File size: 1,619 Bytes
e88926a 3d8799e e88926a 3d8799e 0484f24 3d8799e 3bf694f 3d8799e 66f5a7b 3d8799e 950e91f 3d8799e 0484f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
tags:
- ONNX
- ONNX Runtime
- code
- nlp
- multimodal
license: mit
language: en
pipeline_tag: image-text-to-text
base_model:
- microsoft/Fara-7B
---
# Fara-7B ONNX models
## Introduction
This repository hosts the optimized versions of the Fara-7B models to accelerate inference with ONNX Runtime.
Optimized models are published here in ONNX format to run with ONNX Runtime on NPU.
Here are some of the optimized configurations we have added:
1. ONNX model for int4 NPU: ONNX model for Qualcomm NPU using int4 quantization.
## Model Run
You can see how to run this model with ORT GenAI [here](https://github.com/microsoft/onnxruntime-genai/blob/main/examples/python/model-vision.py).
For NPU:
```bash
# Download the model directly using the Hugging Face CLI
hf download microsoft/Fara-7B-onnx --include npu/qnn-int4/* --local-dir .
# Install ONNX Runtime GenAI
pip install --pre onnxruntime-genai
# Please adjust the model directory (-m) accordingly
curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/model-vision.py -o model-vision.py
python model-vision.py -m npu/qnn-int4 --max_length 4096 --use-winml
```
## Model Description
- Developed by: Microsoft
- Model type: ONNX
- License: MIT
- Model Description: This is a conversion of the Fara-7B model for ONNX Runtime inference.
**Disclaimer:** Model is only an optimization of the base model. Any risk associated with the model is the responsibility of the user of the model. Please verify and test for your scenarios. There may be a slight difference in output from the base model with the optimizations applied. |