- Object Classification in Images of Neoclassical Artifacts Using Deep Learning In this paper, we report on our efforts for using Deep Learning for classifying artifacts and their features in digital visuals as a part of the Neoclassica framework. It was conceived to provide scholars with new methods for analyzing and classifying artifacts and aesthetic forms from the era of Classicism. The framework accommodates both traditional knowledge representation as a formal ontology and data-driven knowledge discovery, where cultural patterns will be identified by means of algorithms in statistical analysis and machine learning. We created a Deep Learning approach trained on photographs to classify the objects inside these photographs. In a next step, we will apply a different Deep Learning approach. It is capable of locating multiple objects inside an image and classifying them with a high accuracy. 4 authors · Oct 13, 2017
- Object classification in images of Neoclassical furniture using Deep Learning This short paper outlines research results on object classification in images of Neoclassical furniture. The motivation was to provide an object recognition framework which is able to support the alignment of furniture images with a symbolic level model. A data-driven bottom-up research routine in the Neoclassica research framework is the main use-case. It strives to deliver tools for analyzing the spread of aesthetic forms which are considered as a cultural transfer process. 4 authors · Mar 7, 2017
- Historical Ink: 19th Century Latin American Spanish Newspaper Corpus with LLM OCR Correction This paper presents two significant contributions: first, a novel dataset of 19th-century Latin American press texts, which addresses the lack of specialized corpora for historical and linguistic analysis in this region. Second, it introduces a framework for OCR error correction and linguistic surface form detection in digitized corpora, utilizing a Large Language Model. This framework is adaptable to various contexts and, in this paper, is specifically applied to the newly created dataset. 3 authors · Jul 3, 2024
21 ATHAR: A High-Quality and Diverse Dataset for Classical Arabic to English Translation Classical Arabic represents a significant era, encompassing the golden age of Arab culture, philosophy, and scientific literature. With a broad consensus on the importance of translating these literatures to enrich knowledge dissemination across communities, the advent of large language models (LLMs) and translation systems offers promising tools to facilitate this goal. However, we have identified a scarcity of translation datasets in Classical Arabic, which are often limited in scope and topics, hindering the development of high-quality translation systems. In response, we present the ATHAR dataset, comprising 66,000 high-quality Classical Arabic to English translation samples that cover a wide array of subjects including science, culture, and philosophy. Furthermore, we assess the performance of current state-of-the-art LLMs under various settings, concluding that there is a need for such datasets in current systems. Our findings highlight how models can benefit from fine-tuning or incorporating this dataset into their pretraining pipelines. The dataset is publicly available on the HuggingFace Data Hub at https://huggingface.co/datasets/mohamed-khalil/ATHAR. 2 authors · Jul 29, 2024 1
- A Dataset for Greek Traditional and Folk Music: Lyra Studying under-represented music traditions under the MIR scope is crucial, not only for developing novel analysis tools, but also for unveiling musical functions that might prove useful in studying world musics. This paper presents a dataset for Greek Traditional and Folk music that includes 1570 pieces, summing in around 80 hours of data. The dataset incorporates YouTube timestamped links for retrieving audio and video, along with rich metadata information with regards to instrumentation, geography and genre, among others. The content has been collected from a Greek documentary series that is available online, where academics present music traditions of Greece with live music and dance performance during the show, along with discussions about social, cultural and musicological aspects of the presented music. Therefore, this procedure has resulted in a significant wealth of descriptions regarding a variety of aspects, such as musical genre, places of origin and musical instruments. In addition, the audio recordings were performed under strict production-level specifications, in terms of recording equipment, leading to very clean and homogeneous audio content. In this work, apart from presenting the dataset in detail, we propose a baseline deep-learning classification approach to recognize the involved musicological attributes. The dataset, the baseline classification methods and the models are provided in public repositories. Future directions for further refining the dataset are also discussed. 5 authors · Nov 21, 2022
1 Kornia: an Open Source Differentiable Computer Vision Library for PyTorch This work presents Kornia -- an open source computer vision library which consists of a set of differentiable routines and modules to solve generic computer vision problems. The package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by OpenCV, Kornia is composed of a set of modules containing operators that can be inserted inside neural networks to train models to perform image transformations, camera calibration, epipolar geometry, and low level image processing techniques, such as filtering and edge detection that operate directly on high dimensional tensor representations. Examples of classical vision problems implemented using our framework are provided including a benchmark comparing to existing vision libraries. 5 authors · Oct 4, 2019