new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

Refined Regret for Adversarial MDPs with Linear Function Approximation

We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.

  • 4 authors
·
Jan 30, 2023

Value Gradient weighted Model-Based Reinforcement Learning

Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies, yet unavoidable modeling errors often lead performance deterioration. The model in MBRL is often solely fitted to reconstruct dynamics, state observations in particular, while the impact of model error on the policy is not captured by the training objective. This leads to a mismatch between the intended goal of MBRL, enabling good policy and value learning, and the target of the loss function employed in practice, future state prediction. Naive intuition would suggest that value-aware model learning would fix this problem and, indeed, several solutions to this objective mismatch problem have been proposed based on theoretical analysis. However, they tend to be inferior in practice to commonly used maximum likelihood (MLE) based approaches. In this paper we propose the Value-gradient weighted Model Learning (VaGraM), a novel method for value-aware model learning which improves the performance of MBRL in challenging settings, such as small model capacity and the presence of distracting state dimensions. We analyze both MLE and value-aware approaches and demonstrate how they fail to account for exploration and the behavior of function approximation when learning value-aware models and highlight the additional goals that must be met to stabilize optimization in the deep learning setting. We verify our analysis by showing that our loss function is able to achieve high returns on the Mujoco benchmark suite while being more robust than maximum likelihood based approaches.

  • 4 authors
·
Apr 4, 2022

Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes

We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight. We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver. We prove an O(mathsf{Var^star M Gamma S A K}) regret bound where O hides logarithm factors, M is the number of contexts, S is the number of states, A is the number of actions, K is the number of episodes, Gamma le S is the maximum transition degree of any state-action pair, and Var^star is a variance quantity describing the determinism of the LMDP. The regret bound only scales logarithmically with the planning horizon, thus yielding the first (nearly) horizon-free regret bound for LMDP. This is also the first problem-dependent regret bound for LMDP. Key in our proof is an analysis of the total variance of alpha vectors (a generalization of value functions), which is handled with a truncation method. We complement our positive result with a novel Omega(mathsf{Var^star M S A K}) regret lower bound with Gamma = 2, which shows our upper bound minimax optimal when Gamma is a constant for the class of variance-bounded LMDPs. Our lower bound relies on new constructions of hard instances and an argument inspired by the symmetrization technique from theoretical computer science, both of which are technically different from existing lower bound proof for MDPs, and thus can be of independent interest.

  • 3 authors
·
Oct 20, 2022

DualFast: Dual-Speedup Framework for Fast Sampling of Diffusion Models

Diffusion probabilistic models (DPMs) have achieved impressive success in visual generation. While, they suffer from slow inference speed due to iterative sampling. Employing fewer sampling steps is an intuitive solution, but this will also introduces discretization error. Existing fast samplers make inspiring efforts to reduce discretization error through the adoption of high-order solvers, potentially reaching a plateau in terms of optimization. This raises the question: can the sampling process be accelerated further? In this paper, we re-examine the nature of sampling errors, discerning that they comprise two distinct elements: the widely recognized discretization error and the less explored approximation error. Our research elucidates the dynamics between these errors and the step by implementing a dual-error disentanglement strategy. Building on these foundations, we introduce an unified and training-free acceleration framework, DualFast, designed to enhance the speed of DPM sampling by concurrently accounting for both error types, thereby minimizing the total sampling error. DualFast is seamlessly compatible with existing samplers and significantly boost their sampling quality and speed, particularly in extremely few sampling steps. We substantiate the effectiveness of our framework through comprehensive experiments, spanning both unconditional and conditional sampling domains, across both pixel-space and latent-space DPMs.

  • 4 authors
·
Jun 15

Revisiting Design Choices in Offline Model-Based Reinforcement Learning

Offline reinforcement learning enables agents to leverage large pre-collected datasets of environment transitions to learn control policies, circumventing the need for potentially expensive or unsafe online data collection. Significant progress has been made recently in offline model-based reinforcement learning, approaches which leverage a learned dynamics model. This typically involves constructing a probabilistic model, and using the model uncertainty to penalize rewards where there is insufficient data, solving for a pessimistic MDP that lower bounds the true MDP. Existing methods, however, exhibit a breakdown between theory and practice, whereby pessimistic return ought to be bounded by the total variation distance of the model from the true dynamics, but is instead implemented through a penalty based on estimated model uncertainty. This has spawned a variety of uncertainty heuristics, with little to no comparison between differing approaches. In this paper, we compare these heuristics, and design novel protocols to investigate their interaction with other hyperparameters, such as the number of models, or imaginary rollout horizon. Using these insights, we show that selecting these key hyperparameters using Bayesian Optimization produces superior configurations that are vastly different to those currently used in existing hand-tuned state-of-the-art methods, and result in drastically stronger performance.

  • 5 authors
·
Oct 8, 2021

The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning

Evaluations of Deep Reinforcement Learning (DRL) methods are an integral part of scientific progress of the field. Beyond designing DRL methods for general intelligence, designing task-specific methods is becoming increasingly prominent for real-world applications. In these settings, the standard evaluation practice involves using a few instances of Markov Decision Processes (MDPs) to represent the task. However, many tasks induce a large family of MDPs owing to variations in the underlying environment, particularly in real-world contexts. For example, in traffic signal control, variations may stem from intersection geometries and traffic flow levels. The select MDP instances may thus inadvertently cause overfitting, lacking the statistical power to draw conclusions about the method's true performance across the family. In this article, we augment DRL evaluations to consider parameterized families of MDPs. We show that in comparison to evaluating DRL methods on select MDP instances, evaluating the MDP family often yields a substantially different relative ranking of methods, casting doubt on what methods should be considered state-of-the-art. We validate this phenomenon in standard control benchmarks and the real-world application of traffic signal control. At the same time, we show that accurately evaluating on an MDP family is nontrivial. Overall, this work identifies new challenges for empirical rigor in reinforcement learning, especially as the outcomes of DRL trickle into downstream decision-making.

  • 5 authors
·
Oct 16, 2022

Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case

Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation (DA) technique such as ensemble Kalman filter (EnKF) is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto-Sivashinsky (KS) system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations.

  • 3 authors
·
Oct 1, 2021

Objective Mismatch in Model-based Reinforcement Learning

Model-based reinforcement learning (MBRL) has been shown to be a powerful framework for data-efficiently learning control of continuous tasks. Recent work in MBRL has mostly focused on using more advanced function approximators and planning schemes, with little development of the general framework. In this paper, we identify a fundamental issue of the standard MBRL framework -- what we call the objective mismatch issue. Objective mismatch arises when one objective is optimized in the hope that a second, often uncorrelated, metric will also be optimized. In the context of MBRL, we characterize the objective mismatch between training the forward dynamics model w.r.t.~the likelihood of the one-step ahead prediction, and the overall goal of improving performance on a downstream control task. For example, this issue can emerge with the realization that dynamics models effective for a specific task do not necessarily need to be globally accurate, and vice versa globally accurate models might not be sufficiently accurate locally to obtain good control performance on a specific task. In our experiments, we study this objective mismatch issue and demonstrate that the likelihood of one-step ahead predictions is not always correlated with control performance. This observation highlights a critical limitation in the MBRL framework which will require further research to be fully understood and addressed. We propose an initial method to mitigate the mismatch issue by re-weighting dynamics model training. Building on it, we conclude with a discussion about other potential directions of research for addressing this issue.

  • 4 authors
·
Feb 11, 2020 1

MDPO: Overcoming the Training-Inference Divide of Masked Diffusion Language Models

Diffusion language models, as a promising alternative to traditional autoregressive (AR) models, enable faster generation and richer conditioning on bidirectional context. However, they suffer from a key discrepancy between training and inference: during inference, MDLMs progressively reveal the structure of the generated sequence by producing fewer and fewer masked tokens, whereas this structure is ignored in training as tokens are masked at random. Although this discrepancy between training and inference can lead to suboptimal performance, it has been largely overlooked by previous works, leaving closing this gap between the two stages an open problem. To address this, we frame the problem of learning effective denoising trajectories as a sequential decision-making problem and use the resulting framework to apply reinforcement learning. We propose a novel Masked Diffusion Policy Optimization (MDPO) to exploit the Markov property diffusion possesses and explicitly train the model under the same progressive refining schedule used at inference. MDPO matches the performance of the previous state-of-the-art (SOTA) method with 60x fewer gradient updates, while achieving average improvements of 9.6% on MATH500 and 54.2% on Countdown over SOTA when trained within the same number of weight updates. Additionally, we improve the remasking strategy of MDLMs as a plug-in inference replacement to overcome the limitation that the model cannot refine tokens flexibly. This simple yet effective training-free strategy, what we refer to as RCR, consistently improves performance and yields additional gains when combined with MDPO. Our findings establish great potential for investigating the discrepancy between pre-training and inference of MDLMs. Code: https://github.com/autonomousvision/mdpo. Project Page: https://cli212.github.io/MDPO/.

  • 4 authors
·
Aug 18

Robust Offline Reinforcement Learning with Linearly Structured f-Divergence Regularization

The Distributionally Robust Markov Decision Process (DRMDP) is a popular framework for addressing dynamics shift in reinforcement learning by learning policies robust to the worst-case transition dynamics within a constrained set. However, solving its dual optimization oracle poses significant challenges, limiting theoretical analysis and computational efficiency. The recently proposed Robust Regularized Markov Decision Process (RRMDP) replaces the uncertainty set constraint with a regularization term on the value function, offering improved scalability and theoretical insights. Yet, existing RRMDP methods rely on unstructured regularization, often leading to overly conservative policies by considering transitions that are unrealistic. To address these issues, we propose a novel framework, the d-rectangular linear robust regularized Markov decision process (d-RRMDP), which introduces a linear latent structure into both transition kernels and regularization. For the offline RL setting, where an agent learns robust policies from a pre-collected dataset in the nominal environment, we develop a family of algorithms, Robust Regularized Pessimistic Value Iteration (R2PVI), employing linear function approximation and f-divergence based regularization terms on transition kernels. We provide instance-dependent upper bounds on the suboptimality gap of R2PVI policies, showing these bounds depend on how well the dataset covers state-action spaces visited by the optimal robust policy under robustly admissible transitions. This term is further shown to be fundamental to d-RRMDPs via information-theoretic lower bounds. Finally, numerical experiments validate that R2PVI learns robust policies and is computationally more efficient than methods for constrained DRMDPs.

  • 3 authors
·
Nov 27, 2024

Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation

We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation. Specifically, we propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP), which incorporates both model-based and value-based incarnations. In particular, LOOP features a novel construction of confidence sets and a low-switching policy updating scheme, which are tailored to the average-reward and function approximation setting. Moreover, for AMDPs, we propose a novel complexity measure -- average-reward generalized eluder coefficient (AGEC) -- which captures the challenge of exploration in AMDPs with general function approximation. Such a complexity measure encompasses almost all previously known tractable AMDP models, such as linear AMDPs and linear mixture AMDPs, and also includes newly identified cases such as kernel AMDPs and AMDPs with Bellman eluder dimensions. Using AGEC, we prove that LOOP achieves a sublinear mathcal{O}(poly(d, sp(V^*)) Tbeta ) regret, where d and beta correspond to AGEC and log-covering number of the hypothesis class respectively, sp(V^*) is the span of the optimal state bias function, T denotes the number of steps, and mathcal{O} (cdot) omits logarithmic factors. When specialized to concrete AMDP models, our regret bounds are comparable to those established by the existing algorithms designed specifically for these special cases. To the best of our knowledge, this paper presents the first comprehensive theoretical framework capable of handling nearly all AMDPs.

  • 3 authors
·
Apr 19, 2024

Making RL with Preference-based Feedback Efficient via Randomization

Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.

  • 2 authors
·
Oct 23, 2023

Lower Bounds for Learning in Revealing POMDPs

This paper studies the fundamental limits of reinforcement learning (RL) in the challenging partially observable setting. While it is well-established that learning in Partially Observable Markov Decision Processes (POMDPs) requires exponentially many samples in the worst case, a surge of recent work shows that polynomial sample complexities are achievable under the revealing condition -- A natural condition that requires the observables to reveal some information about the unobserved latent states. However, the fundamental limits for learning in revealing POMDPs are much less understood, with existing lower bounds being rather preliminary and having substantial gaps from the current best upper bounds. We establish strong PAC and regret lower bounds for learning in revealing POMDPs. Our lower bounds scale polynomially in all relevant problem parameters in a multiplicative fashion, and achieve significantly smaller gaps against the current best upper bounds, providing a solid starting point for future studies. In particular, for multi-step revealing POMDPs, we show that (1) the latent state-space dependence is at least Omega(S^{1.5}) in the PAC sample complexity, which is notably harder than the Theta(S) scaling for fully-observable MDPs; (2) Any polynomial sublinear regret is at least Omega(T^{2/3}), suggesting its fundamental difference from the single-step case where O(T) regret is achievable. Technically, our hard instance construction adapts techniques in distribution testing, which is new to the RL literature and may be of independent interest.

  • 5 authors
·
Feb 2, 2023

MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--

For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.

  • 1 authors
·
May 19, 2021

Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates

Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.

  • 3 authors
·
Nov 30, 2022

Restarted Bayesian Online Change-point Detection for Non-Stationary Markov Decision Processes

We consider the problem of learning in a non-stationary reinforcement learning (RL) environment, where the setting can be fully described by a piecewise stationary discrete-time Markov decision process (MDP). We introduce a variant of the Restarted Bayesian Online Change-Point Detection algorithm (R-BOCPD) that operates on input streams originating from the more general multinomial distribution and provides near-optimal theoretical guarantees in terms of false-alarm rate and detection delay. Based on this, we propose an improved version of the UCRL2 algorithm for MDPs with state transition kernel sampled from a multinomial distribution, which we call R-BOCPD-UCRL2. We perform a finite-time performance analysis and show that R-BOCPD-UCRL2 enjoys a favorable regret bound of Oleft(D O A T K_T logleft (frac{T{delta} right) + K_T log frac{K_T{delta}}{minlimits_ell : KLleft( {theta^{(ell+1)}}midmathbf{theta^{(ell)}}right)}}right), where D is the largest MDP diameter from the set of MDPs defining the piecewise stationary MDP setting, O is the finite number of states (constant over all changes), A is the finite number of actions (constant over all changes), K_T is the number of change points up to horizon T, and theta^{(ell)} is the transition kernel during the interval [c_ell, c_{ell+1}), which we assume to be multinomially distributed over the set of states O. Interestingly, the performance bound does not directly scale with the variation in MDP state transition distributions and rewards, ie. can also model abrupt changes. In practice, R-BOCPD-UCRL2 outperforms the state-of-the-art in a variety of scenarios in synthetic environments. We provide a detailed experimental setup along with a code repository (upon publication) that can be used to easily reproduce our experiments.

  • 3 authors
·
Apr 1, 2023

Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach

Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions, leading to their widespread adoption for representing complex priors in Bayesian inverse problems (BIPs). However, current DM-based posterior sampling methods proposed for solving common BIPs rely on heuristic approximations to the generative process. To exploit the generative capability of DMs and avoid the usage of such approximations, we propose an ensemble-based algorithm that performs posterior sampling without the use of heuristic approximations. Our algorithm is motivated by existing works that combine DM-based methods with the sequential Monte Carlo (SMC) method. By examining how the prior evolves through the diffusion process encoded by the pre-trained score function, we derive a modified partial differential equation (PDE) governing the evolution of the corresponding posterior distribution. This PDE includes a modified diffusion term and a reweighting term, which can be simulated via stochastic weighted particle methods. Theoretically, we prove that the error between the true posterior distribution can be bounded in terms of the training error of the pre-trained score function and the number of particles in the ensemble. Empirically, we validate our algorithm on several inverse problems in imaging to show that our method gives more accurate reconstructions compared to existing DM-based methods.

  • 5 authors
·
Jun 4

On-Policy Policy Gradient Reinforcement Learning Without On-Policy Sampling

On-policy reinforcement learning (RL) algorithms perform policy updates using i.i.d. trajectories collected by the current policy. However, after observing only a finite number of trajectories, on-policy sampling may produce data that fails to match the expected on-policy data distribution. This sampling error leads to noisy updates and data inefficient on-policy learning. Recent work in the policy evaluation setting has shown that non-i.i.d., off-policy sampling can produce data with lower sampling error than on-policy sampling can produce. Motivated by this observation, we introduce an adaptive, off-policy sampling method to improve the data efficiency of on-policy policy gradient algorithms. Our method, Proximal Robust On-Policy Sampling (PROPS), reduces sampling error by collecting data with a behavior policy that increases the probability of sampling actions that are under-sampled with respect to the current policy. Rather than discarding data from old policies -- as is commonly done in on-policy algorithms -- PROPS uses data collection to adjust the distribution of previously collected data to be approximately on-policy. We empirically evaluate PROPS on both continuous-action MuJoCo benchmark tasks as well as discrete-action tasks and demonstrate that (1) PROPS decreases sampling error throughout training and (2) improves the data efficiency of on-policy policy gradient algorithms. Our work improves the RL community's understanding of a nuance in the on-policy vs off-policy dichotomy: on-policy learning requires on-policy data, not on-policy sampling.

  • 2 authors
·
Nov 14, 2023

Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning

Recent advancements in large language models (LLMs) have demonstrated remarkable reasoning capabilities. However, single-shot inference often yields unreliable results for complex reasoning tasks, leading researchers to explore multiple reasoning paths through methods such as perplexity and self-consistency. In this paper, we present the first theoretical error decomposition analysis of these techniques, breaking down their error into estimation error and model error. Our analysis reveals a fundamental trade-off: perplexity methods suffer from substantial model error due to the absence of a proper consistency function, while self-consistency exhibits high estimation error due to a slow error convergence rate. To overcome these limitations, we propose Reasoning-Pruning Perplexity Consistency (RPC). This approach combines Perplexity Consistency, which seamlessly integrates LLM perplexity with self-consistency, and Reasoning Pruning, which eliminates low-probability reasoning paths to effectively prevent the degeneration of estimation error reduction. Theoretical analysis demonstrates that RPC not only accelerates the convergence rate of estimation error to an exponential level but also holds strong potential for further reducing model error. Extensive empirical evaluations on seven benchmark datasets confirm that RPC can significantly improve reasoning performance, sample efficiency, and confidence reliability.

  • 7 authors
·
Feb 1

Taming Masked Diffusion Language Models via Consistency Trajectory Reinforcement Learning with Fewer Decoding Step

Masked diffusion language models (MDLMs) have recently emerged as a promising alternative to autoregressive (AR) language models, offering properties such as parallel decoding, flexible generation orders, and the potential for fewer inference steps. Despite these advantages, decoding strategies and reinforcement learning (RL) algorithms tailored for MDLMs remain underexplored. A naive approach is to directly transfer techniques well-established for AR models to MDLMs. However, this raises an immediate question: Is such a naive transfer truly optimal? For example, 1) Block-wise and semi-AR decoding strategies are not employed during the training of MDLMs, so why do they outperform full diffusion-style decoding during inference? 2) Applying RL algorithms designed for AR models directly to MDLMs exhibits a training-inference inconsistency, since MDLM decoding are non-causal (parallel). This results in inconsistencies between the rollout trajectory and the optimization trajectory. To address these challenges, we propose EOS Early Rejection (EOSER) and Ascending Step-Size (ASS) decoding scheduler, which unlock the potential of MDLMs to perform full diffusion-style decoding, achieving competitive performance with fewer decoding steps. Additionally, we introduce Consistency Trajectory Group Relative Policy Optimization (CJ-GRPO) for taming MDLMs, which emphasizes the consistency between rollout trajectory and optimization trajectory, and reduces the optimization errors caused by skip-step optimization. We conduct extensive experiments on reasoning tasks, such as mathematical and planning benchmarks, using LLaDA-8B-Instruct. The results demonstrate that the proposed EOSER and ASS mechanisms, together with CJ-GRPO, hold significant promise for effectively and efficiently taming MDLMs. Code: https://github.com/yjyddq/EOSER-ASS-RL.

A Provably Efficient Sample Collection Strategy for Reinforcement Learning

One of the challenges in online reinforcement learning (RL) is that the agent needs to trade off the exploration of the environment and the exploitation of the samples to optimize its behavior. Whether we optimize for regret, sample complexity, state-space coverage or model estimation, we need to strike a different exploration-exploitation trade-off. In this paper, we propose to tackle the exploration-exploitation problem following a decoupled approach composed of: 1) An "objective-specific" algorithm that (adaptively) prescribes how many samples to collect at which states, as if it has access to a generative model (i.e., a simulator of the environment); 2) An "objective-agnostic" sample collection exploration strategy responsible for generating the prescribed samples as fast as possible. Building on recent methods for exploration in the stochastic shortest path problem, we first provide an algorithm that, given as input the number of samples b(s,a) needed in each state-action pair, requires O(B D + D^{3/2} S^2 A) time steps to collect the B=sum_{s,a} b(s,a) desired samples, in any unknown communicating MDP with S states, A actions and diameter D. Then we show how this general-purpose exploration algorithm can be paired with "objective-specific" strategies that prescribe the sample requirements to tackle a variety of settings -- e.g., model estimation, sparse reward discovery, goal-free cost-free exploration in communicating MDPs -- for which we obtain improved or novel sample complexity guarantees.

  • 4 authors
·
Jul 13, 2020

Policy Evaluation and Temporal-Difference Learning in Continuous Time and Space: A Martingale Approach

We propose a unified framework to study policy evaluation (PE) and the associated temporal difference (TD) methods for reinforcement learning in continuous time and space. We show that PE is equivalent to maintaining the martingale condition of a process. From this perspective, we find that the mean--square TD error approximates the quadratic variation of the martingale and thus is not a suitable objective for PE. We present two methods to use the martingale characterization for designing PE algorithms. The first one minimizes a "martingale loss function", whose solution is proved to be the best approximation of the true value function in the mean--square sense. This method interprets the classical gradient Monte-Carlo algorithm. The second method is based on a system of equations called the "martingale orthogonality conditions" with test functions. Solving these equations in different ways recovers various classical TD algorithms, such as TD(lambda), LSTD, and GTD. Different choices of test functions determine in what sense the resulting solutions approximate the true value function. Moreover, we prove that any convergent time-discretized algorithm converges to its continuous-time counterpart as the mesh size goes to zero, and we provide the convergence rate. We demonstrate the theoretical results and corresponding algorithms with numerical experiments and applications.

  • 2 authors
·
Aug 14, 2021

A Survey on Model-based Reinforcement Learning

Reinforcement learning (RL) solves sequential decision-making problems via a trial-and-error process interacting with the environment. While RL achieves outstanding success in playing complex video games that allow huge trial-and-error, making errors is always undesired in the real world. To improve the sample efficiency and thus reduce the errors, model-based reinforcement learning (MBRL) is believed to be a promising direction, which builds environment models in which the trial-and-errors can take place without real costs. In this survey, we take a review of MBRL with a focus on the recent progress in deep RL. For non-tabular environments, there is always a generalization error between the learned environment model and the real environment. As such, it is of great importance to analyze the discrepancy between policy training in the environment model and that in the real environment, which in turn guides the algorithm design for better model learning, model usage, and policy training. Besides, we also discuss the recent advances of model-based techniques in other forms of RL, including offline RL, goal-conditioned RL, multi-agent RL, and meta-RL. Moreover, we discuss the applicability and advantages of MBRL in real-world tasks. Finally, we end this survey by discussing the promising prospects for the future development of MBRL. We think that MBRL has great potential and advantages in real-world applications that were overlooked, and we hope this survey could attract more research on MBRL.

  • 6 authors
·
Jun 19, 2022

Model-agnostic Measure of Generalization Difficulty

The measure of a machine learning algorithm is the difficulty of the tasks it can perform, and sufficiently difficult tasks are critical drivers of strong machine learning models. However, quantifying the generalization difficulty of machine learning benchmarks has remained challenging. We propose what is to our knowledge the first model-agnostic measure of the inherent generalization difficulty of tasks. Our inductive bias complexity measure quantifies the total information required to generalize well on a task minus the information provided by the data. It does so by measuring the fractional volume occupied by hypotheses that generalize on a task given that they fit the training data. It scales exponentially with the intrinsic dimensionality of the space over which the model must generalize but only polynomially in resolution per dimension, showing that tasks which require generalizing over many dimensions are drastically more difficult than tasks involving more detail in fewer dimensions. Our measure can be applied to compute and compare supervised learning, reinforcement learning and meta-learning generalization difficulties against each other. We show that applied empirically, it formally quantifies intuitively expected trends, e.g. that in terms of required inductive bias, MNIST < CIFAR10 < Imagenet and fully observable Markov decision processes (MDPs) < partially observable MDPs. Further, we show that classification of complex images < few-shot meta-learning with simple images. Our measure provides a quantitative metric to guide the construction of more complex tasks requiring greater inductive bias, and thereby encourages the development of more sophisticated architectures and learning algorithms with more powerful generalization capabilities.

  • 6 authors
·
May 1, 2023

Deep Probability Estimation

Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.

  • 11 authors
·
Nov 20, 2021

When is Realizability Sufficient for Off-Policy Reinforcement Learning?

Model-free algorithms for reinforcement learning typically require a condition called Bellman completeness in order to successfully operate off-policy with function approximation, unless additional conditions are met. However, Bellman completeness is a requirement that is much stronger than realizability and that is deemed to be too strong to hold in practice. In this work, we relax this structural assumption and analyze the statistical complexity of off-policy reinforcement learning when only realizability holds for the prescribed function class. We establish finite-sample guarantees for off-policy reinforcement learning that are free of the approximation error term known as inherent Bellman error, and that depend on the interplay of three factors. The first two are well known: they are the metric entropy of the function class and the concentrability coefficient that represents the cost of learning off-policy. The third factor is new, and it measures the violation of Bellman completeness, namely the mis-alignment between the chosen function class and its image through the Bellman operator. In essence, these error bounds establish that off-policy reinforcement learning remains statistically viable even in absence of Bellman completeness, and characterize the intermediate situation between the favorable Bellman complete setting and the worst-case scenario where exponential lower bounds are in force. Our analysis directly applies to the solution found by temporal difference algorithms when they converge.

  • 1 authors
·
Nov 9, 2022

Boundary-Guided Policy Optimization for Memory-efficient RL of Diffusion Large Language Models

A key challenge in applying reinforcement learning (RL) to diffusion large language models (dLLMs) lies in the intractability of their likelihood functions, which are essential for the RL objective, necessitating corresponding approximation in each training step. While existing methods approximate the log-likelihoods by their evidence lower bounds (ELBOs) via customized Monte Carlo (MC) sampling, the forward computational graphs of all MC samples need to be retained for the gradient computation of non-linear terms in the RL objective, resulting in significant memory overhead. This constraint restricts feasible sample sizes, leading to imprecise likelihood approximations and ultimately distorting the RL objective. To overcome this limitation, we propose Boundary-Guided Policy Optimization (BGPO), a memory-efficient RL algorithm that maximizes a specially constructed lower bound of the ELBO-based objective. This lower bound is carefully designed to satisfy two key properties: (1) Linearity: it is formulated in a linear sum where each term depends only on a single MC sample, thereby enabling gradient accumulation across samples and ensuring constant memory usage; (2) Equivalence: Both the value and gradient of this lower bound are equal to those of the ELBO-based objective in on-policy training, making it also an effective approximation for the original RL objective. These properties allow BGPO to adopt a large MC sample size, resulting in more accurate likelihood approximations and improved RL objective estimation, which in turn leads to enhanced performance. Experiments show that BGPO significantly outperforms previous RL algorithms for dLLMs in math problem solving, code generation, and planning tasks.

zai-org Z.ai
·
Oct 13 2

Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning

Conventional uncertainty-aware temporal difference (TD) learning methods often rely on simplistic assumptions, typically including a zero-mean Gaussian distribution for TD errors. Such oversimplification can lead to inaccurate error representations and compromised uncertainty estimation. In this paper, we introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning, applicable to both discrete and continuous control settings. Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis, thereby improving the estimation and mitigation of data-dependent noise, i.e., aleatoric uncertainty. We examine the influence of the shape parameter of the generalized Gaussian distribution (GGD) on aleatoric uncertainty and provide a closed-form expression that demonstrates an inverse relationship between uncertainty and the shape parameter. Additionally, we propose a theoretically grounded weighting scheme to fully leverage the GGD. To address epistemic uncertainty, we enhance the batch inverse variance weighting by incorporating bias reduction and kurtosis considerations, resulting in improved robustness. Extensive experimental evaluations using policy gradient algorithms demonstrate the consistent efficacy of our method, showcasing significant performance improvements.

  • 5 authors
·
Aug 5, 2024

Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling

Masked diffusion models (MDMs) have emerged as a popular research topic for generative modeling of discrete data, thanks to their superior performance over other discrete diffusion models, and are rivaling the auto-regressive models (ARMs) for language modeling tasks. The recent effort in simplifying the masked diffusion framework further leads to alignment with continuous-space diffusion models and more principled training and sampling recipes. In this paper, however, we reveal that both training and sampling of MDMs are theoretically free from the time variable, arguably the key signature of diffusion models, and are instead equivalent to masked models. The connection on the sampling aspect is drawn by our proposed first-hitting sampler (FHS). Specifically, we show that the FHS is theoretically equivalent to MDMs' original generation process while significantly alleviating the time-consuming categorical sampling and achieving a 20times speedup. In addition, our investigation raises doubts about whether MDMs can truly beat ARMs. We identify, for the first time, an underlying numerical issue, even with the commonly used 32-bit floating-point precision, which results in inaccurate categorical sampling. We show that the numerical issue lowers the effective temperature both theoretically and empirically, and the resulting decrease in token diversity makes previous evaluations, which assess the generation quality solely through the incomplete generative perplexity metric, somewhat unfair.

  • 6 authors
·
Sep 4, 2024

DEUP: Direct Epistemic Uncertainty Prediction

Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.

  • 8 authors
·
Feb 16, 2021