new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Adiabatic Solutions of the Haydys-Witten Equations and Symplectic Khovanov Homology

An influential conjecture by Witten states that there is an instanton Floer homology of four-manifolds with corners that in certain situations is isomorphic to Khovanov homology of a given knot K. The Floer chain complex is generated by Nahm pole solutions of the Kapustin-Witten equations on R^3 times R^+_y with an additional monopole-like singular behaviour along the knot K inside the three-dimensional boundary at y=0. The Floer differential is given by counting solutions of the Haydys-Witten equations that interpolate between Kapustin-Witten solutions along an additional flow direction R_s. This article investigates solutions of a decoupled version of the Kapustin-Witten and Haydys-Witten equations on R_s times R^3 times R^+_y, which in contrast to the full equations exhibit a Hermitian Yang-Mills structure and can be viewed as a lift of the extended Bogomolny equations (EBE) from three to five dimensions. Inspired by Gaiotto-Witten's approach of adiabatically braiding EBE-solutions to obtain generators of the Floer homology, we propose that there is an equivalence between adiabatic solutions of the decoupled Haydys-Witten equations and non-vertical paths in the moduli space of EBE-solutions fibered over the space of monopole positions. Moreover, we argue that the Grothendieck-Springer resolution of the Lie algebra of the gauge group provides a finite-dimensional model of this moduli space of monopole solutions. These considerations suggest an intriguing similarity between Haydys-Witten instanton Floer homology and symplectic Khovanov homology and provide a novel approach towards a proof of Witten's gauge-theoretic interpretations of Khovanov homology.

  • 1 authors
·
Jan 2, 2025

Complexity of counting points on curves and the factor P_1(T) of the zeta function of surfaces

This article concerns the computational complexity of a fundamental problem in number theory: counting points on curves and surfaces over finite fields. There is no subexponential-time algorithm known and it is unclear if it can be NP-hard. Given a curve, we present the first efficient Arthur-Merlin protocol to certify its point-count, its Jacobian group structure, and its Hasse-Weil zeta function. We extend this result to a smooth projective surface to certify the factor P_{1}(T), corresponding to the first Betti number, of the zeta function; by using the counting oracle. We give the first algorithm to compute P_{1}(T) that is poly(log q)-time if the degree D of the input surface is fixed; and in quantum poly(Dlog q)-time in general. Our technique in the curve case, is to sample hash functions using the Weil and Riemann-Roch bounds, to certify the group order of its Jacobian. For higher dimension varieties, we first reduce to the case of a surface, which is fibred as a Lefschetz pencil of hyperplane sections over P^{1}. The formalism of vanishing cycles, and the inherent big monodromy, enable us to prove an effective version of Deligne's `theoreme du pgcd' using the hard-Lefschetz theorem and an equidistribution result due to Katz. These reduce our investigations to that of computing the zeta function of a curve, defined over a finite field extension F_{Q}/F_{q} of poly-bounded degree. This explicitization of the theory yields the first nontrivial upper bounds on the computational complexity.

  • 3 authors
·
Nov 4, 2025

Precision holography for non-conformal branes

We set up precision holography for the non-conformal branes preserving 16 supersymmetries. The near-horizon limit of all such p-brane solutions with p \leq 4, including the case of fundamental string solutions, is conformal to AdS_{p+2} x S^{8-p} with a linear dilaton. We develop holographic renormalization for all these cases. In particular, we obtain the most general asymptotic solutions with appropriate Dirichlet boundary conditions, find the corresponding counterterms and compute the holographic 1-point functions, all in complete generality and at the full non-linear level. The result for the stress energy tensor properly defines the notion of mass for backgrounds with such asymptotics. The analysis is done both in the original formulation of the method and also using a radial Hamiltonian analysis. The latter formulation exhibits most clearly the existence of an underlying generalized conformal structure. In the cases of Dp-branes, the corresponding dual boundary theory, the maximally supersymmetric Yang-Mills theory SYM_{p+1}, indeed exhibits the generalized conformal structure found at strong coupling. We compute the holographic 2-point functions of the stress energy tensor and gluon operator and show they satisfy the expected Ward identities and the constraints of generalized conformal structure. The holographic results are also manifestly compatible with the M-theory uplift, with the asymptotic solutions, counterterms, one and two point functions etc of the IIA F1 and D4 appropriately descending from those of M2 and M5 branes, respectively. We present a few applications including the computation of condensates in Witten's model of holographic YM_4 theory.

  • 3 authors
·
Jul 21, 2008

More on the Weak Gravity Conjecture via Convexity of Charged Operators

The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space the conformal dimension Delta (Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in different dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4+epsilon dimensions. As an example of the second type we consider the U(N)times U(M) model in 4-epsilon dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property.

  • 5 authors
·
Sep 10, 2021