MTRAG Fine-tuned LLaMA 3.2 3B

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the MTRAG (Multi-Turn RAG) benchmark dataset.

Model Description

Fine-tuned for multi-turn conversational QA with RAG capabilities, supporting:

  • Multi-turn conversation understanding
  • Answerable/unanswerable question detection (NO_ANSWER output)
  • Context-aware response generation
  • 4 domains: ClapNQ (Wikipedia), Cloud (Technical Docs), FiQA (Finance), Govt (Government)

Training Data

MTRAG benchmark: 673 training examples (merged train+validation) from multi-turn conversational QA tasks across 4 domains

Training Details

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "YOUR_REPO_ID_HERE"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

# Example: Multi-turn QA
prompt = """<|system|>
You are a helpful retrieval-augmented assistant. Use only the provided contexts to answer. If the question cannot be answered, output exactly NO_ANSWER.
<|end_of_text|>
<|user|>
<ctx>
[Your context here]
</ctx>

Question: What is the capital of France?
Answer:<|end_of_text|>
<|assistant|>
"""

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
    **inputs,
    max_new_tokens=512,
    temperature=0.7,
    do_sample=True,
    top_p=0.9
)
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(response)

Citation

If you use this model, please cite the MTRAG paper:

@misc{katsis2025mtrag,
      title={MTRAG: A Multi-Turn Conversational Benchmark for Evaluating Retrieval-Augmented Generation Systems}, 
      author={Yannis Katsis and Sara Rosenthal and Kshitij Fadnis and Chulaka Gunasekara and Young-Suk Lee and Lucian Popa and Vraj Shah and Huaiyu Zhu and Danish Contractor and Marina Danilevsky},
      year={2025},
      eprint={2501.03468},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.03468}, 
}

Repository

Training code and dataset: https://github.com/clulab/semeval2026-task8

Downloads last month
7
Safetensors
Model size
3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for YMinglai/llama-3.2-3b-mtrag-sft

Finetuned
(887)
this model

Paper for YMinglai/llama-3.2-3b-mtrag-sft