new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Tracing the cosmological origin of gas that fuels in situ star formation in TNG50 galaxies

Based on their cosmological origin, the stars of a galaxy can be divided into two categories: those that enter through merger events (ex situ) and those born in the main progenitor (in situ). We used the TNG50 cosmological magnetohydrodynamical simulation and its Lagrangian tracer particles to explore and quantify the origin of gas that ultimately forms the in situ stars of galaxies. We tracked back the baryonic mass contributing to the z=0 in situ stellar populations of galaxies, studying trends in mass from dwarfs to group-scale halos. We find that more massive halos acquire this matter earlier than lower-mass halos, reflecting an overall earlier assembly of their in situ stellar mass. Defining the Lagrangian half-mass radius R_{rm L, 1/2} of a galaxy as the distance containing half of the mass that will form its in situ stars by z=0, we find that R_{rm L, 1/2} is larger for more massive halos at early times, reflecting larger "in situ Lagrangian regions." However, the dependence of this radius on halo mass becomes flat at z simeq 3 and then inverts toward z=0. In addition, R_{rm L, 1/2} increases rapidly with redshift, surpassing the virial radii of halos at z sim 2. This marks the cosmic epoch at which most of the gas that eventually forms the in situ stars of galaxies leaves the intergalactic medium (IGM) and enters halos, a transition that occurs earlier for more massive halos. The formation redshift of the in situ stellar component increases with halo mass, while the formation redshift of the dark matter halo decreases, indicative of a differential assembly history between these two components. Finally, we decomposed the z=0 in situ stellar mass into its distinct modes of accretion. Smooth accretion from the IGM is the most important for low-mass galaxies, while mergers and satellite-stripped gas become relevant and even dominant only for high-mass galaxies.

  • 3 authors
·
Feb 28, 2025

Deep Learning solutions to singular ordinary differential equations: from special functions to spherical accretion

Singular regular points often arise in differential equations describing physical phenomena such as fluid dynamics, electromagnetism, and gravitation. Traditional numerical techniques often fail or become unstable near these points, requiring the use of semi-analytical tools, such as series expansions and perturbative methods, in combination with numerical algorithms; or to invoke more sophisticated methods. In this work, we take an alternative route and leverage the power of machine learning to exploit Physics Informed Neural Networks (PINNs) as a modern approach to solving ordinary differential equations with singular points. PINNs utilize deep learning architectures to approximate solutions by embedding the differential equations into the loss function of the neural network. We discuss the advantages of PINNs in handling singularities, particularly their ability to bypass traditional grid-based methods and provide smooth approximations across irregular regions. Techniques for enhancing the accuracy of PINNs near singular points, such as adaptive loss weighting, are used in order to achieve high efficiency in the training of the network. We exemplify our results by studying four differential equations of interest in mathematics and gravitation -- the Legendre equation, the hypergeometric equation, the solution for black hole space-times in theories of Lorentz violating gravity, and the spherical accretion of a perfect fluid in a Schwarzschild geometry.

  • 3 authors
·
Sep 30, 2024