new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Heterogeneous Influence Maximization in User Recommendation

User recommendation systems enhance user engagement by encouraging users to act as inviters to interact with other users (invitees), potentially fostering information propagation. Conventional recommendation methods typically focus on modeling interaction willingness. Influence-Maximization (IM) methods focus on identifying a set of users to maximize the information propagation. However, existing methods face two significant challenges. First, recommendation methods fail to unleash the candidates' spread capability. Second, IM methods fail to account for the willingness to interact. To solve these issues, we propose two models named HeteroIR and HeteroIM. HeteroIR provides an intuitive solution to unleash the dissemination potential of user recommendation systems. HeteroIM fills the gap between the IM method and the recommendation task, improving interaction willingness and maximizing spread coverage. The HeteroIR introduces a two-stage framework to estimate the spread profits. The HeteroIM incrementally selects the most influential invitee to recommend and rerank based on the number of reverse reachable (RR) sets containing inviters and invitees. RR set denotes a set of nodes that can reach a target via propagation. Extensive experiments show that HeteroIR and HeteroIM significantly outperform the state-of-the-art baselines with the p-value < 0.05. Furthermore, we have deployed HeteroIR and HeteroIM in Tencent's online gaming platforms and gained an 8.5\% and 10\% improvement in the online A/B test, respectively. Implementation codes are available at https://github.com/socialalgo/HIM.

  • 6 authors
·
Aug 19

Capacity Constrained Influence Maximization in Social Networks

Influence maximization (IM) aims to identify a small number of influential individuals to maximize the information spread and finds applications in various fields. It was first introduced in the context of viral marketing, where a company pays a few influencers to promote the product. However, apart from the cost factor, the capacity of individuals to consume content poses challenges for implementing IM in real-world scenarios. For example, players on online gaming platforms can only interact with a limited number of friends. In addition, we observe that in these scenarios, (i) the initial adopters of promotion are likely to be the friends of influencers rather than the influencers themselves, and (ii) existing IM solutions produce sub-par results with high computational demands. Motivated by these observations, we propose a new IM variant called capacity constrained influence maximization (CIM), which aims to select a limited number of influential friends for each initial adopter such that the promotion can reach more users. To solve CIM effectively, we design two greedy algorithms, MG-Greedy and RR-Greedy, ensuring the 1/2-approximation ratio. To improve the efficiency, we devise the scalable implementation named RR-OPIM+ with (1/2-epsilon)-approximation and near-linear running time. We extensively evaluate the performance of 9 approaches on 6 real-world networks, and our solutions outperform all competitors in terms of result quality and running time. Additionally, we deploy RR-OPIM+ to online game scenarios, which improves the baseline considerably.

  • 6 authors
·
May 31, 2023