
+
1917
+ import torch.nn as nn
1918
+ # from utils import build_act_layer, build_norm_layer
1919
+
1920
+
1921
+ class StemLayer(nn.Module):
1922
+ r""" Stem layer of InternImage
1923
+ Args:
1924
+ in_channels (int): number of input channels
1925
+ out_channels (int): number of output channels
1926
+ act_layer (str): activation layer
1927
+ norm_layer (str): normalization layer
1928
+ """
1929
+
1930
+ def __init__(self,
1931
+ in_channels=3+1,
1932
+ inter_channels=48,
1933
+ out_channels=96,
1934
+ act_layer='GELU',
1935
+ norm_layer='BN'):
1936
+ super().__init__()
1937
+ self.conv1 = nn.Conv2d(in_channels,
1938
+ inter_channels,
1939
+ kernel_size=3,
1940
+ stride=1,
1941
+ padding=1)
1942
+ self.norm1 = build_norm_layer(
1943
+ inter_channels, norm_layer, 'channels_first', 'channels_first'
1944
+ )
1945
+ self.act = build_act_layer(act_layer)
1946
+ self.conv2 = nn.Conv2d(inter_channels,
1947
+ out_channels,
1948
+ kernel_size=3,
1949
+ stride=1,
1950
+ padding=1)
1951
+ self.norm2 = build_norm_layer(
1952
+ out_channels, norm_layer, 'channels_first', 'channels_first'
1953
+ )
1954
+
1955
+ def forward(self, x):
1956
+ x = self.conv1(x)
1957
+ x = self.norm1(x)
1958
+ x = self.act(x)
1959
+ x = self.conv2(x)
1960
+ x = self.norm2(x)
1961
+ return x
1962
+
1963
+
1964
+ ### models/birefnet.py
1965
+
1966
+ import torch
1967
+ import torch.nn as nn
1968
+ import torch.nn.functional as F
1969
+ from kornia.filters import laplacian
1970
+ from transformers import PreTrainedModel
1971
+ from einops import rearrange
1972
+
1973
+ # from config import Config
1974
+ # from dataset import class_labels_TR_sorted
1975
+ # from models.build_backbone import build_backbone
1976
+ # from models.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
1977
+ # from models.lateral_blocks import BasicLatBlk
1978
+ # from models.aspp import ASPP, ASPPDeformable
1979
+ # from models.ing import *
1980
+ # from models.refiner import Refiner, RefinerPVTInChannels4, RefUNet
1981
+ # from models.stem_layer import StemLayer
1982
+ from .BiRefNet_config import BiRefNetConfig
1983
+
1984
+
1985
+ def image2patches(image, grid_h=2, grid_w=2, patch_ref=None, transformation='b c (hg h) (wg w) -> (b hg wg) c h w'):
1986
+ if patch_ref is not None:
1987
+ grid_h, grid_w = image.shape[-2] // patch_ref.shape[-2], image.shape[-1] // patch_ref.shape[-1]
1988
+ patches = rearrange(image, transformation, hg=grid_h, wg=grid_w)
1989
+ return patches
1990
+
1991
+ def patches2image(patches, grid_h=2, grid_w=2, patch_ref=None, transformation='(b hg wg) c h w -> b c (hg h) (wg w)'):
1992
+ if patch_ref is not None:
1993
+ grid_h, grid_w = patch_ref.shape[-2] // patches[0].shape[-2], patch_ref.shape[-1] // patches[0].shape[-1]
1994
+ image = rearrange(patches, transformation, hg=grid_h, wg=grid_w)
1995
+ return image
1996
+
1997
+ class BiRefNet(
1998
+ PreTrainedModel
1999
+ ):
2000
+ config_class = BiRefNetConfig
2001
+ def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
2002
+ super(BiRefNet, self).__init__(config)
2003
+ bb_pretrained = config.bb_pretrained
2004
+ self.config = Config()
2005
+ self.epoch = 1
2006
+ self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
2007
+
2008
+ channels = self.config.lateral_channels_in_collection
2009
+
2010
+ if self.config.auxiliary_classification:
2011
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
2012
+ self.cls_head = nn.Sequential(
2013
+ nn.Linear(channels[0], len(class_labels_TR_sorted))
2014
+ )
2015
+
2016
+ if self.config.squeeze_block:
2017
+ self.squeeze_module = nn.Sequential(*[
2018
+ eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
2019
+ for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
2020
+ ])
2021
+
2022
+ self.decoder = Decoder(channels)
2023
+
2024
+ if self.config.ender:
2025
+ self.dec_end = nn.Sequential(
2026
+ nn.Conv2d(1, 16, 3, 1, 1),
2027
+ nn.Conv2d(16, 1, 3, 1, 1),
2028
+ nn.ReLU(inplace=True),
2029
+ )
2030
+
2031
+ # refine patch-level segmentation
2032
+ if self.config.refine:
2033
+ if self.config.refine == 'itself':
2034
+ self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
2035
+ else:
2036
+ self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
2037
+
2038
+ if self.config.freeze_bb:
2039
+ # Freeze the backbone...
2040
+ print(self.named_parameters())
2041
+ for key, value in self.named_parameters():
2042
+ if 'bb.' in key and 'refiner.' not in key:
2043
+ value.requires_grad = False
2044
+
2045
+ def forward_enc(self, x):
2046
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
2047
+ x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
2048
+ else:
2049
+ x1, x2, x3, x4 = self.bb(x)
2050
+ if self.config.mul_scl_ipt == 'cat':
2051
+ B, C, H, W = x.shape
2052
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
2053
+ x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2054
+ x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2055
+ x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2056
+ x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2057
+ elif self.config.mul_scl_ipt == 'add':
2058
+ B, C, H, W = x.shape
2059
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
2060
+ x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
2061
+ x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
2062
+ x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
2063
+ x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
2064
+ class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
2065
+ if self.config.cxt:
2066
+ x4 = torch.cat(
2067
+ (
2068
+ *[
2069
+ F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
2070
+ F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
2071
+ F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
2072
+ ][-len(self.config.cxt):],
2073
+ x4
2074
+ ),
2075
+ dim=1
2076
+ )
2077
+ return (x1, x2, x3, x4), class_preds
2078
+
2079
+ def forward_ori(self, x):
2080
+ ########## Encoder ##########
2081
+ (x1, x2, x3, x4), class_preds = self.forward_enc(x)
2082
+ if self.config.squeeze_block:
2083
+ x4 = self.squeeze_module(x4)
2084
+ ########## Decoder ##########
2085
+ features = [x, x1, x2, x3, x4]
2086
+ if self.training and self.config.out_ref:
2087
+ features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
2088
+ scaled_preds = self.decoder(features)
2089
+ return scaled_preds, class_preds
2090
+
2091
+ def forward(self, x):
2092
+ scaled_preds, class_preds = self.forward_ori(x)
2093
+ class_preds_lst = [class_preds]
2094
+ return [scaled_preds, class_preds_lst] if self.training else scaled_preds
2095
+
2096
+
2097
+ class Decoder(nn.Module):
2098
+ def __init__(self, channels):
2099
+ super(Decoder, self).__init__()
2100
+ self.config = Config()
2101
+ DecoderBlock = eval(self.config.dec_blk)
2102
+ LateralBlock = eval(self.config.lat_blk)
2103
+
2104
+ if self.config.dec_ipt:
2105
+ self.split = self.config.dec_ipt_split
2106
+ N_dec_ipt = 64
2107
+ DBlock = SimpleConvs
2108
+ ic = 64
2109
+ ipt_cha_opt = 1
2110
+ self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
2111
+ self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
2112
+ self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
2113
+ self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
2114
+ self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
2115
+ else:
2116
+ self.split = None
2117
+
2118
+ self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
2119
+ self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
2120
+ self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
2121
+ self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
2122
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
2123
+
2124
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
2125
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
2126
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
2127
+
2128
+ if self.config.ms_supervision:
2129
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
2130
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
2131
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
2132
+
2133
+ if self.config.out_ref:
2134
+ _N = 16
2135
+ self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2136
+ self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2137
+ self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2138
+
2139
+ self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2140
+ self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2141
+ self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2142
+
2143
+ self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2144
+ self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2145
+ self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2146
+
2147
+ def forward(self, features):
2148
+ if self.training and self.config.out_ref:
2149
+ outs_gdt_pred = []
2150
+ outs_gdt_label = []
2151
+ x, x1, x2, x3, x4, gdt_gt = features
2152
+ else:
2153
+ x, x1, x2, x3, x4 = features
2154
+ outs = []
2155
+
2156
+ if self.config.dec_ipt:
2157
+ patches_batch = image2patches(x, patch_ref=x4, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2158
+ x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
2159
+ p4 = self.decoder_block4(x4)
2160
+ m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision and self.training else None
2161
+ if self.config.out_ref:
2162
+ p4_gdt = self.gdt_convs_4(p4)
2163
+ if self.training:
2164
+ # >> GT:
2165
+ m4_dia = m4
2166
+ gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2167
+ outs_gdt_label.append(gdt_label_main_4)
2168
+ # >> Pred:
2169
+ gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
2170
+ outs_gdt_pred.append(gdt_pred_4)
2171
+ gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
2172
+ # >> Finally:
2173
+ p4 = p4 * gdt_attn_4
2174
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
2175
+ _p3 = _p4 + self.lateral_block4(x3)
2176
+
2177
+ if self.config.dec_ipt:
2178
+ patches_batch = image2patches(x, patch_ref=_p3, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2179
+ _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
2180
+ p3 = self.decoder_block3(_p3)
2181
+ m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision and self.training else None
2182
+ if self.config.out_ref:
2183
+ p3_gdt = self.gdt_convs_3(p3)
2184
+ if self.training:
2185
+ # >> GT:
2186
+ # m3 --dilation--> m3_dia
2187
+ # G_3^gt * m3_dia --> G_3^m, which is the label of gradient
2188
+ m3_dia = m3
2189
+ gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2190
+ outs_gdt_label.append(gdt_label_main_3)
2191
+ # >> Pred:
2192
+ # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
2193
+ # F_3^G --sigmoid--> A_3^G
2194
+ gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
2195
+ outs_gdt_pred.append(gdt_pred_3)
2196
+ gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
2197
+ # >> Finally:
2198
+ # p3 = p3 * A_3^G
2199
+ p3 = p3 * gdt_attn_3
2200
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
2201
+ _p2 = _p3 + self.lateral_block3(x2)
2202
+
2203
+ if self.config.dec_ipt:
2204
+ patches_batch = image2patches(x, patch_ref=_p2, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2205
+ _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
2206
+ p2 = self.decoder_block2(_p2)
2207
+ m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision and self.training else None
2208
+ if self.config.out_ref:
2209
+ p2_gdt = self.gdt_convs_2(p2)
2210
+ if self.training:
2211
+ # >> GT:
2212
+ m2_dia = m2
2213
+ gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2214
+ outs_gdt_label.append(gdt_label_main_2)
2215
+ # >> Pred:
2216
+ gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
2217
+ outs_gdt_pred.append(gdt_pred_2)
2218
+ gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
2219
+ # >> Finally:
2220
+ p2 = p2 * gdt_attn_2
2221
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
2222
+ _p1 = _p2 + self.lateral_block2(x1)
2223
+
2224
+ if self.config.dec_ipt:
2225
+ patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2226
+ _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
2227
+ _p1 = self.decoder_block1(_p1)
2228
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
2229
+
2230
+ if self.config.dec_ipt:
2231
+ patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2232
+ _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
2233
+ p1_out = self.conv_out1(_p1)
2234
+
2235
+ if self.config.ms_supervision and self.training:
2236
+ outs.append(m4)
2237
+ outs.append(m3)
2238
+ outs.append(m2)
2239
+ outs.append(p1_out)
2240
+ return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
2241
+
2242
+
2243
+ class SimpleConvs(nn.Module):
2244
+ def __init__(
2245
+ self, in_channels: int, out_channels: int, inter_channels=64
2246
+ ) -> None:
2247
+ super().__init__()
2248
+ self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
2249
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
2250
+
2251
+ def forward(self, x):
2252
+ return self.conv_out(self.conv1(x))
config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ZhengPeng7/BiRefNet",
3
+ "architectures": [
4
+ "BiRefNet"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "BiRefNet_config.BiRefNetConfig",
8
+ "AutoModelForImageSegmentation": "birefnet.BiRefNet"
9
+ },
10
+ "custom_pipelines": {
11
+ "image-segmentation": {
12
+ "pt": [
13
+ "AutoModelForImageSegmentation"
14
+ ],
15
+ "tf": [],
16
+ "type": "image"
17
+ }
18
+ },
19
+ "bb_pretrained": false
20
+ }
handler.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fixed handler for BiRefNet endpoint — now supports base64 + URLs + file paths
2
+
3
+ from typing import Dict, Any, Tuple
4
+ import os
5
+ import io
6
+ import base64
7
+ import requests
8
+ import cv2
9
+ import numpy as np
10
+ from PIL import Image
11
+ import torch
12
+ from torchvision import transforms
13
+ from transformers import AutoModelForImageSegmentation
14
+
15
+ torch.set_float32_matmul_precision(["high", "highest"][0])
16
+ device = "cuda" if torch.cuda.is_available() else "cpu"
17
+
18
+ # ======================================================
19
+ # Utility Functions
20
+ # ======================================================
21
+ def refine_foreground(image, mask, r=90):
22
+ if mask.size != image.size:
23
+ mask = mask.resize(image.size)
24
+ image = np.array(image) / 255.0
25
+ mask = np.array(mask) / 255.0
26
+ estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
27
+ image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
28
+ return image_masked
29
+
30
+
31
+ def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
32
+ alpha = alpha[:, :, None]
33
+ F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
34
+ return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
35
+
36
+
37
+ def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
38
+ if isinstance(image, Image.Image):
39
+ image = np.array(image) / 255.0
40
+ blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
41
+ blurred_FA = cv2.blur(F * alpha, (r, r))
42
+ blurred_F = blurred_FA / (blurred_alpha + 1e-5)
43
+ blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
44
+ blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
45
+ F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
46
+ F = np.clip(F, 0, 1)
47
+ return F, blurred_B
48
+
49
+
50
+ # ======================================================
51
+ # Preprocessing
52
+ # ======================================================
53
+ class ImagePreprocessor():
54
+ def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
55
+ self.transform_image = transforms.Compose([
56
+ transforms.Resize(resolution),
57
+ transforms.ToTensor(),
58
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
59
+ ])
60
+
61
+ def proc(self, image: Image.Image) -> torch.Tensor:
62
+ return self.transform_image(image)
63
+
64
+
65
+ # ======================================================
66
+ # Model and Endpoint
67
+ # ======================================================
68
+ usage_to_weights_file = {
69
+ 'General': 'BiRefNet',
70
+ 'General-HR': 'BiRefNet_HR',
71
+ 'General-Lite': 'BiRefNet_lite',
72
+ 'General-Lite-2K': 'BiRefNet_lite-2K',
73
+ 'General-reso_512': 'BiRefNet-reso_512',
74
+ 'Matting': 'BiRefNet-matting',
75
+ 'Matting-HR': 'BiRefNet_HR-Matting',
76
+ 'Portrait': 'BiRefNet-portrait',
77
+ 'DIS': 'BiRefNet-DIS5K',
78
+ 'HRSOD': 'BiRefNet-HRSOD',
79
+ 'COD': 'BiRefNet-COD',
80
+ 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
81
+ 'General-legacy': 'BiRefNet-legacy'
82
+ }
83
+
84
+ usage = 'General'
85
+ if usage in ['General-Lite-2K']:
86
+ resolution = (2560, 1440)
87
+ elif usage in ['General-reso_512']:
88
+ resolution = (512, 512)
89
+ elif usage in ['General-HR', 'Matting-HR']:
90
+ resolution = (2048, 2048)
91
+ else:
92
+ resolution = (1024, 1024)
93
+
94
+ half_precision = True
95
+
96
+
97
+ class EndpointHandler():
98
+ def __init__(self, path=''):
99
+ self.birefnet = AutoModelForImageSegmentation.from_pretrained(
100
+ '/'.join(('zhengpeng7', usage_to_weights_file[usage])),
101
+ trust_remote_code=True
102
+ )
103
+ self.birefnet.to(device)
104
+ self.birefnet.eval()
105
+ if half_precision:
106
+ self.birefnet.half()
107
+ print("✅ BiRefNet model loaded successfully.")
108
+
109
+ def __call__(self, data: Dict[str, Any]):
110
+ """
111
+ Accepts either:
112
+ - URL (http:// or https://)
113
+ - Base64 (raw or data:image/...;base64,...)
114
+ - File path
115
+ """
116
+ image_src = data.get("inputs")
117
+ if image_src is None:
118
+ raise ValueError("Missing 'inputs' key in request payload")
119
+
120
+ # ✅ Handle base64 or data URI
121
+ if isinstance(image_src, str):
122
+ if image_src.startswith("data:image"):
123
+ header, b64data = image_src.split(",", 1)
124
+ image_ori = Image.open(io.BytesIO(base64.b64decode(b64data)))
125
+ elif image_src[:4] in ("/9j/", "iVBOR", "R0lG", "UklG"):
126
+ image_ori = Image.open(io.BytesIO(base64.b64decode(image_src)))
127
+ elif image_src.startswith("http"):
128
+ response = requests.get(image_src)
129
+ image_ori = Image.open(io.BytesIO(response.content))
130
+ elif os.path.isfile(image_src):
131
+ image_ori = Image.open(image_src)
132
+ else:
133
+ raise ValueError("Unsupported input string format.")
134
+ else:
135
+ # Assume it's an array-like
136
+ image_ori = Image.fromarray(image_src)
137
+
138
+ image = image_ori.convert('RGB')
139
+
140
+ # Preprocess
141
+ image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
142
+ image_proc = image_preprocessor.proc(image)
143
+ image_proc = image_proc.unsqueeze(0)
144
+
145
+ # Predict
146
+ with torch.no_grad():
147
+ preds = self.birefnet(
148
+ image_proc.to(device).half() if half_precision else image_proc.to(device)
149
+ )[-1].sigmoid().cpu()
150
+
151
+ pred = preds[0].squeeze()
152
+ pred_pil = transforms.ToPILImage()(pred)
153
+
154
+ image_masked = refine_foreground(image, pred_pil)
155
+ image_masked.putalpha(pred_pil.resize(image.size))
156
+
157
+ # Return as base64 for easy JSON transport
158
+ buffer = io.BytesIO()
159
+ image_masked.save(buffer, format="PNG")
160
+ encoded_result = base64.b64encode(buffer.getvalue()).decode("utf-8")
161
+ return {"image_base64": encoded_result}
162
+
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ab37426bf4de0567af6b5d21b16151357149139362e6e8992021b8ce356a154
3
+ size 444473596
requirements.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==2.5.1
2
+ torchvision
3
+ numpy<2
4
+ opencv-python
5
+ timm
6
+ scipy
7
+ scikit-image
8
+ kornia
9
+ einops
10
+
11
+ tqdm
12
+ prettytable
13
+
14
+ transformers
15
+ huggingface-hub>0.25
16
+ accelerate