Upload train_qwen3_vl.py with huggingface_hub
Browse files- train_qwen3_vl.py +79 -0
train_qwen3_vl.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# dependencies = [
|
| 3 |
+
# "trl>=0.12.0",
|
| 4 |
+
# "peft>=0.7.0",
|
| 5 |
+
# "trackio",
|
| 6 |
+
# "transformers>=4.45.0",
|
| 7 |
+
# "torch",
|
| 8 |
+
# "datasets",
|
| 9 |
+
# "pillow",
|
| 10 |
+
# "qwen-vl-utils"
|
| 11 |
+
# ]
|
| 12 |
+
# ///
|
| 13 |
+
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
from peft import LoraConfig
|
| 16 |
+
from trl import SFTTrainer, SFTConfig
|
| 17 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
| 18 |
+
import trackio
|
| 19 |
+
import torch
|
| 20 |
+
|
| 21 |
+
# Load 1% of the train split
|
| 22 |
+
print("Loading dataset...")
|
| 23 |
+
dataset = load_dataset("trl-lib/llava-instruct-mix", split="train[:1%]")
|
| 24 |
+
|
| 25 |
+
print(f"Dataset size: {len(dataset)} examples")
|
| 26 |
+
|
| 27 |
+
# Create a small eval split (10% of the 1%)
|
| 28 |
+
dataset_split = dataset.train_test_split(test_size=0.1, seed=42)
|
| 29 |
+
train_dataset = dataset_split["train"]
|
| 30 |
+
eval_dataset = dataset_split["test"]
|
| 31 |
+
|
| 32 |
+
print(f"Train: {len(train_dataset)}, Eval: {len(eval_dataset)}")
|
| 33 |
+
|
| 34 |
+
# Configure trainer with VL-specific settings
|
| 35 |
+
trainer = SFTTrainer(
|
| 36 |
+
model="Qwen/Qwen3-VL-3B-Instruct",
|
| 37 |
+
train_dataset=train_dataset,
|
| 38 |
+
eval_dataset=eval_dataset,
|
| 39 |
+
peft_config=LoraConfig(
|
| 40 |
+
r=16,
|
| 41 |
+
lora_alpha=32,
|
| 42 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
| 43 |
+
lora_dropout=0.05,
|
| 44 |
+
bias="none",
|
| 45 |
+
task_type="CAUSAL_LM"
|
| 46 |
+
),
|
| 47 |
+
args=SFTConfig(
|
| 48 |
+
output_dir="qwen3-vl-3b-llava-instruct",
|
| 49 |
+
push_to_hub=True,
|
| 50 |
+
hub_model_id="merve/qwen3-vl-3b-llava-instruct",
|
| 51 |
+
num_train_epochs=3,
|
| 52 |
+
per_device_train_batch_size=1,
|
| 53 |
+
gradient_accumulation_steps=8,
|
| 54 |
+
gradient_checkpointing=True,
|
| 55 |
+
learning_rate=2e-4,
|
| 56 |
+
warmup_steps=100,
|
| 57 |
+
logging_steps=10,
|
| 58 |
+
eval_strategy="steps",
|
| 59 |
+
eval_steps=50,
|
| 60 |
+
save_strategy="steps",
|
| 61 |
+
save_steps=100,
|
| 62 |
+
save_total_limit=2,
|
| 63 |
+
bf16=True,
|
| 64 |
+
report_to="trackio",
|
| 65 |
+
project="qwen3-vl-finetuning",
|
| 66 |
+
run_name="qwen3-vl-3b-llava-1pct",
|
| 67 |
+
max_length=None, # Important for VL models - don't truncate image tokens
|
| 68 |
+
hub_strategy="every_save",
|
| 69 |
+
remove_unused_columns=False, # Keep all columns for VL processing
|
| 70 |
+
)
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
print("Starting training...")
|
| 74 |
+
trainer.train()
|
| 75 |
+
|
| 76 |
+
print("Pushing final model to Hub...")
|
| 77 |
+
trainer.push_to_hub()
|
| 78 |
+
|
| 79 |
+
print("Training complete!")
|