new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 24

L3Cube-HingCorpus and HingBERT: A Code Mixed Hindi-English Dataset and BERT Language Models

Code-switching occurs when more than one language is mixed in a given sentence or a conversation. This phenomenon is more prominent on social media platforms and its adoption is increasing over time. Therefore code-mixed NLP has been extensively studied in the literature. As pre-trained transformer-based architectures are gaining popularity, we observe that real code-mixing data are scarce to pre-train large language models. We present L3Cube-HingCorpus, the first large-scale real Hindi-English code mixed data in a Roman script. It consists of 52.93M sentences and 1.04B tokens, scraped from Twitter. We further present HingBERT, HingMBERT, HingRoBERTa, and HingGPT. The BERT models have been pre-trained on codemixed HingCorpus using masked language modelling objectives. We show the effectiveness of these BERT models on the subsequent downstream tasks like code-mixed sentiment analysis, POS tagging, NER, and LID from the GLUECoS benchmark. The HingGPT is a GPT2 based generative transformer model capable of generating full tweets. We also release L3Cube-HingLID Corpus, the largest code-mixed Hindi-English language identification(LID) dataset and HingBERT-LID, a production-quality LID model to facilitate capturing of more code-mixed data using the process outlined in this work. The dataset and models are available at https://github.com/l3cube-pune/code-mixed-nlp .

  • 2 authors
·
Apr 18, 2022

Open-vocabulary Semantic Segmentation with Frozen Vision-Language Models

When trained at a sufficient scale, self-supervised learning has exhibited a notable ability to solve a wide range of visual or language understanding tasks. In this paper, we investigate simple, yet effective approaches for adapting the pre-trained foundation models to the downstream task of interest, namely, open-vocabulary semantic segmentation. To this end, we make the following contributions: (i) we introduce Fusioner, with a lightweight, transformer-based fusion module, that pairs the frozen visual representation with language concept through a handful of image segmentation data. As a consequence, the model gains the capability of zero-shot transfer to segment novel categories; (ii) without loss of generality, we experiment on a broad range of self-supervised models that have been pre-trained with different schemes, e.g. visual-only models (MoCo v3, DINO), language-only models (BERT), visual-language model (CLIP), and show that, the proposed fusion approach is effective to any pair of visual and language models, even those pre-trained on a corpus of uni-modal data; (iii) we conduct thorough ablation studies to analyze the critical components in our proposed Fusioner, while evaluating on standard benchmarks, e.g. PASCAL-5i and COCO-20i , it surpasses existing state-of-the-art models by a large margin, despite only being trained on frozen visual and language features; (iv) to measure the model's robustness on learning visual-language correspondence, we further evaluate on synthetic dataset, named Mosaic-4, where images are constructed by mosaicking the samples from FSS-1000. Fusioner demonstrates superior performance over previous models.

  • 5 authors
·
Oct 26, 2022

GottBERT: a pure German Language Model

Lately, pre-trained language models advanced the field of natural language processing (NLP). The introduction of Bidirectional Encoders for Transformers (BERT) and its optimized version RoBERTa have had significant impact and increased the relevance of pre-trained models. First, research in this field mainly started on English data followed by models trained with multilingual text corpora. However, current research shows that multilingual models are inferior to monolingual models. Currently, no German single language RoBERTa model is yet published, which we introduce in this work (GottBERT). The German portion of the OSCAR data set was used as text corpus. In an evaluation we compare its performance on the two Named Entity Recognition (NER) tasks Conll 2003 and GermEval 2014 as well as on the text classification tasks GermEval 2018 (fine and coarse) and GNAD with existing German single language BERT models and two multilingual ones. GottBERT was pre-trained related to the original RoBERTa model using fairseq. All downstream tasks were trained using hyperparameter presets taken from the benchmark of German BERT. The experiments were setup utilizing FARM. Performance was measured by the F_{1} score. GottBERT was successfully pre-trained on a 256 core TPU pod using the RoBERTa BASE architecture. Even without extensive hyper-parameter optimization, in all NER and one text classification task, GottBERT already outperformed all other tested German and multilingual models. In order to support the German NLP field, we publish GottBERT under the AGPLv3 license.

  • 5 authors
·
Dec 3, 2020

KoMultiText: Large-Scale Korean Text Dataset for Classifying Biased Speech in Real-World Online Services

With the growth of online services, the need for advanced text classification algorithms, such as sentiment analysis and biased text detection, has become increasingly evident. The anonymous nature of online services often leads to the presence of biased and harmful language, posing challenges to maintaining the health of online communities. This phenomenon is especially relevant in South Korea, where large-scale hate speech detection algorithms have not yet been broadly explored. In this paper, we introduce "KoMultiText", a new comprehensive, large-scale dataset collected from a well-known South Korean SNS platform. Our proposed dataset provides annotations including (1) Preferences, (2) Profanities, and (3) Nine types of Bias for the text samples, enabling multi-task learning for simultaneous classification of user-generated texts. Leveraging state-of-the-art BERT-based language models, our approach surpasses human-level accuracy across diverse classification tasks, as measured by various metrics. Beyond academic contributions, our work can provide practical solutions for real-world hate speech and bias mitigation, contributing directly to the improvement of online community health. Our work provides a robust foundation for future research aiming to improve the quality of online discourse and foster societal well-being. All source codes and datasets are publicly accessible at https://github.com/Dasol-Choi/KoMultiText.

  • 6 authors
·
Oct 6, 2023

IndicSUPERB: A Speech Processing Universal Performance Benchmark for Indian languages

A cornerstone in AI research has been the creation and adoption of standardized training and test datasets to earmark the progress of state-of-the-art models. A particularly successful example is the GLUE dataset for training and evaluating Natural Language Understanding (NLU) models for English. The large body of research around self-supervised BERT-based language models revolved around performance improvements on NLU tasks in GLUE. To evaluate language models in other languages, several language-specific GLUE datasets were created. The area of speech language understanding (SLU) has followed a similar trajectory. The success of large self-supervised models such as wav2vec2 enable creation of speech models with relatively easy to access unlabelled data. These models can then be evaluated on SLU tasks, such as the SUPERB benchmark. In this work, we extend this to Indic languages by releasing the IndicSUPERB benchmark. Specifically, we make the following three contributions. (i) We collect Kathbath containing 1,684 hours of labelled speech data across 12 Indian languages from 1,218 contributors located in 203 districts in India. (ii) Using Kathbath, we create benchmarks across 6 speech tasks: Automatic Speech Recognition, Speaker Verification, Speaker Identification (mono/multi), Language Identification, Query By Example, and Keyword Spotting for 12 languages. (iii) On the released benchmarks, we train and evaluate different self-supervised models alongside a commonly used baseline FBANK. We show that language-specific fine-tuned models are more accurate than baseline on most of the tasks, including a large gap of 76\% for the Language Identification task. However, for speaker identification, self-supervised models trained on large datasets demonstrate an advantage. We hope IndicSUPERB contributes to the progress of developing speech language understanding models for Indian languages.

  • 6 authors
·
Aug 24, 2022

Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture

Machine learning models are increasingly being scaled in both sequence length and model dimension to reach longer contexts and better performance. However, existing architectures such as Transformers scale quadratically along both these axes. We ask: are there performant architectures that can scale sub-quadratically along sequence length and model dimension? We introduce Monarch Mixer (M2), a new architecture that uses the same sub-quadratic primitive along both sequence length and model dimension: Monarch matrices, a simple class of expressive structured matrices that captures many linear transforms, achieves high hardware efficiency on GPUs, and scales sub-quadratically. As a proof of concept, we explore the performance of M2 in three domains: non-causal BERT-style language modeling, ViT-style image classification, and causal GPT-style language modeling. For non-causal BERT-style modeling, M2 matches BERT-base and BERT-large in downstream GLUE quality with up to 27% fewer parameters, and achieves up to 9.1times higher throughput at sequence length 4K. On ImageNet, M2 outperforms ViT-b by 1% in accuracy, with only half the parameters. Causal GPT-style models introduce a technical challenge: enforcing causality via masking introduces a quadratic bottleneck. To alleviate this bottleneck, we develop a novel theoretical view of Monarch matrices based on multivariate polynomial evaluation and interpolation, which lets us parameterize M2 to be causal while remaining sub-quadratic. Using this parameterization, M2 matches GPT-style Transformers at 360M parameters in pretraining perplexity on The PILE--showing for the first time that it may be possible to match Transformer quality without attention or MLPs.

  • 10 authors
·
Oct 18, 2023

It's All in The [MASK]: Simple Instruction-Tuning Enables BERT-like Masked Language Models As Generative Classifiers

While encoder-only models such as BERT and ModernBERT are ubiquitous in real-world NLP applications, their conventional reliance on task-specific classification heads can limit their applicability compared to decoder-based large language models (LLMs). In this work, we introduce ModernBERT-Large-Instruct, a 0.4B-parameter encoder model that leverages its masked language modelling (MLM) head for generative classification. Our approach employs an intentionally simple training loop and inference mechanism that requires no heavy pre-processing, heavily engineered prompting, or architectural modifications. ModernBERT-Large-Instruct exhibits strong zero-shot performance on both classification and knowledge-based tasks, outperforming similarly sized LLMs on MMLU and achieving 93% of Llama3-1B's MMLU performance with 60% less parameters. We also demonstrate that, when fine-tuned, the generative approach using the MLM head matches or even surpasses traditional classification-head methods across diverse NLU tasks.This capability emerges specifically in models trained on contemporary, diverse data mixes, with models trained on lower volume, less-diverse data yielding considerably weaker performance. Although preliminary, these results demonstrate the potential of using the original generative masked language modelling head over traditional task-specific heads for downstream tasks. Our work suggests that further exploration into this area is warranted, highlighting many avenues for future improvements.

  • 3 authors
·
Feb 6

Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media

This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.

  • 2 authors
·
Feb 16, 2023

BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.

  • 7 authors
·
Jan 25, 2019

ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding

Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT's Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.

  • 7 authors
·
Oct 22, 2020

Label Dependent Attention Model for Disease Risk Prediction Using Multimodal Electronic Health Records

Disease risk prediction has attracted increasing attention in the field of modern healthcare, especially with the latest advances in artificial intelligence (AI). Electronic health records (EHRs), which contain heterogeneous patient information, are widely used in disease risk prediction tasks. One challenge of applying AI models for risk prediction lies in generating interpretable evidence to support the prediction results while retaining the prediction ability. In order to address this problem, we propose the method of jointly embedding words and labels whereby attention modules learn the weights of words from medical notes according to their relevance to the names of risk prediction labels. This approach boosts interpretability by employing an attention mechanism and including the names of prediction tasks in the model. However, its application is only limited to the handling of textual inputs such as medical notes. In this paper, we propose a label dependent attention model LDAM to 1) improve the interpretability by exploiting Clinical-BERT (a biomedical language model pre-trained on a large clinical corpus) to encode biomedically meaningful features and labels jointly; 2) extend the idea of joint embedding to the processing of time-series data, and develop a multi-modal learning framework for integrating heterogeneous information from medical notes and time-series health status indicators. To demonstrate our method, we apply LDAM to the MIMIC-III dataset to predict different disease risks. We evaluate our method both quantitatively and qualitatively. Specifically, the predictive power of LDAM will be shown, and case studies will be carried out to illustrate its interpretability.

  • 5 authors
·
Jan 18, 2022

B-PROP: Bootstrapped Pre-training with Representative Words Prediction for Ad-hoc Retrieval

Pre-training and fine-tuning have achieved remarkable success in many downstream natural language processing (NLP) tasks. Recently, pre-training methods tailored for information retrieval (IR) have also been explored, and the latest success is the PROP method which has reached new SOTA on a variety of ad-hoc retrieval benchmarks. The basic idea of PROP is to construct the representative words prediction (ROP) task for pre-training inspired by the query likelihood model. Despite its exciting performance, the effectiveness of PROP might be bounded by the classical unigram language model adopted in the ROP task construction process. To tackle this problem, we propose a bootstrapped pre-training method (namely B-PROP) based on BERT for ad-hoc retrieval. The key idea is to use the powerful contextual language model BERT to replace the classical unigram language model for the ROP task construction, and re-train BERT itself towards the tailored objective for IR. Specifically, we introduce a novel contrastive method, inspired by the divergence-from-randomness idea, to leverage BERT's self-attention mechanism to sample representative words from the document. By further fine-tuning on downstream ad-hoc retrieval tasks, our method achieves significant improvements over baselines without pre-training or with other pre-training methods, and further pushes forward the SOTA on a variety of ad-hoc retrieval tasks.

  • 6 authors
·
Apr 20, 2021

Quantizable Transformers: Removing Outliers by Helping Attention Heads Do Nothing

Transformer models have been widely adopted in various domains over the last years, and especially large language models have advanced the field of AI significantly. Due to their size, the capability of these networks has increased tremendously, but this has come at the cost of a significant increase in necessary compute. Quantization is one of the most effective ways to reduce the computational time and memory consumption of neural networks. Many studies have shown, however, that modern transformer models tend to learn strong outliers in their activations, making them difficult to quantize. To retain acceptable performance, the existence of these outliers requires activations to be in higher bitwidth or the use of different numeric formats, extra fine-tuning, or other workarounds. We show that strong outliers are related to very specific behavior of attention heads that try to learn a "no-op" or just a partial update of the residual. To achieve the exact zeros needed in the attention matrix for a no-update, the input to the softmax is pushed to be larger and larger during training, causing outliers in other parts of the network. Based on these observations, we propose two simple (independent) modifications to the attention mechanism - clipped softmax and gated attention. We empirically show that models pre-trained using our methods learn significantly smaller outliers while maintaining and sometimes even improving the floating-point task performance. This enables us to quantize transformers to full INT8 quantization of the activations without any additional effort. We demonstrate the effectiveness of our methods on both language models (BERT, OPT) and vision transformers.

  • 3 authors
·
Jun 22, 2023

Structural Self-Supervised Objectives for Transformers

This thesis focuses on improving the pre-training of natural language models using unsupervised raw data to make them more efficient and aligned with downstream applications. In the first part, we introduce three alternative pre-training objectives to BERT's Masked Language Modeling (MLM), namely Random Token Substitution (RTS), Cluster-based Random Token Substitution (C-RTS), and Swapped Language Modeling (SLM). These objectives involve token swapping instead of masking, with RTS and C-RTS aiming to predict token originality and SLM predicting the original token values. Results show that RTS and C-RTS require less pre-training time while maintaining performance comparable to MLM. Surprisingly, SLM outperforms MLM on certain tasks despite using the same computational budget. In the second part, we proposes self-supervised pre-training tasks that align structurally with downstream applications, reducing the need for labeled data. We use large corpora like Wikipedia and CC-News to train models to recognize if text spans originate from the same paragraph or document in several ways. By doing continuous pre-training, starting from existing models like RoBERTa, ELECTRA, DeBERTa, BART, and T5, we demonstrate significant performance improvements in tasks like Fact Verification, Answer Sentence Selection, and Summarization. These improvements are especially pronounced when limited annotation data is available. The proposed objectives also achieve state-of-the-art results on various benchmark datasets, including FEVER (dev set), ASNQ, WikiQA, and TREC-QA, as well as enhancing the quality of summaries. Importantly, these techniques can be easily integrated with other methods without altering the internal structure of Transformer models, making them versatile for various NLP applications.

  • 1 authors
·
Sep 15, 2023

Multimodal Document Analytics for Banking Process Automation

Traditional banks face increasing competition from FinTechs in the rapidly evolving financial ecosystem. Raising operational efficiency is vital to address this challenge. Our study aims to improve the efficiency of document-intensive business processes in banking. To that end, we first review the landscape of business documents in the retail segment. Banking documents often contain text, layout, and visuals, suggesting that document analytics and process automation require more than plain natural language processing (NLP). To verify this and assess the incremental value of visual cues when processing business documents, we compare a recently proposed multimodal model called LayoutXLM to powerful text classifiers (e.g., BERT) and large language models (e.g., GPT) in a case study related to processing company register extracts. The results confirm that incorporating layout information in a model substantially increases its performance. Interestingly, we also observed that more than 75% of the best model performance (in terms of the F1 score) can be achieved with as little as 30% of the training data. This shows that the demand for data labeled data to set up a multi-modal model can be moderate, which simplifies real-world applications of multimodal document analytics. Our study also sheds light on more specific practices in the scope of calibrating a multimodal banking document classifier, including the need for fine-tuning. In sum, the paper contributes original empirical evidence on the effectiveness and efficiency of multi-model models for document processing in the banking business and offers practical guidance on how to unlock this potential in day-to-day operations.

  • 2 authors
·
Jul 21, 2023

Pushing on Personality Detection from Verbal Behavior: A Transformer Meets Text Contours of Psycholinguistic Features

Research at the intersection of personality psychology, computer science, and linguistics has recently focused increasingly on modeling and predicting personality from language use. We report two major improvements in predicting personality traits from text data: (1) to our knowledge, the most comprehensive set of theory-based psycholinguistic features and (2) hybrid models that integrate a pre-trained Transformer Language Model BERT and Bidirectional Long Short-Term Memory (BLSTM) networks trained on within-text distributions ('text contours') of psycholinguistic features. We experiment with BLSTM models (with and without Attention) and with two techniques for applying pre-trained language representations from the transformer model - 'feature-based' and 'fine-tuning'. We evaluate the performance of the models we built on two benchmark datasets that target the two dominant theoretical models of personality: the Big Five Essay dataset and the MBTI Kaggle dataset. Our results are encouraging as our models outperform existing work on the same datasets. More specifically, our models achieve improvement in classification accuracy by 2.9% on the Essay dataset and 8.28% on the Kaggle MBTI dataset. In addition, we perform ablation experiments to quantify the impact of different categories of psycholinguistic features in the respective personality prediction models.

  • 4 authors
·
Apr 10, 2022

The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models

Transformer-based language models have become a key building block for natural language processing. While these models are extremely accurate, they can be too large and computationally intensive to run on standard deployments. A variety of compression methods, including distillation, quantization, structured and unstructured pruning are known to decrease model size and increase inference speed, with low accuracy loss. In this context, this paper's contributions are two-fold. We perform an in-depth study of the accuracy-compression trade-off for unstructured weight pruning of BERT models. We introduce Optimal BERT Surgeon (oBERT), an efficient and accurate weight pruning method based on approximate second-order information, which we show to yield state-of-the-art results in both stages of language tasks: pre-training and fine-tuning. Specifically, oBERT extends existing work on unstructured second-order pruning by allowing for pruning blocks of weights, and by being applicable at the BERT scale. Second, we investigate the impact of this pruning method when compounding compression approaches to obtain highly compressed but accurate models for deployment on edge devices. These models significantly push boundaries of the current state-of-the-art sparse BERT models with respect to all metrics: model size, inference speed and task accuracy. For example, relative to the dense BERT-base, we obtain 10x model size compression (in MB) with < 1% accuracy drop, 10x CPU-inference speedup with < 2% accuracy drop, and 29x CPU-inference speedup with < 7.5% accuracy drop. Our code, fully integrated with Transformers and SparseML, is available at https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT.

  • 8 authors
·
Mar 14, 2022

LoRA-BERT: a Natural Language Processing Model for Robust and Accurate Prediction of long non-coding RNAs

Long non-coding RNAs (lncRNAs) serve as crucial regulators in numerous biological processes. Although they share sequence similarities with messenger RNAs (mRNAs), lncRNAs perform entirely different roles, providing new avenues for biological research. The emergence of next-generation sequencing technologies has greatly advanced the detection and identification of lncRNA transcripts and deep learning-based approaches have been introduced to classify long non-coding RNAs (lncRNAs). These advanced methods have significantly enhanced the efficiency of identifying lncRNAs. However, many of these methods are devoid of robustness and accuracy due to the extended length of the sequences involved. To tackle this issue, we have introduced a novel pre-trained bidirectional encoder representation called LoRA-BERT. LoRA-BERT is designed to capture the importance of nucleotide-level information during sequence classification, leading to more robust and satisfactory outcomes. In a comprehensive comparison with commonly used sequence prediction tools, we have demonstrated that LoRA-BERT outperforms them in terms of accuracy and efficiency. Our results indicate that, when utilizing the transformer model, LoRA-BERT achieves state-of-the-art performance in predicting both lncRNAs and mRNAs for human and mouse species. Through the utilization of LoRA-BERT, we acquire valuable insights into the traits of lncRNAs and mRNAs, offering the potential to aid in the comprehension and detection of diseases linked to lncRNAs in humans.

  • 5 authors
·
Nov 11, 2024

Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese

Multilingual language models such as mBERT have seen impressive cross-lingual transfer to a variety of languages, but many languages remain excluded from these models. In this paper, we analyse the effect of pre-training with monolingual data for a low-resource language that is not included in mBERT -- Maltese -- with a range of pre-training set ups. We conduct evaluations with the newly pre-trained models on three morphosyntactic tasks -- dependency parsing, part-of-speech tagging, and named-entity recognition -- and one semantic classification task -- sentiment analysis. We also present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance. Our results show that using a mixture of pre-training domains is often superior to using Wikipedia text only. We also find that a fraction of this corpus is enough to make significant leaps in performance over Wikipedia-trained models. We pre-train and compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu). The models achieve state-of-the-art performance on these tasks, despite the new corpus being considerably smaller than typically used corpora for high-resourced languages. On average, BERTu outperforms or performs competitively with mBERTu, and the largest gains are observed for higher-level tasks.

  • 5 authors
·
May 21, 2022

DrBERT: Unveiling the Potential of Masked Language Modeling Decoder in BERT pretraining

BERT (Bidirectional Encoder Representations from Transformers) has revolutionized the field of natural language processing through its exceptional performance on numerous tasks. Yet, the majority of researchers have mainly concentrated on enhancements related to the model structure, such as relative position embedding and more efficient attention mechanisms. Others have delved into pretraining tricks associated with Masked Language Modeling, including whole word masking. DeBERTa introduced an enhanced decoder adapted for BERT's encoder model for pretraining, proving to be highly effective. We argue that the design and research around enhanced masked language modeling decoders have been underappreciated. In this paper, we propose several designs of enhanced decoders and introduce DrBERT (Decoder-refined BERT), a novel method for modeling training. Typically, a pretrained BERT model is fine-tuned for specific Natural Language Understanding (NLU) tasks. In our approach, we utilize the original BERT model as the encoder, making only changes to the decoder without altering the encoder. This approach does not necessitate extensive modifications to the model's architecture and can be seamlessly integrated into existing fine-tuning pipelines and services, offering an efficient and effective enhancement strategy. Compared to other methods, while we also incur a moderate training cost for the decoder during the pretraining process, our approach does not introduce additional training costs during the fine-tuning phase. We test multiple enhanced decoder structures after pretraining and evaluate their performance on the GLUE benchmark. Our results demonstrate that DrBERT, having only undergone subtle refinements to the model structure during pretraining, significantly enhances model performance without escalating the inference time and serving budget.

  • 2 authors
·
Jan 28, 2024

W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training

Motivated by the success of masked language modeling~(MLM) in pre-training natural language processing models, we propose w2v-BERT that explores MLM for self-supervised speech representation learning. w2v-BERT is a framework that combines contrastive learning and MLM, where the former trains the model to discretize input continuous speech signals into a finite set of discriminative speech tokens, and the latter trains the model to learn contextualized speech representations via solving a masked prediction task consuming the discretized tokens. In contrast to existing MLM-based speech pre-training frameworks such as HuBERT, which relies on an iterative re-clustering and re-training process, or vq-wav2vec, which concatenates two separately trained modules, w2v-BERT can be optimized in an end-to-end fashion by solving the two self-supervised tasks~(the contrastive task and MLM) simultaneously. Our experiments show that w2v-BERT achieves competitive results compared to current state-of-the-art pre-trained models on the LibriSpeech benchmarks when using the Libri-Light~60k corpus as the unsupervised data. In particular, when compared to published models such as conformer-based wav2vec~2.0 and HuBERT, our model shows~5\% to~10\% relative WER reduction on the test-clean and test-other subsets. When applied to the Google's Voice Search traffic dataset, w2v-BERT outperforms our internal conformer-based wav2vec~2.0 by more than~30\% relatively.

  • 7 authors
·
Aug 7, 2021

Not All Large Language Models (LLMs) Succumb to the "Reversal Curse": A Comparative Study of Deductive Logical Reasoning in BERT and GPT Models

The "Reversal Curse" refers to the scenario where auto-regressive decoder large language models (LLMs), such as ChatGPT, trained on "A is B" fail to learn "B is A", demonstrating a basic failure of logical deduction. This raises a red flag in the use of GPT models for certain general tasks such as constructing knowledge graphs, considering their adherence to this symmetric principle. In our study, we examined a bidirectional LLM, BERT, and found that it is immune to the reversal curse. Driven by ongoing efforts to construct biomedical knowledge graphs with LLMs, we also embarked on evaluating more complex but essential deductive reasoning capabilities. This process included first training encoder and decoder language models to master the intersection (cap) and union (cup) operations on two sets and then moving on to assess their capability to infer different combinations of union (cup) and intersection (cap) operations on three newly created sets. The findings showed that while both encoder and decoder language models, trained for tasks involving two sets (union/intersection), were proficient in such scenarios, they encountered difficulties when dealing with operations that included three sets (various combinations of union and intersection). Our research highlights the distinct characteristics of encoder and decoder models in simple and complex logical reasoning. In practice, the choice between BERT and GPT should be guided by the specific requirements and nature of the task at hand, leveraging their respective strengths in bidirectional context comprehension and sequence prediction.

  • 3 authors
·
Dec 6, 2023

Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment

Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.

  • 6 authors
·
Aug 22, 2024

Tiny language models

A prominent achievement of natural language processing (NLP) is its ability to understand and generate meaningful human language. This capability relies on complex feedforward transformer block architectures pre-trained on large language models (LLMs). However, LLM pre-training is currently feasible only for a few dominant companies due to the immense computational resources required, limiting broader research participation. This creates a critical need for more accessible alternatives. In this study, we explore whether tiny language models (TLMs) exhibit the same key qualitative features of LLMs. We demonstrate that TLMs exhibit a clear performance gap between pre-trained and non-pre-trained models across classification tasks, indicating the effectiveness of pre-training, even at a tiny scale. The performance gap increases with the size of the pre-training dataset and with greater overlap between tokens in the pre-training and classification datasets. Furthermore, the classification accuracy achieved by a pre-trained deep TLM architecture can be replicated through a soft committee of multiple, independently pre-trained shallow architectures, enabling low-latency TLMs without affecting classification accuracy. Our results are based on pre-training BERT-6 and variants of BERT-1 on subsets of the Wikipedia dataset and evaluating their performance on FewRel, AGNews, and DBPedia classification tasks. Future research on TLM is expected to further illuminate the mechanisms underlying NLP, especially given that its biologically inspired models suggest that TLMs may be sufficient for children or adolescents to develop language. The data and code that support the findings of this study are openly available on https://github.com/Rg32601/Tiny-Language-Models .

  • 5 authors
·
Jul 20

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Recent work in language modeling demonstrates that training large transformer models advances the state of the art in Natural Language Processing applications. However, very large models can be quite difficult to train due to memory constraints. In this work, we present our techniques for training very large transformer models and implement a simple, efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We sustain 15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models can further advance the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar to GPT-2 and a 3.9 billion parameter model similar to BERT. We show that careful attention to the placement of layer normalization in BERT-like models is critical to achieving increased performance as the model size grows. Using the GPT-2 model we achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset (90.9% compared to SOTA accuracy of 89.4%).

  • 6 authors
·
Sep 17, 2019

Extraction of Medication and Temporal Relation from Clinical Text using Neural Language Models

Clinical texts, represented in electronic medical records (EMRs), contain rich medical information and are essential for disease prediction, personalised information recommendation, clinical decision support, and medication pattern mining and measurement. Relation extractions between medication mentions and temporal information can further help clinicians better understand the patients' treatment history. To evaluate the performances of deep learning (DL) and large language models (LLMs) in medication extraction and temporal relations classification, we carry out an empirical investigation of MedTem project using several advanced learning structures including BiLSTM-CRF and CNN-BiLSTM for a clinical domain named entity recognition (NER), and BERT-CNN for temporal relation extraction (RE), in addition to the exploration of different word embedding techniques. Furthermore, we also designed a set of post-processing roles to generate structured output on medications and the temporal relation. Our experiments show that CNN-BiLSTM slightly wins the BiLSTM-CRF model on the i2b2-2009 clinical NER task yielding 75.67, 77.83, and 78.17 for precision, recall, and F1 scores using Macro Average. BERT-CNN model also produced reasonable evaluation scores 64.48, 67.17, and 65.03 for P/R/F1 using Macro Avg on the temporal relation extraction test set from i2b2-2012 challenges. Code and Tools from MedTem will be hosted at https://github.com/HECTA-UoM/MedTem

  • 3 authors
·
Oct 3, 2023

Understanding Telecom Language Through Large Language Models

The recent progress of artificial intelligence (AI) opens up new frontiers in the possibility of automating many tasks involved in Telecom networks design, implementation, and deployment. This has been further pushed forward with the evolution of generative artificial intelligence (AI), including the emergence of large language models (LLMs), which is believed to be the cornerstone toward realizing self-governed, interactive AI agents. Motivated by this, in this paper, we aim to adapt the paradigm of LLMs to the Telecom domain. In particular, we fine-tune several LLMs including BERT, distilled BERT, RoBERTa and GPT-2, to the Telecom domain languages, and demonstrate a use case for identifying the 3rd Generation Partnership Project (3GPP) standard working groups. We consider training the selected models on 3GPP technical documents (Tdoc) pertinent to years 2009-2019 and predict the Tdoc categories in years 2020-2023. The results demonstrate that fine-tuning BERT and RoBERTa model achieves 84.6% accuracy, while GPT-2 model achieves 83% in identifying 3GPP working groups. The distilled BERT model with around 50% less parameters achieves similar performance as others. This corroborates that fine-tuning pretrained LLM can effectively identify the categories of Telecom language. The developed framework shows a stepping stone towards realizing intent-driven and self-evolving wireless networks from Telecom languages, and paves the way for the implementation of generative AI in the Telecom domain.

  • 6 authors
·
Jun 9, 2023

Bioformer: an efficient transformer language model for biomedical text mining

Pretrained language models such as Bidirectional Encoder Representations from Transformers (BERT) have achieved state-of-the-art performance in natural language processing (NLP) tasks. Recently, BERT has been adapted to the biomedical domain. Despite the effectiveness, these models have hundreds of millions of parameters and are computationally expensive when applied to large-scale NLP applications. We hypothesized that the number of parameters of the original BERT can be dramatically reduced with minor impact on performance. In this study, we present Bioformer, a compact BERT model for biomedical text mining. We pretrained two Bioformer models (named Bioformer8L and Bioformer16L) which reduced the model size by 60% compared to BERTBase. Bioformer uses a biomedical vocabulary and was pre-trained from scratch on PubMed abstracts and PubMed Central full-text articles. We thoroughly evaluated the performance of Bioformer as well as existing biomedical BERT models including BioBERT and PubMedBERT on 15 benchmark datasets of four different biomedical NLP tasks: named entity recognition, relation extraction, question answering and document classification. The results show that with 60% fewer parameters, Bioformer16L is only 0.1% less accurate than PubMedBERT while Bioformer8L is 0.9% less accurate than PubMedBERT. Both Bioformer16L and Bioformer8L outperformed BioBERTBase-v1.1. In addition, Bioformer16L and Bioformer8L are 2-3 fold as fast as PubMedBERT/BioBERTBase-v1.1. Bioformer has been successfully deployed to PubTator Central providing gene annotations over 35 million PubMed abstracts and 5 million PubMed Central full-text articles. We make Bioformer publicly available via https://github.com/WGLab/bioformer, including pre-trained models, datasets, and instructions for downstream use.

  • 5 authors
·
Feb 3, 2023

Credit Risk Meets Large Language Models: Building a Risk Indicator from Loan Descriptions in P2P Lending

Peer-to-peer (P2P) lending connects borrowers and lenders through online platforms but suffers from significant information asymmetry, as lenders often lack sufficient data to assess borrowers' creditworthiness. This paper addresses this challenge by leveraging BERT, a Large Language Model (LLM) known for its ability to capture contextual nuances in text, to generate a risk score based on borrowers' loan descriptions using a dataset from the Lending Club platform. We fine-tune BERT to distinguish between defaulted and non-defaulted loans using the loan descriptions provided by the borrowers. The resulting BERT-generated risk score is then integrated as an additional feature into an XGBoost classifier used at the loan granting stage, where decision-makers have limited information available to guide their decisions. This integration enhances predictive performance, with improvements in balanced accuracy and AUC, highlighting the value of textual features in complementing traditional inputs. Moreover, we find that the incorporation of the BERT score alters how classification models utilize traditional input variables, with these changes varying by loan purpose. These findings suggest that BERT discerns meaningful patterns in loan descriptions, encompassing borrower-specific features, specific purposes, and linguistic characteristics. However, the inherent opacity of LLMs and their potential biases underscore the need for transparent frameworks to ensure regulatory compliance and foster trust. Overall, this study demonstrates how LLM-derived insights interact with traditional features in credit risk modeling, opening new avenues to enhance the explainability and fairness of these models.

  • 2 authors
·
Jan 29, 2024

Into the crossfire: evaluating the use of a language model to crowdsource gun violence reports

Gun violence is a pressing and growing human rights issue that affects nearly every dimension of the social fabric, from healthcare and education to psychology and the economy. Reliable data on firearm events is paramount to developing more effective public policy and emergency responses. However, the lack of comprehensive databases and the risks of in-person surveys prevent human rights organizations from collecting needed data in most countries. Here, we partner with a Brazilian human rights organization to conduct a systematic evaluation of language models to assist with monitoring real-world firearm events from social media data. We propose a fine-tuned BERT-based model trained on Twitter (now X) texts to distinguish gun violence reports from ordinary Portuguese texts. Our model achieves a high AUC score of 0.97. We then incorporate our model into a web application and test it in a live intervention. We study and interview Brazilian analysts who continuously fact-check social media texts to identify new gun violence events. Qualitative assessments show that our solution helped all analysts use their time more efficiently and expanded their search capacities. Quantitative assessments show that the use of our model was associated with more analysts' interactions with online users reporting gun violence. Taken together, our findings suggest that modern Natural Language Processing techniques can help support the work of human rights organizations.

  • 3 authors
·
Jan 16, 2024

Pre-trained Language Models for Keyphrase Generation: A Thorough Empirical Study

Neural models that do not rely on pre-training have excelled in the keyphrase generation task with large annotated datasets. Meanwhile, new approaches have incorporated pre-trained language models (PLMs) for their data efficiency. However, there lacks a systematic study of how the two types of approaches compare and how different design choices can affect the performance of PLM-based models. To fill in this knowledge gap and facilitate a more informed use of PLMs for keyphrase extraction and keyphrase generation, we present an in-depth empirical study. Formulating keyphrase extraction as sequence labeling and keyphrase generation as sequence-to-sequence generation, we perform extensive experiments in three domains. After showing that PLMs have competitive high-resource performance and state-of-the-art low-resource performance, we investigate important design choices including in-domain PLMs, PLMs with different pre-training objectives, using PLMs with a parameter budget, and different formulations for present keyphrases. Further results show that (1) in-domain BERT-like PLMs can be used to build strong and data-efficient keyphrase generation models; (2) with a fixed parameter budget, prioritizing model depth over width and allocating more layers in the encoder leads to better encoder-decoder models; and (3) introducing four in-domain PLMs, we achieve a competitive performance in the news domain and the state-of-the-art performance in the scientific domain.

  • 3 authors
·
Dec 20, 2022

Evaluating Large Language Models for Phishing Detection, Self-Consistency, Faithfulness, and Explainability

Phishing attacks remain one of the most prevalent and persistent cybersecurity threat with attackers continuously evolving and intensifying tactics to evade the general detection system. Despite significant advances in artificial intelligence and machine learning, faithfully reproducing the interpretable reasoning with classification and explainability that underpin phishing judgments remains challenging. Due to recent advancement in Natural Language Processing, Large Language Models (LLMs) show a promising direction and potential for improving domain specific phishing classification tasks. However, enhancing the reliability and robustness of classification models requires not only accurate predictions from LLMs but also consistent and trustworthy explanations aligning with those predictions. Therefore, a key question remains: can LLMs not only classify phishing emails accurately but also generate explanations that are reliably aligned with their predictions and internally self-consistent? To answer these questions, we have fine-tuned transformer based models, including BERT, Llama models, and Wizard, to improve domain relevance and make them more tailored to phishing specific distinctions, using Binary Sequence Classification, Contrastive Learning (CL) and Direct Preference Optimization (DPO). To that end, we examined their performance in phishing classification and explainability by applying the ConsistenCy measure based on SHAPley values (CC SHAP), which measures prediction explanation token alignment to test the model's internal faithfulness and consistency and uncover the rationale behind its predictions and reasoning. Overall, our findings show that Llama models exhibit stronger prediction explanation token alignment with higher CC SHAP scores despite lacking reliable decision making accuracy, whereas Wizard achieves better prediction accuracy but lower CC SHAP scores.

  • 3 authors
·
Jun 16

Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders

Pretrained Masked Language Models (MLMs) have revolutionised NLP in recent years. However, previous work has indicated that off-the-shelf MLMs are not effective as universal lexical or sentence encoders without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective universal lexical and sentence encoders even without any additional data and without any supervision. We propose an extremely simple, fast and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds without any additional external knowledge. Mirror-BERT relies on fully identical or slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during identity fine-tuning. We report huge gains over off-the-shelf MLMs with Mirror-BERT in both lexical-level and sentence-level tasks, across different domains and different languages. Notably, in the standard sentence semantic similarity (STS) tasks, our self-supervised Mirror-BERT model even matches the performance of the task-tuned Sentence-BERT models from prior work. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple approach can yield effective universal lexical and sentence encoders.

  • 4 authors
·
Apr 16, 2021