Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeST-MoE: Designing Stable and Transferable Sparse Expert Models
Scale has opened new frontiers in natural language processing -- but at a high cost. In response, Mixture-of-Experts (MoE) and Switch Transformers have been proposed as an energy efficient path to even larger and more capable language models. But advancing the state-of-the-art across a broad set of natural language tasks has been hindered by training instabilities and uncertain quality during fine-tuning. Our work focuses on these issues and acts as a design guide. We conclude by scaling a sparse model to 269B parameters, with a computational cost comparable to a 32B dense encoder-decoder Transformer (Stable and Transferable Mixture-of-Experts or ST-MoE-32B). For the first time, a sparse model achieves state-of-the-art performance in transfer learning, across a diverse set of tasks including reasoning (SuperGLUE, ARC Easy, ARC Challenge), summarization (XSum, CNN-DM), closed book question answering (WebQA, Natural Questions), and adversarially constructed tasks (Winogrande, ANLI R3).
A Review of Sparse Expert Models in Deep Learning
Sparse expert models are a thirty-year old concept re-emerging as a popular architecture in deep learning. This class of architecture encompasses Mixture-of-Experts, Switch Transformers, Routing Networks, BASE layers, and others, all with the unifying idea that each example is acted on by a subset of the parameters. By doing so, the degree of sparsity decouples the parameter count from the compute per example allowing for extremely large, but efficient models. The resulting models have demonstrated significant improvements across diverse domains such as natural language processing, computer vision, and speech recognition. We review the concept of sparse expert models, provide a basic description of the common algorithms, contextualize the advances in the deep learning era, and conclude by highlighting areas for future work.
Hash Layers For Large Sparse Models
We investigate the training of sparse layers that use different parameters for different inputs based on hashing in large Transformer models. Specifically, we modify the feedforward layer to hash to different sets of weights depending on the current token, over all tokens in the sequence. We show that this procedure either outperforms or is competitive with learning-to-route mixture-of-expert methods such as Switch Transformers and BASE Layers, while requiring no routing parameters or extra terms in the objective function such as a load balancing loss, and no sophisticated assignment algorithm. We study the performance of different hashing techniques, hash sizes and input features, and show that balanced and random hashes focused on the most local features work best, compared to either learning clusters or using longer-range context. We show our approach works well both on large language modeling and dialogue tasks, and on downstream fine-tuning tasks.
Scaling Laws vs Model Architectures: How does Inductive Bias Influence Scaling?
There have been a lot of interest in the scaling properties of Transformer models. However, not much has been done on the front of investigating the effect of scaling properties of different inductive biases and model architectures. Do model architectures scale differently? If so, how does inductive bias affect scaling behaviour? How does this influence upstream (pretraining) and downstream (transfer)? This paper conducts a systematic study of scaling behaviour of ten diverse model architectures such as Transformers, Switch Transformers, Universal Transformers, Dynamic convolutions, Performers, and recently proposed MLP-Mixers. Via extensive experiments, we show that (1) architecture is an indeed an important consideration when performing scaling and (2) the best performing model can fluctuate at different scales. We believe that the findings outlined in this work has significant implications to how model architectures are currently evaluated in the community.
Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained Language Models
Recently, Mixture-of-Experts (short as MoE) architecture has achieved remarkable success in increasing the model capacity of large-scale language models. However, MoE requires incorporating significantly more parameters than the base model being extended. In this paper, we propose building a parameter-efficient MoE architecture by sharing information among experts. We adopt the matrix product operator (MPO, a tensor decomposition from quantum many-body physics) to reconstruct the parameter matrix in the expert layer and increase model capacity for pre-trained language models by sharing parameters of the central tensor (containing the core information) among different experts while enabling the specificity through the auxiliary tensors (complementing the central tensor) of different experts. To address the unbalanced optimization issue, we further design the gradient mask strategy for the MPO-based MoE architecture. Extensive experiments based on T5 and GPT-2 show improved performance and efficiency of the pre-trained language model (27.2x reduction in total parameters for the superior model performance, compared with the Switch Transformers). Our code is publicly available at https://github.com/RUCAIBox/MPOE.
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
Not All Prompts Are Secure: A Switchable Backdoor Attack Against Pre-trained Vision Transformers
Given the power of vision transformers, a new learning paradigm, pre-training and then prompting, makes it more efficient and effective to address downstream visual recognition tasks. In this paper, we identify a novel security threat towards such a paradigm from the perspective of backdoor attacks. Specifically, an extra prompt token, called the switch token in this work, can turn the backdoor mode on, i.e., converting a benign model into a backdoored one. Once under the backdoor mode, a specific trigger can force the model to predict a target class. It poses a severe risk to the users of cloud API, since the malicious behavior can not be activated and detected under the benign mode, thus making the attack very stealthy. To attack a pre-trained model, our proposed attack, named SWARM, learns a trigger and prompt tokens including a switch token. They are optimized with the clean loss which encourages the model always behaves normally even the trigger presents, and the backdoor loss that ensures the backdoor can be activated by the trigger when the switch is on. Besides, we utilize the cross-mode feature distillation to reduce the effect of the switch token on clean samples. The experiments on diverse visual recognition tasks confirm the success of our switchable backdoor attack, i.e., achieving 95%+ attack success rate, and also being hard to be detected and removed. Our code is available at https://github.com/20000yshust/SWARM.
Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention Graph in Pre-Trained Transformers
Deployment of Transformer models on edge devices is becoming increasingly challenging due to the exponentially growing inference cost that scales quadratically with the number of tokens in the input sequence. Token pruning is an emerging solution to address this challenge due to its ease of deployment on various Transformer backbones. However, most token pruning methods require computationally expensive fine-tuning, which is undesirable in many edge deployment cases. In this work, we propose Zero-TPrune, the first zero-shot method that considers both the importance and similarity of tokens in performing token pruning. It leverages the attention graph of pre-trained Transformer models to produce an importance distribution for tokens via our proposed Weighted Page Rank (WPR) algorithm. This distribution further guides token partitioning for efficient similarity-based pruning. Due to the elimination of the fine-tuning overhead, Zero-TPrune can prune large models at negligible computational cost, switch between different pruning configurations at no computational cost, and perform hyperparameter tuning efficiently. We evaluate the performance of Zero-TPrune on vision tasks by applying it to various vision Transformer backbones and testing them on ImageNet. Without any fine-tuning, Zero-TPrune reduces the FLOPs cost of DeiT-S by 34.7\% and improves its throughput by 45.3\% with only 0.4\% accuracy loss. Compared with state-of-the-art pruning methods that require fine-tuning, Zero-TPrune not only eliminates the need for fine-tuning after pruning but also does so with only 0.1\% accuracy loss. Compared with state-of-the-art fine-tuning-free pruning methods, Zero-TPrune reduces accuracy loss by up to 49\% with the same or higher throughput.
Efficient Language Modeling with Sparse all-MLP
All-MLP architectures have attracted increasing interest as an alternative to attention-based models. In NLP, recent work like gMLP shows that all-MLPs can match Transformers in language modeling, but still lag behind in downstream tasks. In this work, we analyze the limitations of MLPs in expressiveness, and propose sparsely activated MLPs with mixture-of-experts (MoEs) in both feature and input (token) dimensions. Such sparse all-MLPs significantly increase model capacity and expressiveness while keeping the compute constant. We address critical challenges in incorporating conditional computation with two routing strategies. The proposed sparse all-MLP improves language modeling perplexity and obtains up to 2times improvement in training efficiency compared to both Transformer-based MoEs (GShard, Switch Transformer, Base Layers and HASH Layers) as well as dense Transformers and all-MLPs. Finally, we evaluate its zero-shot in-context learning performance on six downstream tasks, and find that it surpasses Transformer-based MoEs and dense Transformers.
Taming Sparsely Activated Transformer with Stochastic Experts
Sparsely activated models (SAMs), such as Mixture-of-Experts (MoE), can easily scale to have outrageously large amounts of parameters without significant increase in computational cost. However, SAMs are reported to be parameter inefficient such that larger models do not always lead to better performance. While most on-going research focuses on improving SAMs models by exploring methods of routing inputs to experts, our analysis reveals that such research might not lead to the solution we expect, i.e., the commonly-used routing methods based on gating mechanisms do not work better than randomly routing inputs to experts. In this paper, we propose a new expert-based model, THOR (Transformer witH StOchastic ExpeRts). Unlike classic expert-based models, such as the Switch Transformer, experts in THOR are randomly activated for each input during training and inference. THOR models are trained using a consistency regularized loss, where experts learn not only from training data but also from other experts as teachers, such that all the experts make consistent predictions. We validate the effectiveness of THOR on machine translation tasks. Results show that THOR models are more parameter efficient in that they significantly outperform the Transformer and MoE models across various settings. For example, in multilingual translation, THOR outperforms the Switch Transformer by 2 BLEU scores, and obtains the same BLEU score as that of a state-of-the-art MoE model that is 18 times larger. Our code is publicly available at: https://github.com/microsoft/Stochastic-Mixture-of-Experts.
Build a Robust QA System with Transformer-based Mixture of Experts
In this paper, we aim to build a robust question answering system that can adapt to out-of-domain datasets. A single network may overfit to the superficial correlation in the training distribution, but with a meaningful number of expert sub-networks, a gating network that selects a sparse combination of experts for each input, and careful balance on the importance of expert sub-networks, the Mixture-of-Experts (MoE) model allows us to train a multi-task learner that can be generalized to out-of-domain datasets. We also explore the possibility of bringing the MoE layers up to the middle of the DistilBERT and replacing the dense feed-forward network with a sparsely-activated switch FFN layers, similar to the Switch Transformer architecture, which simplifies the MoE routing algorithm with reduced communication and computational costs. In addition to model architectures, we explore techniques of data augmentation including Easy Data Augmentation (EDA) and back translation, to create more meaningful variance among the small out-of-domain training data, therefore boosting the performance and robustness of our models. In this paper, we show that our combination of best architecture and data augmentation techniques achieves a 53.477 F1 score in the out-of-domain evaluation, which is a 9.52% performance gain over the baseline. On the final test set, we reported a higher 59.506 F1 and 41.651 EM. We successfully demonstrate the effectiveness of Mixture-of-Expert architecture in a Robust QA task.
Sparse Backpropagation for MoE Training
One defining characteristic of Mixture-of-Expert (MoE) models is their capacity for conducting sparse computation via expert routing, leading to remarkable scalability. However, backpropagation, the cornerstone of deep learning, requires dense computation, thereby posting challenges in MoE gradient computations. Here, we introduce SparseMixer, a scalable gradient estimator that bridges the gap between backpropagation and sparse expert routing. Unlike typical MoE training which strategically neglects certain gradient terms for the sake of sparse computation and scalability, SparseMixer provides scalable gradient approximations for these terms, enabling reliable gradient estimation in MoE training. Grounded in a numerical ODE framework, SparseMixer harnesses the mid-point method, a second-order ODE solver, to deliver precise gradient approximations with negligible computational overhead. Applying SparseMixer to Switch Transformer on both pre-training and machine translation tasks, SparseMixer showcases considerable performance gain, accelerating training convergence up to 2 times.
SwitchHead: Accelerating Transformers with Mixture-of-Experts Attention
The costly self-attention layers in modern Transformers require memory and compute quadratic in sequence length. Existing approximation methods usually underperform and fail to obtain significant speedups in practice. Here we present SwitchHead - a novel method that reduces both compute and memory requirements and achieves wall-clock speedup, while matching the language modeling performance of baseline Transformers with the same parameter budget. SwitchHead uses Mixture-of-Experts (MoE) layers for the value and output projections and requires 4 to 8 times fewer attention matrices than standard Transformers. Our novel attention can also be combined with MoE MLP layers, resulting in an efficient fully-MoE "SwitchAll" Transformer model. Our code is public.
Omni-Router: Sharing Routing Decisions in Sparse Mixture-of-Experts for Speech Recognition
Mixture-of-experts (MoE) architectures have expanded from language modeling to automatic speech recognition (ASR). Traditional MoE methods, such as the Switch Transformer, route experts independently within each layer. Our analysis reveals that routers in most layers make expert choices that are not strongly correlated with the choices of the routers in other layers. To increase the cooperation between experts in different layers and encourage greater specialization, we use a shared router across different MoE layers. We call this model Omni-router Transformer. Extensive experiments on a large-scale pseudo-labeled dataset and evaluations across 10 diverse, out-of-domain ASR benchmarks demonstrate that the Omni-router Transformer is able to achieve lower training loss and consistently outperform dense and Switch Transformer models, reducing average word error rates by 11.2% and 8.2%, respectively, while providing structured expert usage and improved robustness to diverse data.
Mixture-of-Experts with Expert Choice Routing
Sparsely-activated Mixture-of-experts (MoE) models allow the number of parameters to greatly increase while keeping the amount of computation for a given token or a given sample unchanged. However, a poor expert routing strategy (e.g. one resulting in load imbalance) can cause certain experts to be under-trained, leading to an expert being under or over-specialized. Prior work allocates a fixed number of experts to each token using a top-k function regardless of the relative importance of different tokens. To address this, we propose a heterogeneous mixture-of-experts employing an expert choice method. Instead of letting tokens select the top-k experts, we have experts selecting the top-k tokens. As a result, each token can be routed to a variable number of experts and each expert can have a fixed bucket size. We systematically study pre-training speedups using the same computational resources of the Switch Transformer top-1 and GShard top-2 gating of prior work and find that our method improves training convergence time by more than 2x. For the same computational cost, our method demonstrates higher performance in fine-tuning 11 selected tasks in the GLUE and SuperGLUE benchmarks. For a smaller activation cost, our method outperforms the T5 dense model in 7 out of the 11 tasks.
SMILE: Scaling Mixture-of-Experts with Efficient Bi-level Routing
The mixture of Expert (MoE) parallelism is a recent advancement that scales up the model size with constant computational cost. MoE selects different sets of parameters (i.e., experts) for each incoming token, resulting in a sparsely-activated model. Despite several successful applications of MoE, its training efficiency degrades significantly as the number of experts increases. The routing stage in MoE relies on the efficiency of the All2All communication collective, which suffers from network congestion and has poor scalability. To mitigate these issues, we introduce SMILE, which exploits heterogeneous network bandwidth and splits a single-step routing into bi-level routing. Our experimental results show that the proposed method obtains a 2.5x speedup over Switch Transformer in terms of pretraining throughput on the Colossal Clean Crawled Corpus without losing any convergence speed.
ExpertRAG: Efficient RAG with Mixture of Experts -- Optimizing Context Retrieval for Adaptive LLM Responses
ExpertRAG is a novel theoretical framework that integrates Mixture-of-Experts (MoE) architectures with Retrieval Augmented Generation (RAG) to advance the efficiency and accuracy of knowledge-intensive language modeling. We propose a dynamic retrieval gating mechanism coupled with expert routing, enabling the model to selectively consult an external knowledge store or rely on specialized internal experts based on the query's needs. The paper lays out the theoretical foundations of ExpertRAG, including a probabilistic formulation that treats retrieval and expert selection as latent decisions, and mathematical justifications for its efficiency in both computation and knowledge utilization. We derive formulae to quantify the expected computational cost savings from selective retrieval and the capacity gains from sparse expert utilization. A comparative analysis positions ExpertRAG against standard RAG (with always-on retrieval) and pure MoE models (e.g., Switch Transformer, Mixtral) to highlight its unique balance between parametric knowledge and non-parametric retrieval. We also outline an experimental validation strategy, proposing benchmarks and evaluation protocols to test ExpertRAG's performance on factual recall, generalization, and inference efficiency. The proposed framework, although presented theoretically, is supported by insights from prior work in RAG and MoE, and is poised to provide more factual, efficient, and adaptive generation by leveraging the best of both paradigms. In summary, ExpertRAG contributes a new perspective on scaling and augmenting language models, backed by a thorough analysis and a roadmap for empirical validation.
Towards A Unified View of Sparse Feed-Forward Network in Pretraining Large Language Model
Large and sparse feed-forward layers (S-FFN) such as Mixture-of-Experts (MoE) have proven effective in scaling up Transformers model size for pretraining large language models. By only activating part of the FFN parameters conditioning on input, S-FFN improves generalization performance while keeping training and inference costs (in FLOPs) fixed. In this work, we analyzed two major design choices of S-FFN: the memory block (a.k.a. expert) size and the memory block selection method under a general conceptual framework of sparse neural memory. Using this unified framework, we compare several S-FFN architectures for language modeling and provide insights into their relative efficacy and efficiency. We found a simpler selection method -- \texttt{Avg-K} that selects blocks through their mean aggregated hidden states, achieving lower perplexity in language model pretraining compared to existing MoE architectures including Switch Transformer (Fedus et al., 2021) and HashLayer (Roller et al., 2021).
Switch Diffusion Transformer: Synergizing Denoising Tasks with Sparse Mixture-of-Experts
Diffusion models have achieved remarkable success across a range of generative tasks. Recent efforts to enhance diffusion model architectures have reimagined them as a form of multi-task learning, where each task corresponds to a denoising task at a specific noise level. While these efforts have focused on parameter isolation and task routing, they fall short of capturing detailed inter-task relationships and risk losing semantic information, respectively. In response, we introduce Switch Diffusion Transformer (Switch-DiT), which establishes inter-task relationships between conflicting tasks without compromising semantic information. To achieve this, we employ a sparse mixture-of-experts within each transformer block to utilize semantic information and facilitate handling conflicts in tasks through parameter isolation. Additionally, we propose a diffusion prior loss, encouraging similar tasks to share their denoising paths while isolating conflicting ones. Through these, each transformer block contains a shared expert across all tasks, where the common and task-specific denoising paths enable the diffusion model to construct its beneficial way of synergizing denoising tasks. Extensive experiments validate the effectiveness of our approach in improving both image quality and convergence rate, and further analysis demonstrates that Switch-DiT constructs tailored denoising paths across various generation scenarios.
A Survey of Techniques for Optimizing Transformer Inference
Recent years have seen a phenomenal rise in performance and applications of transformer neural networks. The family of transformer networks, including Bidirectional Encoder Representations from Transformer (BERT), Generative Pretrained Transformer (GPT) and Vision Transformer (ViT), have shown their effectiveness across Natural Language Processing (NLP) and Computer Vision (CV) domains. Transformer-based networks such as ChatGPT have impacted the lives of common men. However, the quest for high predictive performance has led to an exponential increase in transformers' memory and compute footprint. Researchers have proposed techniques to optimize transformer inference at all levels of abstraction. This paper presents a comprehensive survey of techniques for optimizing the inference phase of transformer networks. We survey techniques such as knowledge distillation, pruning, quantization, neural architecture search and lightweight network design at the algorithmic level. We further review hardware-level optimization techniques and the design of novel hardware accelerators for transformers. We summarize the quantitative results on the number of parameters/FLOPs and accuracy of several models/techniques to showcase the tradeoff exercised by them. We also outline future directions in this rapidly evolving field of research. We believe that this survey will educate both novice and seasoned researchers and also spark a plethora of research efforts in this field.
A Survey of Transformers
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
Foundation Transformers
A big convergence of model architectures across language, vision, speech, and multimodal is emerging. However, under the same name "Transformers", the above areas use different implementations for better performance, e.g., Post-LayerNorm for BERT, and Pre-LayerNorm for GPT and vision Transformers. We call for the development of Foundation Transformer for true general-purpose modeling, which serves as a go-to architecture for various tasks and modalities with guaranteed training stability. In this work, we introduce a Transformer variant, named Magneto, to fulfill the goal. Specifically, we propose Sub-LayerNorm for good expressivity, and the initialization strategy theoretically derived from DeepNet for stable scaling up. Extensive experiments demonstrate its superior performance and better stability than the de facto Transformer variants designed for various applications, including language modeling (i.e., BERT, and GPT), machine translation, vision pretraining (i.e., BEiT), speech recognition, and multimodal pretraining (i.e., BEiT-3).
A Survey on Transformers in Reinforcement Learning
Transformer has been considered the dominating neural architecture in NLP and CV, mostly under supervised settings. Recently, a similar surge of using Transformers has appeared in the domain of reinforcement learning (RL), but it is faced with unique design choices and challenges brought by the nature of RL. However, the evolution of Transformers in RL has not yet been well unraveled. In this paper, we seek to systematically review motivations and progress on using Transformers in RL, provide a taxonomy on existing works, discuss each sub-field, and summarize future prospects.
An Introduction to Transformers
The transformer is a neural network component that can be used to learn useful representations of sequences or sets of data-points. The transformer has driven recent advances in natural language processing, computer vision, and spatio-temporal modelling. There are many introductions to transformers, but most do not contain precise mathematical descriptions of the architecture and the intuitions behind the design choices are often also missing. Moreover, as research takes a winding path, the explanations for the components of the transformer can be idiosyncratic. In this note we aim for a mathematically precise, intuitive, and clean description of the transformer architecture. We will not discuss training as this is rather standard. We assume that the reader is familiar with fundamental topics in machine learning including multi-layer perceptrons, linear transformations, softmax functions and basic probability.
Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping
While Transformers have enabled tremendous progress in various application settings, such architectures still lag behind traditional symbolic planners for solving complex decision making tasks. In this work, we demonstrate how to train Transformers to solve complex planning tasks and present Searchformer, a Transformer model that optimally solves previously unseen Sokoban puzzles 93.7% of the time, while using up to 26.8% fewer search steps than standard A^* search. Searchformer is an encoder-decoder Transformer model trained to predict the search dynamics of A^*. This model is then fine-tuned via expert iterations to perform fewer search steps than A^* search while still generating an optimal plan. In our training method, A^*'s search dynamics are expressed as a token sequence outlining when task states are added and removed into the search tree during symbolic planning. In our ablation studies on maze navigation, we find that Searchformer significantly outperforms baselines that predict the optimal plan directly with a 5-10times smaller model size and a 10times smaller training dataset. We also demonstrate how Searchformer scales to larger and more complex decision making tasks like Sokoban with improved percentage of solved tasks and shortened search dynamics.
Less is More: Pay Less Attention in Vision Transformers
Transformers have become one of the dominant architectures in deep learning, particularly as a powerful alternative to convolutional neural networks (CNNs) in computer vision. However, Transformer training and inference in previous works can be prohibitively expensive due to the quadratic complexity of self-attention over a long sequence of representations, especially for high-resolution dense prediction tasks. To this end, we present a novel Less attention vIsion Transformer (LIT), building upon the fact that the early self-attention layers in Transformers still focus on local patterns and bring minor benefits in recent hierarchical vision Transformers. Specifically, we propose a hierarchical Transformer where we use pure multi-layer perceptrons (MLPs) to encode rich local patterns in the early stages while applying self-attention modules to capture longer dependencies in deeper layers. Moreover, we further propose a learned deformable token merging module to adaptively fuse informative patches in a non-uniform manner. The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation, serving as a strong backbone for many vision tasks. Code is available at: https://github.com/zhuang-group/LIT
What comes after transformers? -- A selective survey connecting ideas in deep learning
Transformers have become the de-facto standard model in artificial intelligence since 2017 despite numerous shortcomings ranging from energy inefficiency to hallucinations. Research has made a lot of progress in improving elements of transformers, and, more generally, deep learning manifesting in many proposals for architectures, layers, optimization objectives, and optimization techniques. For researchers it is difficult to keep track of such developments on a broader level. We provide a comprehensive overview of the many important, recent works in these areas to those who already have a basic understanding of deep learning. Our focus differs from other works, as we target specifically novel, alternative potentially disruptive approaches to transformers as well as successful ideas of recent deep learning. We hope that such a holistic and unified treatment of influential, recent works and novel ideas helps researchers to form new connections between diverse areas of deep learning. We identify and discuss multiple patterns that summarize the key strategies for successful innovations over the last decade as well as works that can be seen as rising stars. Especially, we discuss attempts on how to improve on transformers covering (partially) proven methods such as state space models but also including far-out ideas in deep learning that seem promising despite not achieving state-of-the-art results. We also cover a discussion on recent state-of-the-art models such as OpenAI's GPT series and Meta's LLama models and, Google's Gemini model family.
Jack of All Trades, Master of Some, a Multi-Purpose Transformer Agent
The search for a general model that can operate seamlessly across multiple domains remains a key goal in machine learning research. The prevailing methodology in Reinforcement Learning (RL) typically limits models to a single task within a unimodal framework, a limitation that contrasts with the broader vision of a versatile, multi-domain model. In this paper, we present Jack of All Trades (JAT), a transformer-based model with a unique design optimized for handling sequential decision-making tasks and multimodal data types. The JAT model demonstrates its robust capabilities and versatility by achieving strong performance on very different RL benchmarks, along with promising results on Computer Vision (CV) and Natural Language Processing (NLP) tasks, all using a single set of weights. The JAT model marks a significant step towards more general, cross-domain AI model design, and notably, it is the first model of its kind to be fully open-sourced (see https://huggingface.co/jat-project/jat), including a pioneering general-purpose dataset.
Swin-Free: Achieving Better Cross-Window Attention and Efficiency with Size-varying Window
Transformer models have shown great potential in computer vision, following their success in language tasks. Swin Transformer is one of them that outperforms convolution-based architectures in terms of accuracy, while improving efficiency when compared to Vision Transformer (ViT) and its variants, which have quadratic complexity with respect to the input size. Swin Transformer features shifting windows that allows cross-window connection while limiting self-attention computation to non-overlapping local windows. However, shifting windows introduces memory copy operations, which account for a significant portion of its runtime. To mitigate this issue, we propose Swin-Free in which we apply size-varying windows across stages, instead of shifting windows, to achieve cross-connection among local windows. With this simple design change, Swin-Free runs faster than the Swin Transformer at inference with better accuracy. Furthermore, we also propose a few of Swin-Free variants that are faster than their Swin Transformer counterparts.
Transformer Explainer: Interactive Learning of Text-Generative Models
Transformers have revolutionized machine learning, yet their inner workings remain opaque to many. We present Transformer Explainer, an interactive visualization tool designed for non-experts to learn about Transformers through the GPT-2 model. Our tool helps users understand complex Transformer concepts by integrating a model overview and enabling smooth transitions across abstraction levels of mathematical operations and model structures. It runs a live GPT-2 instance locally in the user's browser, empowering users to experiment with their own input and observe in real-time how the internal components and parameters of the Transformer work together to predict the next tokens. Our tool requires no installation or special hardware, broadening the public's education access to modern generative AI techniques. Our open-sourced tool is available at https://poloclub.github.io/transformer-explainer/. A video demo is available at https://youtu.be/ECR4oAwocjs.
Efficient Transformers: A Survey
Transformer model architectures have garnered immense interest lately due to their effectiveness across a range of domains like language, vision and reinforcement learning. In the field of natural language processing for example, Transformers have become an indispensable staple in the modern deep learning stack. Recently, a dizzying number of "X-former" models have been proposed - Reformer, Linformer, Performer, Longformer, to name a few - which improve upon the original Transformer architecture, many of which make improvements around computational and memory efficiency. With the aim of helping the avid researcher navigate this flurry, this paper characterizes a large and thoughtful selection of recent efficiency-flavored "X-former" models, providing an organized and comprehensive overview of existing work and models across multiple domains.
Key-Value Transformer
Transformers have emerged as the prevailing standard solution for various AI tasks, including computer vision and natural language processing. The widely adopted Query, Key, and Value formulation (QKV) has played a significant role in this. Nevertheless, no research has examined the essentiality of these three components for transformer performance. Therefore, we conducted an evaluation of the key-value formulation (KV), which generates symmetric attention maps, along with an asymmetric version that incorporates a 2D positional encoding into the attention matrix. Remarkably, this transformer requires fewer parameters and computation than the original one. Through experiments encompassing three task types -- synthetics (such as reversing or sorting a list), vision (mnist or cifar classification), and NLP (character generation and translation) -- we discovered that the KV transformer occasionally outperforms the QKV transformer. However, it also exhibits instances of underperformance compared to QKV, making it challenging to draw a definitive conclusion. Nonetheless, we consider the reported results to be encouraging and anticipate that they may pave the way for more efficient transformers in the future.
Diffusion Transformer Policy
Recent large visual-language action models pretrained on diverse robot datasets have demonstrated the potential for generalizing to new environments with a few in-domain data. However, those approaches usually predict discretized or continuous actions by a small action head, which limits the ability in handling diverse action spaces. In contrast, we model the continuous action with a large multi-modal diffusion transformer, dubbed as Diffusion Transformer Policy, in which we directly denoise action chunks by a large transformer model rather than a small action head. By leveraging the scaling capability of transformers, the proposed approach can effectively model continuous end-effector actions across large diverse robot datasets, and achieve better generalization performance. Extensive experiments demonstrate Diffusion Transformer Policy pretrained on diverse robot data can generalize to different embodiments, including simulation environments like Maniskill2 and Calvin, as well as the real-world Franka arm. Specifically, without bells and whistles, the proposed approach achieves state-of-the-art performance with only a single third-view camera stream in the Calvin novel task setting (ABC->D), improving the average number of tasks completed in a row of 5 to 3.6, and the pretraining stage significantly facilitates the success sequence length on the Calvin by over 1.2. The code will be publicly available.
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows
We present CSWin Transformer, an efficient and effective Transformer-based backbone for general-purpose vision tasks. A challenging issue in Transformer design is that global self-attention is very expensive to compute whereas local self-attention often limits the field of interactions of each token. To address this issue, we develop the Cross-Shaped Window self-attention mechanism for computing self-attention in the horizontal and vertical stripes in parallel that form a cross-shaped window, with each stripe obtained by splitting the input feature into stripes of equal width. We provide a mathematical analysis of the effect of the stripe width and vary the stripe width for different layers of the Transformer network which achieves strong modeling capability while limiting the computation cost. We also introduce Locally-enhanced Positional Encoding (LePE), which handles the local positional information better than existing encoding schemes. LePE naturally supports arbitrary input resolutions, and is thus especially effective and friendly for downstream tasks. Incorporated with these designs and a hierarchical structure, CSWin Transformer demonstrates competitive performance on common vision tasks. Specifically, it achieves 85.4\% Top-1 accuracy on ImageNet-1K without any extra training data or label, 53.9 box AP and 46.4 mask AP on the COCO detection task, and 52.2 mIOU on the ADE20K semantic segmentation task, surpassing previous state-of-the-art Swin Transformer backbone by +1.2, +2.0, +1.4, and +2.0 respectively under the similar FLOPs setting. By further pretraining on the larger dataset ImageNet-21K, we achieve 87.5% Top-1 accuracy on ImageNet-1K and high segmentation performance on ADE20K with 55.7 mIoU. The code and models are available at https://github.com/microsoft/CSWin-Transformer.
kMaX-DeepLab: k-means Mask Transformer
The rise of transformers in vision tasks not only advances network backbone designs, but also starts a brand-new page to achieve end-to-end image recognition (e.g., object detection and panoptic segmentation). Originated from Natural Language Processing (NLP), transformer architectures, consisting of self-attention and cross-attention, effectively learn long-range interactions between elements in a sequence. However, we observe that most existing transformer-based vision models simply borrow the idea from NLP, neglecting the crucial difference between languages and images, particularly the extremely large sequence length of spatially flattened pixel features. This subsequently impedes the learning in cross-attention between pixel features and object queries. In this paper, we rethink the relationship between pixels and object queries and propose to reformulate the cross-attention learning as a clustering process. Inspired by the traditional k-means clustering algorithm, we develop a k-means Mask Xformer (kMaX-DeepLab) for segmentation tasks, which not only improves the state-of-the-art, but also enjoys a simple and elegant design. As a result, our kMaX-DeepLab achieves a new state-of-the-art performance on COCO val set with 58.0% PQ, Cityscapes val set with 68.4% PQ, 44.0% AP, and 83.5% mIoU, and ADE20K val set with 50.9% PQ and 55.2% mIoU without test-time augmentation or external dataset. We hope our work can shed some light on designing transformers tailored for vision tasks. TensorFlow code and models are available at https://github.com/google-research/deeplab2 A PyTorch re-implementation is also available at https://github.com/bytedance/kmax-deeplab
Brainformers: Trading Simplicity for Efficiency
Transformers are central to recent successes in natural language processing and computer vision. Transformers have a mostly uniform backbone where layers alternate between feed-forward and self-attention in order to build a deep network. Here we investigate this design choice and find that more complex blocks that have different permutations of layer primitives can be more efficient. Using this insight, we develop a complex block, named Brainformer, that consists of a diverse sets of layers such as sparsely gated feed-forward layers, dense feed-forward layers, attention layers, and various forms of layer normalization and activation functions. Brainformer consistently outperforms the state-of-the-art dense and sparse Transformers, in terms of both quality and efficiency. A Brainformer model with 8 billion activated parameters per token demonstrates 2x faster training convergence and 5x faster step time compared to its GLaM counterpart. In downstream task evaluation, Brainformer also demonstrates a 3% higher SuperGLUE score with fine-tuning compared to GLaM with a similar number of activated parameters. Finally, Brainformer largely outperforms a Primer dense model derived with NAS with similar computation per token on fewshot evaluations.
A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks
Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology.
A Practical Survey on Faster and Lighter Transformers
Recurrent neural networks are effective models to process sequences. However, they are unable to learn long-term dependencies because of their inherent sequential nature. As a solution, Vaswani et al. introduced the Transformer, a model solely based on the attention mechanism that is able to relate any two positions of the input sequence, hence modelling arbitrary long dependencies. The Transformer has improved the state-of-the-art across numerous sequence modelling tasks. However, its effectiveness comes at the expense of a quadratic computational and memory complexity with respect to the sequence length, hindering its adoption. Fortunately, the deep learning community has always been interested in improving the models' efficiency, leading to a plethora of solutions such as parameter sharing, pruning, mixed-precision, and knowledge distillation. Recently, researchers have directly addressed the Transformer's limitation by designing lower-complexity alternatives such as the Longformer, Reformer, Linformer, and Performer. However, due to the wide range of solutions, it has become challenging for researchers and practitioners to determine which methods to apply in practice in order to meet the desired trade-off between capacity, computation, and memory. This survey addresses this issue by investigating popular approaches to make Transformers faster and lighter and by providing a comprehensive explanation of the methods' strengths, limitations, and underlying assumptions.
Transformers in Reinforcement Learning: A Survey
Transformers have significantly impacted domains like natural language processing, computer vision, and robotics, where they improve performance compared to other neural networks. This survey explores how transformers are used in reinforcement learning (RL), where they are seen as a promising solution for addressing challenges such as unstable training, credit assignment, lack of interpretability, and partial observability. We begin by providing a brief domain overview of RL, followed by a discussion on the challenges of classical RL algorithms. Next, we delve into the properties of the transformer and its variants and discuss the characteristics that make them well-suited to address the challenges inherent in RL. We examine the application of transformers to various aspects of RL, including representation learning, transition and reward function modeling, and policy optimization. We also discuss recent research that aims to enhance the interpretability and efficiency of transformers in RL, using visualization techniques and efficient training strategies. Often, the transformer architecture must be tailored to the specific needs of a given application. We present a broad overview of how transformers have been adapted for several applications, including robotics, medicine, language modeling, cloud computing, and combinatorial optimization. We conclude by discussing the limitations of using transformers in RL and assess their potential for catalyzing future breakthroughs in this field.
Depth-Adaptive Transformer
State of the art sequence-to-sequence models for large scale tasks perform a fixed number of computations for each input sequence regardless of whether it is easy or hard to process. In this paper, we train Transformer models which can make output predictions at different stages of the network and we investigate different ways to predict how much computation is required for a particular sequence. Unlike dynamic computation in Universal Transformers, which applies the same set of layers iteratively, we apply different layers at every step to adjust both the amount of computation as well as the model capacity. On IWSLT German-English translation our approach matches the accuracy of a well tuned baseline Transformer while using less than a quarter of the decoder layers.
Quantum Embedding with Transformer for High-dimensional Data
Quantum embedding with transformers is a novel and promising architecture for quantum machine learning to deliver exceptional capability on near-term devices or simulators. The research incorporated a vision transformer (ViT) to advance quantum significantly embedding ability and results for a single qubit classifier with around 3 percent in the median F1 score on the BirdCLEF-2021, a challenging high-dimensional dataset. The study showcases and analyzes empirical evidence that our transformer-based architecture is a highly versatile and practical approach to modern quantum machine learning problems.
Decision S4: Efficient Sequence-Based RL via State Spaces Layers
Recently, sequence learning methods have been applied to the problem of off-policy Reinforcement Learning, including the seminal work on Decision Transformers, which employs transformers for this task. Since transformers are parameter-heavy, cannot benefit from history longer than a fixed window size, and are not computed using recurrence, we set out to investigate the suitability of the S4 family of models, which are based on state-space layers and have been shown to outperform transformers, especially in modeling long-range dependencies. In this work we present two main algorithms: (i) an off-policy training procedure that works with trajectories, while still maintaining the training efficiency of the S4 model. (ii) An on-policy training procedure that is trained in a recurrent manner, benefits from long-range dependencies, and is based on a novel stable actor-critic mechanism. Our results indicate that our method outperforms multiple variants of decision transformers, as well as the other baseline methods on most tasks, while reducing the latency, number of parameters, and training time by several orders of magnitude, making our approach more suitable for real-world RL.
TransMamba: Flexibly Switching between Transformer and Mamba
Transformers are the cornerstone of modern large language models, but their quadratic computational complexity limits efficiency in long-sequence processing. Recent advancements in Mamba, a state space model (SSM) with linear complexity, offer promising efficiency gains but suffer from unstable contextual learning and multitask generalization. This paper proposes TransMamba, a novel framework that unifies Transformer and Mamba through shared parameter matrices (e.g., QKV and CBx), and thus could dynamically switch between attention and SSM mechanisms at different token lengths and layers. We design the Memory converter to bridge Transformer and Mamba by converting attention outputs into SSM-compatible states, ensuring seamless information flow at TransPoints where the transformation happens. The TransPoint scheduling is also thoroughly explored for further improvements. We conducted extensive experiments demonstrating that TransMamba achieves superior training efficiency and performance compared to baselines, and validated the deeper consistency between Transformer and Mamba paradigms, offering a scalable solution for next-generation sequence modeling.
A Multiscale Visualization of Attention in the Transformer Model
The Transformer is a sequence model that forgoes traditional recurrent architectures in favor of a fully attention-based approach. Besides improving performance, an advantage of using attention is that it can also help to interpret a model by showing how the model assigns weight to different input elements. However, the multi-layer, multi-head attention mechanism in the Transformer model can be difficult to decipher. To make the model more accessible, we introduce an open-source tool that visualizes attention at multiple scales, each of which provides a unique perspective on the attention mechanism. We demonstrate the tool on BERT and OpenAI GPT-2 and present three example use cases: detecting model bias, locating relevant attention heads, and linking neurons to model behavior.
Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers
Traditional transformer models often allocate a fixed amount of computational resources to every input token, leading to inefficient and unnecessary computation. To address this, the Mixture of Depths (MoD) was introduced to dynamically adjust the computational depth by skipping less important layers. Despite its promise, current MoD approaches remain under-explored and face two main challenges: (1) high training costs due to the need to train the entire model along with the routers that determine which layers to skip, and (2) the risk of performance degradation when important layers are bypassed. In response to the first issue, we propose Router-Tuning, a method that fine-tunes only the router on a small dataset, drastically reducing the computational overhead associated with full model training. For the second challenge, we propose MindSkip, which deploys Attention with Dynamic Depths. This method preserves the model's performance while significantly enhancing computational and memory efficiency. Extensive experiments demonstrate that our approach delivers competitive results while dramatically improving the computation efficiency, e.g., 21\% speedup and only a 0.2\% performance drop. The code is released at https://github.com/CASE-Lab-UMD/Router-Tuning.
IO Transformer: Evaluating SwinV2-Based Reward Models for Computer Vision
Transformers and their derivatives have achieved state-of-the-art performance across text, vision, and speech recognition tasks. However, minimal effort has been made to train transformers capable of evaluating the output quality of other models. This paper examines SwinV2-based reward models, called the Input-Output Transformer (IO Transformer) and the Output Transformer. These reward models can be leveraged for tasks such as inference quality evaluation, data categorization, and policy optimization. Our experiments demonstrate highly accurate model output quality assessment across domains where the output is entirely dependent on the input, with the IO Transformer achieving perfect evaluation accuracy on the Change Dataset 25 (CD25). We also explore modified Swin V2 architectures. Ultimately Swin V2 remains on top with a score of 95.41 % on the IO Segmentation Dataset, outperforming the IO Transformer in scenarios where the output is not entirely dependent on the input. Our work expands the application of transformer architectures to reward modeling in computer vision and provides critical insights into optimizing these models for various tasks.
Transformer Layers as Painters
Despite their nearly universal adoption for large language models, the internal workings of transformers are not well understood. We aim to better understand the impact of removing or reorganizing information throughout the layers of a pretrained transformer. Such an understanding could both yield better usage of existing models as well as to make architectural improvements to produce new variants. We present a series of empirical studies on frozen models that show that the lower and final layers of pretrained transformers differ from middle layers, but that middle layers have a surprising amount of uniformity. We further show that some classes of problems have robustness to skipping layers, running the layers in an order different from how they were trained, or running the layers in parallel. Our observations suggest that even frozen pretrained models may gracefully trade accuracy for latency by skipping layers or running layers in parallel.
Augmented Shortcuts for Vision Transformers
Transformer models have achieved great progress on computer vision tasks recently. The rapid development of vision transformers is mainly contributed by their high representation ability for extracting informative features from input images. However, the mainstream transformer models are designed with deep architectures, and the feature diversity will be continuously reduced as the depth increases, i.e., feature collapse. In this paper, we theoretically analyze the feature collapse phenomenon and study the relationship between shortcuts and feature diversity in these transformer models. Then, we present an augmented shortcut scheme, which inserts additional paths with learnable parameters in parallel on the original shortcuts. To save the computational costs, we further explore an efficient approach that uses the block-circulant projection to implement augmented shortcuts. Extensive experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed method, which brings about 1% accuracy increase of the state-of-the-art visual transformers without obviously increasing their parameters and FLOPs.
Learning to Skip the Middle Layers of Transformers
Conditional computation is a popular strategy to make Transformers more efficient. Existing methods often target individual modules (e.g., mixture-of-experts layers) or skip layers independently of one another. However, interpretability research has demonstrated that the middle layers of Transformers exhibit greater redundancy, and that early layers aggregate information into token positions. Guided by these insights, we propose a novel architecture that dynamically skips a variable number of layers from the middle outward. In particular, a learned gating mechanism determines whether to bypass a symmetric span of central blocks based on the input, and a gated attention mechanism prevents subsequent tokens from attending to skipped token positions. Residual norms are controlled with a 'sandwich' or 'perilayernorm' scheme and gate sparsity with an adaptive regularization loss. We had aimed to reduce compute requirements for 'simpler' tokens and potentially foster an emergent multi-level representational hierarchy but, at the scales investigated, our approach does not achieve improvements in the trade-off between validation cross-entropy and estimated FLOPs compared to dense baselines with fewer layers. We release our code at https://github.com/tim-lawson/skip-middle.
Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in n-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
Skill Transformer: A Monolithic Policy for Mobile Manipulation
We present Skill Transformer, an approach for solving long-horizon robotic tasks by combining conditional sequence modeling and skill modularity. Conditioned on egocentric and proprioceptive observations of a robot, Skill Transformer is trained end-to-end to predict both a high-level skill (e.g., navigation, picking, placing), and a whole-body low-level action (e.g., base and arm motion), using a transformer architecture and demonstration trajectories that solve the full task. It retains the composability and modularity of the overall task through a skill predictor module while reasoning about low-level actions and avoiding hand-off errors, common in modular approaches. We test Skill Transformer on an embodied rearrangement benchmark and find it performs robust task planning and low-level control in new scenarios, achieving a 2.5x higher success rate than baselines in hard rearrangement problems.
ViDT: An Efficient and Effective Fully Transformer-based Object Detector
Transformers are transforming the landscape of computer vision, especially for recognition tasks. Detection transformers are the first fully end-to-end learning systems for object detection, while vision transformers are the first fully transformer-based architecture for image classification. In this paper, we integrate Vision and Detection Transformers (ViDT) to build an effective and efficient object detector. ViDT introduces a reconfigured attention module to extend the recent Swin Transformer to be a standalone object detector, followed by a computationally efficient transformer decoder that exploits multi-scale features and auxiliary techniques essential to boost the detection performance without much increase in computational load. Extensive evaluation results on the Microsoft COCO benchmark dataset demonstrate that ViDT obtains the best AP and latency trade-off among existing fully transformer-based object detectors, and achieves 49.2AP owing to its high scalability for large models. We will release the code and trained models at https://github.com/naver-ai/vidt
Understanding 3D Object Interaction from a Single Image
Humans can easily understand a single image as depicting multiple potential objects permitting interaction. We use this skill to plan our interactions with the world and accelerate understanding new objects without engaging in interaction. In this paper, we would like to endow machines with the similar ability, so that intelligent agents can better explore the 3D scene or manipulate objects. Our approach is a transformer-based model that predicts the 3D location, physical properties and affordance of objects. To power this model, we collect a dataset with Internet videos, egocentric videos and indoor images to train and validate our approach. Our model yields strong performance on our data, and generalizes well to robotics data.
Decoupling Knowledge and Reasoning in Transformers: A Modular Architecture with Generalized Cross-Attention
Transformers have achieved remarkable success across diverse domains, but their monolithic architecture presents challenges in interpretability, adaptability, and scalability. This paper introduces a novel modular Transformer architecture that explicitly decouples knowledge and reasoning through a generalized cross-attention mechanism to a globally shared knowledge base with layer-specific transformations, specifically designed for effective knowledge retrieval. Critically, we provide a rigorous mathematical derivation demonstrating that the Feed-Forward Network (FFN) in a standard Transformer is a specialized case (a closure) of this generalized cross-attention, revealing its role in implicit knowledge retrieval and validating our design. This theoretical framework provides a new lens for understanding FFNs and lays the foundation for future research exploring enhanced interpretability, adaptability, and scalability, enabling richer interplay with external knowledge bases and other systems.
HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution
Transformers have exhibited promising performance in computer vision tasks including image super-resolution (SR). However, popular transformer-based SR methods often employ window self-attention with quadratic computational complexity to window sizes, resulting in fixed small windows with limited receptive fields. In this paper, we present a general strategy to convert transformer-based SR networks to hierarchical transformers (HiT-SR), boosting SR performance with multi-scale features while maintaining an efficient design. Specifically, we first replace the commonly used fixed small windows with expanding hierarchical windows to aggregate features at different scales and establish long-range dependencies. Considering the intensive computation required for large windows, we further design a spatial-channel correlation method with linear complexity to window sizes, efficiently gathering spatial and channel information from hierarchical windows. Extensive experiments verify the effectiveness and efficiency of our HiT-SR, and our improved versions of SwinIR-Light, SwinIR-NG, and SRFormer-Light yield state-of-the-art SR results with fewer parameters, FLOPs, and faster speeds (sim7times).
Towards Automated Circuit Discovery for Mechanistic Interpretability
Through considerable effort and intuition, several recent works have reverse-engineered nontrivial behaviors of transformer models. This paper systematizes the mechanistic interpretability process they followed. First, researchers choose a metric and dataset that elicit the desired model behavior. Then, they apply activation patching to find which abstract neural network units are involved in the behavior. By varying the dataset, metric, and units under investigation, researchers can understand the functionality of each component. We automate one of the process' steps: to identify the circuit that implements the specified behavior in the model's computational graph. We propose several algorithms and reproduce previous interpretability results to validate them. For example, the ACDC algorithm rediscovered 5/5 of the component types in a circuit in GPT-2 Small that computes the Greater-Than operation. ACDC selected 68 of the 32,000 edges in GPT-2 Small, all of which were manually found by previous work. Our code is available at https://github.com/ArthurConmy/Automatic-Circuit-Discovery.
Scale-Aware Modulation Meet Transformer
This paper presents a new vision Transformer, Scale-Aware Modulation Transformer (SMT), that can handle various downstream tasks efficiently by combining the convolutional network and vision Transformer. The proposed Scale-Aware Modulation (SAM) in the SMT includes two primary novel designs. Firstly, we introduce the Multi-Head Mixed Convolution (MHMC) module, which can capture multi-scale features and expand the receptive field. Secondly, we propose the Scale-Aware Aggregation (SAA) module, which is lightweight but effective, enabling information fusion across different heads. By leveraging these two modules, convolutional modulation is further enhanced. Furthermore, in contrast to prior works that utilized modulations throughout all stages to build an attention-free network, we propose an Evolutionary Hybrid Network (EHN), which can effectively simulate the shift from capturing local to global dependencies as the network becomes deeper, resulting in superior performance. Extensive experiments demonstrate that SMT significantly outperforms existing state-of-the-art models across a wide range of visual tasks. Specifically, SMT with 11.5M / 2.4GFLOPs and 32M / 7.7GFLOPs can achieve 82.2% and 84.3% top-1 accuracy on ImageNet-1K, respectively. After pretrained on ImageNet-22K in 224^2 resolution, it attains 87.1% and 88.1% top-1 accuracy when finetuned with resolution 224^2 and 384^2, respectively. For object detection with Mask R-CNN, the SMT base trained with 1x and 3x schedule outperforms the Swin Transformer counterpart by 4.2 and 1.3 mAP on COCO, respectively. For semantic segmentation with UPerNet, the SMT base test at single- and multi-scale surpasses Swin by 2.0 and 1.1 mIoU respectively on the ADE20K.
Don't Throw Away Your Pretrained Model
Alignment training has tradeoffs: it helps language models (LMs) gain in reasoning and instruction following but might lose out on skills such as creativity and calibration, where unaligned base models are better at. We aim to make the best of both worlds through model collaboration, where different models in the training pipeline collaborate and complement each other. Since LM responses feature interleaving skills that favor different models, we propose Switch Generation, where pretrained and aligned model versions take turns to ``speak'' in a response sequence. Specifically, we train a switcher LM by learning from outcomes of choosing different models to generate the next segment across diverse queries and contexts. At inference time, the switcher LM guides different model checkpoints to dynamically generate the next segment where their strengths are most needed. Extensive experiments with 8 model collaboration baselines and 18 datasets show that 1) model collaboration consistently outperforms individual models on 16 out of 18 tasks, and 2) Switch Generation further outperforms baselines by 12.9% on average. Further analysis reveals that Switch Generation discovers compositional skills to solve problems where individual models struggle and generalizes to unseen models and tasks, reusing and repurposing by-products in expensive model training pipelines that are otherwise discarded.
Recurrent Action Transformer with Memory
Recently, the use of transformers in offline reinforcement learning has become a rapidly developing area. This is due to their ability to treat the agent's trajectory in the environment as a sequence, thereby reducing the policy learning problem to sequence modeling. In environments where the agent's decisions depend on past events, it is essential to capture both the event itself and the decision point in the context of the model. However, the quadratic complexity of the attention mechanism limits the potential for context expansion. One solution to this problem is to enhance transformers with memory mechanisms. In this paper, we propose the Recurrent Action Transformer with Memory (RATE) - a model that incorporates recurrent memory. To evaluate our model, we conducted extensive experiments on both memory-intensive environments (VizDoom-Two-Color, T-Maze) and classic Atari games and MuJoCo control environments. The results show that the use of memory can significantly improve performance in memory-intensive environments while maintaining or improving results in classic environments. We hope that our findings will stimulate research on memory mechanisms for transformers applicable to offline reinforcement learning.
Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis
Sequence modeling plays a vital role across various domains, with recurrent neural networks being historically the predominant method of performing these tasks. However, the emergence of transformers has altered this paradigm due to their superior performance. Built upon these advances, transformers have conjoined CNNs as two leading foundational models for learning visual representations. However, transformers are hindered by the O(N^2) complexity of their attention mechanisms, while CNNs lack global receptive fields and dynamic weight allocation. State Space Models (SSMs), specifically the \textbf{Mamba} model with selection mechanisms and hardware-aware architecture, have garnered immense interest lately in sequential modeling and visual representation learning, challenging the dominance of transformers by providing infinite context lengths and offering substantial efficiency maintaining linear complexity in the input sequence. Capitalizing on the advances in computer vision, medical imaging has heralded a new epoch with Mamba models. Intending to help researchers navigate the surge, this survey seeks to offer an encyclopedic review of Mamba models in medical imaging. Specifically, we start with a comprehensive theoretical review forming the basis of SSMs, including Mamba architecture and its alternatives for sequence modeling paradigms in this context. Next, we offer a structured classification of Mamba models in the medical field and introduce a diverse categorization scheme based on their application, imaging modalities, and targeted organs. Finally, we summarize key challenges, discuss different future research directions of the SSMs in the medical domain, and propose several directions to fulfill the demands of this field. In addition, we have compiled the studies discussed in this paper along with their open-source implementations on our GitHub repository.
CrossFormer: A Versatile Vision Transformer Hinging on Cross-scale Attention
Transformers have made great progress in dealing with computer vision tasks. However, existing vision transformers do not yet possess the ability of building the interactions among features of different scales, which is perceptually important to visual inputs. The reasons are two-fold: (1) Input embeddings of each layer are equal-scale, so no cross-scale feature can be extracted; (2) to lower the computational cost, some vision transformers merge adjacent embeddings inside the self-attention module, thus sacrificing small-scale (fine-grained) features of the embeddings and also disabling the cross-scale interactions. To this end, we propose Cross-scale Embedding Layer (CEL) and Long Short Distance Attention (LSDA). On the one hand, CEL blends each embedding with multiple patches of different scales, providing the self-attention module itself with cross-scale features. On the other hand, LSDA splits the self-attention module into a short-distance one and a long-distance counterpart, which not only reduces the computational burden but also keeps both small-scale and large-scale features in the embeddings. Through the above two designs, we achieve cross-scale attention. Besides, we put forward a dynamic position bias for vision transformers to make the popular relative position bias apply to variable-sized images. Hinging on the cross-scale attention module, we construct a versatile vision architecture, dubbed CrossFormer, which accommodates variable-sized inputs. Extensive experiments show that CrossFormer outperforms the other vision transformers on image classification, object detection, instance segmentation, and semantic segmentation tasks. The code has been released: https://github.com/cheerss/CrossFormer.
LightTransfer: Your Long-Context LLM is Secretly a Hybrid Model with Effortless Adaptation
Scaling language models to handle longer contexts introduces substantial memory challenges due to the growing cost of key-value (KV) caches. Motivated by the efficiency gains of hybrid models and the broad availability of pretrained large transformer backbones, we explore transitioning transformer models into hybrid architectures for a more efficient generation. In this work, we propose LightTransfer, a lightweight method that transforms models such as LLaMA into hybrid variants. Our approach identifies lazy layers -- those focusing on recent or initial tokens -- and replaces their full attention with streaming attention. This transformation can be performed without any training for long-context understanding tasks or with minimal fine-tuning for o1-like long reasoning generation tasks that require stronger reasoning capabilities. Experiments across diverse benchmarks and models (e.g., LLaMA, Mistral, QwQ-STILL) demonstrate that, even when half of the layers are identified as lazy, LightTransfer achieves up to 2.17times throughput improvement with minimal performance loss (<1.5% on LongBench) and achieves 53.3\% on math benchmark AIME24 of advanced o1-like long reasoning model QwQ-STILL.
On the Expressive Power of a Variant of the Looped Transformer
Besides natural language processing, transformers exhibit extraordinary performance in solving broader applications, including scientific computing and computer vision. Previous works try to explain this from the expressive power and capability perspectives that standard transformers are capable of performing some algorithms. To empower transformers with algorithmic capabilities and motivated by the recently proposed looped transformer (Yang et al., 2024; Giannou et al., 2023), we design a novel transformer block, dubbed Algorithm Transformer (abbreviated as AlgoFormer). Compared with the standard transformer and vanilla looped transformer, the proposed AlgoFormer can achieve significantly higher expressiveness in algorithm representation when using the same number of parameters. In particular, inspired by the structure of human-designed learning algorithms, our transformer block consists of a pre-transformer that is responsible for task pre-processing, a looped transformer for iterative optimization algorithms, and a post-transformer for producing the desired results after post-processing. We provide theoretical evidence of the expressive power of the AlgoFormer in solving some challenging problems, mirroring human-designed algorithms. Furthermore, some theoretical and empirical results are presented to show that the designed transformer has the potential to be smarter than human-designed algorithms. Experimental results demonstrate the empirical superiority of the proposed transformer in that it outperforms the standard transformer and vanilla looped transformer in some challenging tasks.
Toward TransfORmers: Revolutionizing the Solution of Mixed Integer Programs with Transformers
In this study, we introduce an innovative deep learning framework that employs a transformer model to address the challenges of mixed-integer programs, specifically focusing on the Capacitated Lot Sizing Problem (CLSP). Our approach, to our knowledge, is the first to utilize transformers to predict the binary variables of a mixed-integer programming (MIP) problem. Specifically, our approach harnesses the encoder decoder transformer's ability to process sequential data, making it well-suited for predicting binary variables indicating production setup decisions in each period of the CLSP. This problem is inherently dynamic, and we need to handle sequential decision making under constraints. We present an efficient algorithm in which CLSP solutions are learned through a transformer neural network. The proposed post-processed transformer algorithm surpasses the state-of-the-art solver, CPLEX and Long Short-Term Memory (LSTM) in solution time, optimal gap, and percent infeasibility over 240K benchmark CLSP instances tested. After the ML model is trained, conducting inference on the model, reduces the MIP into a linear program (LP). This transforms the ML-based algorithm, combined with an LP solver, into a polynomial-time approximation algorithm to solve a well-known NP-Hard problem, with almost perfect solution quality.
Ultra Fast Transformers on FPGAs for Particle Physics Experiments
This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the hls4ml tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 mus on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.
Mixture-of-Depths: Dynamically allocating compute in transformer-based language models
Transformer-based language models spread FLOPs uniformly across input sequences. In this work we demonstrate that transformers can instead learn to dynamically allocate FLOPs (or compute) to specific positions in a sequence, optimising the allocation along the sequence for different layers across the model depth. Our method enforces a total compute budget by capping the number of tokens (k) that can participate in the self-attention and MLP computations at a given layer. The tokens to be processed are determined by the network using a top-k routing mechanism. Since k is defined a priori, this simple procedure uses a static computation graph with known tensor sizes, unlike other conditional computation techniques. Nevertheless, since the identities of the k tokens are fluid, this method can expend FLOPs non-uniformly across the time and model depth dimensions. Thus, compute expenditure is entirely predictable in sum total, but dynamic and context-sensitive at the token-level. Not only do models trained in this way learn to dynamically allocate compute, they do so efficiently. These models match baseline performance for equivalent FLOPS and wall-clock times to train, but require a fraction of the FLOPs per forward pass, and can be upwards of 50\% faster to step during post-training sampling.
Toward Interpretable Sleep Stage Classification Using Cross-Modal Transformers
Accurate sleep stage classification is significant for sleep health assessment. In recent years, several machine-learning based sleep staging algorithms have been developed , and in particular, deep-learning based algorithms have achieved performance on par with human annotation. Despite improved performance, a limitation of most deep-learning based algorithms is their black-box behavior, which have limited their use in clinical settings. Here, we propose a cross-modal transformer, which is a transformer-based method for sleep stage classification. The proposed cross-modal transformer consists of a novel cross-modal transformer encoder architecture along with a multi-scale one-dimensional convolutional neural network for automatic representation learning. Our method outperforms the state-of-the-art methods and eliminates the black-box behavior of deep-learning models by utilizing the interpretability aspect of the attention modules. Furthermore, our method provides considerable reductions in the number of parameters and training time compared to the state-of-the-art methods. Our code is available at https://github.com/Jathurshan0330/Cross-Modal-Transformer. A demo of our work can be found at https://bit.ly/Cross_modal_transformer_demo.
DevFormer: A Symmetric Transformer for Context-Aware Device Placement
In this paper, we present DevFormer, a novel transformer-based architecture for addressing the complex and computationally demanding problem of hardware design optimization. Despite the demonstrated efficacy of transformers in domains including natural language processing and computer vision, their use in hardware design has been limited by the scarcity of offline data. Our approach addresses this limitation by introducing strong inductive biases such as relative positional embeddings and action-permutation symmetricity that effectively capture the hardware context and enable efficient design optimization with limited offline data. We apply DevFoemer to the problem of decoupling capacitor placement and show that it outperforms state-of-the-art methods in both simulated and real hardware, leading to improved performances while reducing the number of components by more than 30%. Finally, we show that our approach achieves promising results in other offline contextual learning-based combinatorial optimization tasks.
A Survey of Mamba
Deep learning, as a vital technique, has sparked a notable revolution in artificial intelligence. As the most representative architecture, Transformers have empowered numerous advanced models, especially the large language models that comprise billions of parameters, becoming a cornerstone in deep learning. Despite the impressive achievements, Transformers still face inherent limitations, particularly the time-consuming inference resulting from the quadratic computation complexity of attention calculation. Recently, a novel architecture named Mamba, drawing inspiration from classical state space models, has emerged as a promising alternative for building foundation models, delivering comparable modeling abilities to Transformers while preserving near-linear scalability concerning sequence length. This has sparked an increasing number of studies actively exploring Mamba's potential to achieve impressive performance across diverse domains. Given such rapid evolution, there is a critical need for a systematic review that consolidates existing Mamba-empowered models, offering a comprehensive understanding of this emerging model architecture. In this survey, we therefore conduct an in-depth investigation of recent Mamba-associated studies, covering from three main aspects: the advancements of Mamba-based models, the techniques of adapting Mamba to diverse data, and the applications where Mamba can excel. Specifically, we first recall the foundational knowledge of various representative deep learning models and the details of Mamba as preliminaries. Then, to showcase the significance of Mamba, we comprehensively review the related studies focusing on Mamba models' architecture design, data adaptability, and applications. Finally, we present an discussion of current limitations and explore various promising research directions to provide deeper insights for future investigations.
Wide Attention Is The Way Forward For Transformers?
The Transformer is an extremely powerful and prominent deep learning architecture. In this work, we challenge the commonly held belief in deep learning that going deeper is better, and show an alternative design approach that is building wider attention Transformers. We demonstrate that wide single layer Transformer models can compete with or outperform deeper ones in a variety of Natural Language Processing (NLP) tasks when both are trained from scratch. The impact of changing the model aspect ratio on Transformers is then studied systematically. This ratio balances the number of layers and the number of attention heads per layer while keeping the total number of attention heads and all other hyperparameters constant. On average, across 4 NLP tasks and 10 attention types, single layer wide models perform 0.3% better than their deep counterparts. We show an in-depth evaluation and demonstrate how wide models require a far smaller memory footprint and can run faster on commodity hardware, in addition, these wider models are also more interpretable. For example, a single layer Transformer on the IMDb byte level text classification has 3.1x faster inference latency on a CPU than its equally accurate deeper counterpart, and is half the size. We therefore put forward wider and shallower models as a viable and desirable alternative for small models on NLP tasks, and as an important area of research for domains beyond this.
Understanding Addition in Transformers
Understanding the inner workings of machine learning models like Transformers is vital for their safe and ethical use. This paper provides a comprehensive analysis of a one-layer Transformer model trained to perform n-digit integer addition. Our findings suggest that the model dissects the task into parallel streams dedicated to individual digits, employing varied algorithms tailored to different positions within the digits. Furthermore, we identify a rare scenario characterized by high loss, which we explain. By thoroughly elucidating the model's algorithm, we provide new insights into its functioning. These findings are validated through rigorous testing and mathematical modeling, thereby contributing to the broader fields of model understanding and interpretability. Our approach opens the door for analyzing more complex tasks and multi-layer Transformer models.
CS-Dialogue: A 104-Hour Dataset of Spontaneous Mandarin-English Code-Switching Dialogues for Speech Recognition
Code-switching (CS), the alternation between two or more languages within a single conversation, presents significant challenges for automatic speech recognition (ASR) systems. Existing Mandarin-English code-switching datasets often suffer from limitations in size, spontaneity, and the lack of full-length dialogue recordings with transcriptions, hindering the development of robust ASR models for real-world conversational scenarios. This paper introduces CS-Dialogue, a novel large-scale Mandarin-English code-switching speech dataset comprising 104 hours of spontaneous conversations from 200 speakers. Unlike previous datasets, CS-Dialogue provides full-length dialogue recordings with complete transcriptions, capturing naturalistic code-switching patterns in continuous speech. We describe the data collection and annotation processes, present detailed statistics of the dataset, and establish benchmark ASR performance using state-of-the-art models. Our experiments, using Transformer, Conformer, and Branchformer, demonstrate the challenges of code-switching ASR, and show that existing pre-trained models such as Whisper still have the space to improve. The CS-Dialogue dataset will be made freely available for all academic purposes.
Emergent Agentic Transformer from Chain of Hindsight Experience
Large transformer models powered by diverse data and model scale have dominated natural language modeling and computer vision and pushed the frontier of multiple AI areas. In reinforcement learning (RL), despite many efforts into transformer-based policies, a key limitation, however, is that current transformer-based policies cannot learn by directly combining information from multiple sub-optimal trials. In this work, we address this issue using recently proposed chain of hindsight to relabel experience, where we train a transformer on a sequence of trajectory experience ascending sorted according to their total rewards. Our method consists of relabelling target return of each trajectory to the maximum total reward among in sequence of trajectories and training an autoregressive model to predict actions conditioning on past states, actions, rewards, target returns, and task completion tokens, the resulting model, Agentic Transformer (AT), can learn to improve upon itself both at training and test time. As we show on D4RL and ExoRL benchmarks, to the best our knowledge, this is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches, even from sub-optimal data. Our Agentic Transformer also shows a promising scaling trend that bigger models consistently improve results.
Multiscale Vision Transformers
We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting from the input resolution and a small channel dimension, the stages hierarchically expand the channel capacity while reducing the spatial resolution. This creates a multiscale pyramid of features with early layers operating at high spatial resolution to model simple low-level visual information, and deeper layers at spatially coarse, but complex, high-dimensional features. We evaluate this fundamental architectural prior for modeling the dense nature of visual signals for a variety of video recognition tasks where it outperforms concurrent vision transformers that rely on large scale external pre-training and are 5-10x more costly in computation and parameters. We further remove the temporal dimension and apply our model for image classification where it outperforms prior work on vision transformers. Code is available at: https://github.com/facebookresearch/SlowFast
You Do Not Fully Utilize Transformer's Representation Capacity
In contrast to RNNs, which compress previous tokens into a single hidden state, Transformers can attend to all previous tokens directly. However, standard Transformers only use representations from the immediately preceding layer. In this paper, we show that this design choice causes representation collapse and leads to suboptimal performance. To address this issue, we introduce Layer-Integrated Memory (LIMe), a simple yet powerful approach that preserves the model's overall memory footprint while expanding its representational capacity by allowing access to hidden states from earlier layers. Through extensive experiments across various architectures and different lookup mechanisms, we demonstrate consistent performance improvements on a wide range of tasks. Moreover, our analysis of the learned representation dynamics and our exploration of depthwise circuits reveal how LIMe integrates information across layers, pointing to promising directions for future research.
An Empirical Study of Mamba-based Language Models
Selective state-space models (SSMs) like Mamba overcome some of the shortcomings of Transformers, such as quadratic computational complexity with sequence length and large inference-time memory requirements from the key-value cache. Moreover, recent studies have shown that SSMs can match or exceed the language modeling capabilities of Transformers, making them an attractive alternative. In a controlled setting (e.g., same data), however, studies so far have only presented small scale experiments comparing SSMs to Transformers. To understand the strengths and weaknesses of these architectures at larger scales, we present a direct comparison between 8B-parameter Mamba, Mamba-2, and Transformer models trained on the same datasets of up to 3.5T tokens. We also compare these models to a hybrid architecture consisting of 43% Mamba-2, 7% attention, and 50% MLP layers (Mamba-2-Hybrid). Using a diverse set of tasks, we answer the question of whether Mamba models can match Transformers at larger training budgets. Our results show that while pure SSMs match or exceed Transformers on many tasks, they lag behind Transformers on tasks which require strong copying or in-context learning abilities (e.g., 5-shot MMLU, Phonebook) or long-context reasoning. In contrast, we find that the 8B Mamba-2-Hybrid exceeds the 8B Transformer on all 12 standard tasks we evaluated (+2.65 points on average) and is predicted to be up to 8x faster when generating tokens at inference time. To validate long-context capabilities, we provide additional experiments evaluating variants of the Mamba-2-Hybrid and Transformer extended to support 16K, 32K, and 128K sequences. On an additional 23 long-context tasks, the hybrid model continues to closely match or exceed the Transformer on average. To enable further study, we release the checkpoints as well as the code used to train our models as part of NVIDIA's Megatron-LM project.
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
The recently developed vision transformer (ViT) has achieved promising results on image classification compared to convolutional neural networks. Inspired by this, in this paper, we study how to learn multi-scale feature representations in transformer models for image classification. To this end, we propose a dual-branch transformer to combine image patches (i.e., tokens in a transformer) of different sizes to produce stronger image features. Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity and these tokens are then fused purely by attention multiple times to complement each other. Furthermore, to reduce computation, we develop a simple yet effective token fusion module based on cross attention, which uses a single token for each branch as a query to exchange information with other branches. Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise. Extensive experiments demonstrate that our approach performs better than or on par with several concurrent works on vision transformer, in addition to efficient CNN models. For example, on the ImageNet1K dataset, with some architectural changes, our approach outperforms the recent DeiT by a large margin of 2\% with a small to moderate increase in FLOPs and model parameters. Our source codes and models are available at https://github.com/IBM/CrossViT.
Reformer: The Efficient Transformer
Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its complexity from O(L^2) to O(Llog L), where L is the length of the sequence. Furthermore, we use reversible residual layers instead of the standard residuals, which allows storing activations only once in the training process instead of N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models while being much more memory-efficient and much faster on long sequences.
Activator: GLU Activations as The Core Functions of a Vision Transformer
Transformer architecture currently represents the main driver behind many successes in a variety of tasks addressed by deep learning, especially the recent advances in natural language processing (NLP) culminating with large language models (LLM). In addition, transformer architecture has found a wide spread of interest from computer vision (CV) researchers and practitioners, allowing for many advancements in vision-related tasks and opening the door for multi-task and multi-modal deep learning architectures that share the same principle of operation. One drawback to these architectures is their reliance on the scaled dot product attention mechanism with the softmax activation function, which is computationally expensive and requires large compute capabilities both for training and inference. This paper investigates substituting the attention mechanism usually adopted for transformer architecture with an architecture incorporating gated linear unit (GLU) activation within a multi-layer perceptron (MLP) structure in conjunction with the default MLP incorporated in the traditional transformer design. Another step forward taken by this paper is to eliminate the second non-gated MLP to further reduce the computational cost. Experimental assessments conducted by this research show that both proposed modifications and reductions offer competitive performance in relation to baseline architectures, in support of the aims of this work in establishing a more efficient yet capable alternative to the traditional attention mechanism as the core component in designing transformer architectures.
Large-kernel Attention for Efficient and Robust Brain Lesion Segmentation
Vision transformers are effective deep learning models for vision tasks, including medical image segmentation. However, they lack efficiency and translational invariance, unlike convolutional neural networks (CNNs). To model long-range interactions in 3D brain lesion segmentation, we propose an all-convolutional transformer block variant of the U-Net architecture. We demonstrate that our model provides the greatest compromise in three factors: performance competitive with the state-of-the-art; parameter efficiency of a CNN; and the favourable inductive biases of a transformer. Our public implementation is available at https://github.com/liamchalcroft/MDUNet .
Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions
In order to understand the in-context learning phenomenon, recent works have adopted a stylized experimental framework and demonstrated that Transformers can learn gradient-based learning algorithms for various classes of real-valued functions. However, the limitations of Transformers in implementing learning algorithms, and their ability to learn other forms of algorithms are not well understood. Additionally, the degree to which these capabilities are confined to attention-based models is unclear. Furthermore, it remains to be seen whether the insights derived from these stylized settings can be extrapolated to pretrained Large Language Models (LLMs). In this work, we take a step towards answering these questions by demonstrating the following: (a) On a test-bed with a variety of Boolean function classes, we find that Transformers can nearly match the optimal learning algorithm for 'simpler' tasks, while their performance deteriorates on more 'complex' tasks. Additionally, we find that certain attention-free models perform (almost) identically to Transformers on a range of tasks. (b) When provided a teaching sequence, i.e. a set of examples that uniquely identifies a function in a class, we show that Transformers learn more sample-efficiently. Interestingly, our results show that Transformers can learn to implement two distinct algorithms to solve a single task, and can adaptively select the more sample-efficient algorithm depending on the sequence of in-context examples. (c) Lastly, we show that extant LLMs, e.g. LLaMA-2, GPT-4, can compete with nearest-neighbor baselines on prediction tasks that are guaranteed to not be in their training set.
Efficiency 360: Efficient Vision Transformers
Transformers are widely used for solving tasks in natural language processing, computer vision, speech, and music domains. In this paper, we talk about the efficiency of transformers in terms of memory (the number of parameters), computation cost (number of floating points operations), and performance of models, including accuracy, the robustness of the model, and fair \& bias-free features. We mainly discuss the vision transformer for the image classification task. Our contribution is to introduce an efficient 360 framework, which includes various aspects of the vision transformer, to make it more efficient for industrial applications. By considering those applications, we categorize them into multiple dimensions such as privacy, robustness, transparency, fairness, inclusiveness, continual learning, probabilistic models, approximation, computational complexity, and spectral complexity. We compare various vision transformer models based on their performance, the number of parameters, and the number of floating point operations (FLOPs) on multiple datasets.
HuggingFace's Transformers: State-of-the-art Natural Language Processing
Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. Transformers is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. Transformers is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at https://github.com/huggingface/transformers.
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at~https://github.com/microsoft/Swin-Transformer.
Efficient pre-training objectives for Transformers
The Transformer architecture deeply changed the natural language processing, outperforming all previous state-of-the-art models. However, well-known Transformer models like BERT, RoBERTa, and GPT-2 require a huge compute budget to create a high quality contextualised representation. In this paper, we study several efficient pre-training objectives for Transformers-based models. By testing these objectives on different tasks, we determine which of the ELECTRA model's new features is the most relevant. We confirm that Transformers pre-training is improved when the input does not contain masked tokens and that the usage of the whole output to compute the loss reduces training time. Moreover, inspired by ELECTRA, we study a model composed of two blocks; a discriminator and a simple generator based on a statistical model with no impact on the computational performances. Besides, we prove that eliminating the MASK token and considering the whole output during the loss computation are essential choices to improve performance. Furthermore, we show that it is possible to efficiently train BERT-like models using a discriminative approach as in ELECTRA but without a complex generator, which is expensive. Finally, we show that ELECTRA benefits heavily from a state-of-the-art hyper-parameters search.
A Real-Time DETR Approach to Bangladesh Road Object Detection for Autonomous Vehicles
In the recent years, we have witnessed a paradigm shift in the field of Computer Vision, with the forthcoming of the transformer architecture. Detection Transformers has become a state of the art solution to object detection and is a potential candidate for Road Object Detection in Autonomous Vehicles. Despite the abundance of object detection schemes, real-time DETR models are shown to perform significantly better on inference times, with minimal loss of accuracy and performance. In our work, we used Real-Time DETR (RTDETR) object detection on the BadODD Road Object Detection dataset based in Bangladesh, and performed necessary experimentation and testing. Our results gave a mAP50 score of 0.41518 in the public 60% test set, and 0.28194 in the private 40% test set.
BrainTransformers: SNN-LLM
This study introduces BrainTransformers, an innovative Large Language Model (LLM) implemented using Spiking Neural Networks (SNN). Our key contributions include: (1) designing SNN-compatible Transformer components such as SNNMatmul, SNNSoftmax, and SNNSiLU; (2) implementing an SNN approximation of the SiLU activation function; and (3) developing a Synapsis module to simulate synaptic plasticity. Our 3-billion parameter model, BrainTransformers-3B-Chat, demonstrates competitive performance across various benchmarks, including MMLU (63.2), BBH (54.1), ARC-C (54.3), and GSM8K (76.3), while potentially offering improved energy efficiency and biological plausibility. The model employs a three-stage training approach, including SNN-specific neuronal synaptic plasticity training. This research opens new avenues for brain-like AI systems in natural language processing and neuromorphic computing. Future work will focus on hardware optimization, developing specialized SNN fine-tuning tools, and exploring practical applications in energy-efficient computing environments.
Transformer in Transformer
Transformer is a new kind of neural architecture which encodes the input data as powerful features via the attention mechanism. Basically, the visual transformers first divide the input images into several local patches and then calculate both representations and their relationship. Since natural images are of high complexity with abundant detail and color information, the granularity of the patch dividing is not fine enough for excavating features of objects in different scales and locations. In this paper, we point out that the attention inside these local patches are also essential for building visual transformers with high performance and we explore a new architecture, namely, Transformer iN Transformer (TNT). Specifically, we regard the local patches (e.g., 16times16) as "visual sentences" and present to further divide them into smaller patches (e.g., 4times4) as "visual words". The attention of each word will be calculated with other words in the given visual sentence with negligible computational costs. Features of both words and sentences will be aggregated to enhance the representation ability. Experiments on several benchmarks demonstrate the effectiveness of the proposed TNT architecture, e.g., we achieve an 81.5% top-1 accuracy on the ImageNet, which is about 1.7% higher than that of the state-of-the-art visual transformer with similar computational cost. The PyTorch code is available at https://github.com/huawei-noah/CV-Backbones, and the MindSpore code is available at https://gitee.com/mindspore/models/tree/master/research/cv/TNT.
DeepCrossAttention: Supercharging Transformer Residual Connections
Transformer networks have achieved remarkable success across diverse domains, leveraging a variety of architectural innovations, including residual connections. However, traditional residual connections, which simply sum the outputs of previous layers, can dilute crucial information. This work introduces DeepCrossAttention (DCA), an approach that enhances residual learning in transformers. DCA employs learnable, input-dependent weights to dynamically combine layer outputs, enabling the model to selectively focus on the most relevant information in any of the previous layers. Furthermore, DCA incorporates depth-wise cross-attention, allowing for richer interactions between layers at different depths. Our language modeling experiments show that DCA achieves improved perplexity for a given training time. Moreover, DCA obtains the same model quality up to 3x faster while adding a negligible number of parameters. Theoretical analysis confirms that DCA provides an improved trade-off between accuracy and model size when the ratio of collective layer ranks to the ambient dimension falls below a critical threshold.
The Ingredients for Robotic Diffusion Transformers
In recent years roboticists have achieved remarkable progress in solving increasingly general tasks on dexterous robotic hardware by leveraging high capacity Transformer network architectures and generative diffusion models. Unfortunately, combining these two orthogonal improvements has proven surprisingly difficult, since there is no clear and well-understood process for making important design choices. In this paper, we identify, study and improve key architectural design decisions for high-capacity diffusion transformer policies. The resulting models can efficiently solve diverse tasks on multiple robot embodiments, without the excruciating pain of per-setup hyper-parameter tuning. By combining the results of our investigation with our improved model components, we are able to present a novel architecture, named \method, that significantly outperforms the state of the art in solving long-horizon (1500+ time-steps) dexterous tasks on a bi-manual ALOHA robot. In addition, we find that our policies show improved scaling performance when trained on 10 hours of highly multi-modal, language annotated ALOHA demonstration data. We hope this work will open the door for future robot learning techniques that leverage the efficiency of generative diffusion modeling with the scalability of large scale transformer architectures. Code, robot dataset, and videos are available at: https://dit-policy.github.io
Efficient Transformer Encoders for Mask2Former-style models
Vision transformer based models bring significant improvements for image segmentation tasks. Although these architectures offer powerful capabilities irrespective of specific segmentation tasks, their use of computational resources can be taxing on deployed devices. One way to overcome this challenge is by adapting the computation level to the specific needs of the input image rather than the current one-size-fits-all approach. To this end, we introduce ECO-M2F or EffiCient TransfOrmer Encoders for Mask2Former-style models. Noting that the encoder module of M2F-style models incur high resource-intensive computations, ECO-M2F provides a strategy to self-select the number of hidden layers in the encoder, conditioned on the input image. To enable this self-selection ability for providing a balance between performance and computational efficiency, we present a three step recipe. The first step is to train the parent architecture to enable early exiting from the encoder. The second step is to create an derived dataset of the ideal number of encoder layers required for each training example. The third step is to use the aforementioned derived dataset to train a gating network that predicts the number of encoder layers to be used, conditioned on the input image. Additionally, to change the computational-accuracy tradeoff, only steps two and three need to be repeated which significantly reduces retraining time. Experiments on the public datasets show that the proposed approach reduces expected encoder computational cost while maintaining performance, adapts to various user compute resources, is flexible in architecture configurations, and can be extended beyond the segmentation task to object detection.
Towards Natural Bilingual and Code-Switched Speech Synthesis Based on Mix of Monolingual Recordings and Cross-Lingual Voice Conversion
Recent state-of-the-art neural text-to-speech (TTS) synthesis models have dramatically improved intelligibility and naturalness of generated speech from text. However, building a good bilingual or code-switched TTS for a particular voice is still a challenge. The main reason is that it is not easy to obtain a bilingual corpus from a speaker who achieves native-level fluency in both languages. In this paper, we explore the use of Mandarin speech recordings from a Mandarin speaker, and English speech recordings from another English speaker to build high-quality bilingual and code-switched TTS for both speakers. A Tacotron2-based cross-lingual voice conversion system is employed to generate the Mandarin speaker's English speech and the English speaker's Mandarin speech, which show good naturalness and speaker similarity. The obtained bilingual data are then augmented with code-switched utterances synthesized using a Transformer model. With these data, three neural TTS models -- Tacotron2, Transformer and FastSpeech are applied for building bilingual and code-switched TTS. Subjective evaluation results show that all the three systems can produce (near-)native-level speech in both languages for each of the speaker.
Multiplication-Free Transformer Training via Piecewise Affine Operations
Multiplications are responsible for most of the computational cost involved in neural network training and inference. Recent research has thus looked for ways to reduce the cost associated with them. Inspired by Mogami (2020), we replace multiplication with a cheap piecewise affine approximation that is achieved by adding the bit representation of the floating point numbers together as integers. We show that transformers can be trained with the resulting modified matrix multiplications on both vision and language tasks with little to no performance impact, and without changes to the training hyperparameters. We further replace all non-linearities in the networks making them fully and jointly piecewise affine in both inputs and weights. Finally, we show that we can eliminate all multiplications in the entire training process, including operations in the forward pass, backward pass and optimizer update, demonstrating the first successful training of modern neural network architectures in a fully multiplication-free fashion.
Transformers in Speech Processing: A Survey
The remarkable success of transformers in the field of natural language processing has sparked the interest of the speech-processing community, leading to an exploration of their potential for modeling long-range dependencies within speech sequences. Recently, transformers have gained prominence across various speech-related domains, including automatic speech recognition, speech synthesis, speech translation, speech para-linguistics, speech enhancement, spoken dialogue systems, and numerous multimodal applications. In this paper, we present a comprehensive survey that aims to bridge research studies from diverse subfields within speech technology. By consolidating findings from across the speech technology landscape, we provide a valuable resource for researchers interested in harnessing the power of transformers to advance the field. We identify the challenges encountered by transformers in speech processing while also offering insights into potential solutions to address these issues.
When Shift Operation Meets Vision Transformer: An Extremely Simple Alternative to Attention Mechanism
Attention mechanism has been widely believed as the key to success of vision transformers (ViTs), since it provides a flexible and powerful way to model spatial relationships. However, is the attention mechanism truly an indispensable part of ViT? Can it be replaced by some other alternatives? To demystify the role of attention mechanism, we simplify it into an extremely simple case: ZERO FLOP and ZERO parameter. Concretely, we revisit the shift operation. It does not contain any parameter or arithmetic calculation. The only operation is to exchange a small portion of the channels between neighboring features. Based on this simple operation, we construct a new backbone network, namely ShiftViT, where the attention layers in ViT are substituted by shift operations. Surprisingly, ShiftViT works quite well in several mainstream tasks, e.g., classification, detection, and segmentation. The performance is on par with or even better than the strong baseline Swin Transformer. These results suggest that the attention mechanism might not be the vital factor that makes ViT successful. It can be even replaced by a zero-parameter operation. We should pay more attentions to the remaining parts of ViT in the future work. Code is available at github.com/microsoft/SPACH.
Filtering Learning Histories Enhances In-Context Reinforcement Learning
Transformer models (TMs) have exhibited remarkable in-context reinforcement learning (ICRL) capabilities, allowing them to generalize to and improve in previously unseen environments without re-training or fine-tuning. This is typically accomplished by imitating the complete learning histories of a source RL algorithm over a substantial amount of pretraining environments, which, however, may transfer suboptimal behaviors inherited from the source algorithm/dataset. Therefore, in this work, we address the issue of inheriting suboptimality from the perspective of dataset preprocessing. Motivated by the success of the weighted empirical risk minimization, we propose a simple yet effective approach, learning history filtering (LHF), to enhance ICRL by reweighting and filtering the learning histories based on their improvement and stability characteristics. To the best of our knowledge, LHF is the first approach to avoid source suboptimality by dataset preprocessing, and can be combined with the current state-of-the-art (SOTA) ICRL algorithms. We substantiate the effectiveness of LHF through a series of experiments conducted on the well-known ICRL benchmarks, encompassing both discrete environments and continuous robotic manipulation tasks, with three SOTA ICRL algorithms (AD, DPT, DICP) as the backbones. LHF exhibits robust performance across a variety of suboptimal scenarios, as well as under varying hyperparameters and sampling strategies. Notably, the superior performance of LHF becomes more pronounced in the presence of noisy data, indicating the significance of filtering learning histories.
Transformers are Adaptable Task Planners
Every home is different, and every person likes things done in their particular way. Therefore, home robots of the future need to both reason about the sequential nature of day-to-day tasks and generalize to user's preferences. To this end, we propose a Transformer Task Planner(TTP) that learns high-level actions from demonstrations by leveraging object attribute-based representations. TTP can be pre-trained on multiple preferences and shows generalization to unseen preferences using a single demonstration as a prompt in a simulated dishwasher loading task. Further, we demonstrate real-world dish rearrangement using TTP with a Franka Panda robotic arm, prompted using a single human demonstration.
HAT: Hardware-Aware Transformers for Efficient Natural Language Processing
Transformers are ubiquitous in Natural Language Processing (NLP) tasks, but they are difficult to be deployed on hardware due to the intensive computation. To enable low-latency inference on resource-constrained hardware platforms, we propose to design Hardware-Aware Transformers (HAT) with neural architecture search. We first construct a large design space with arbitrary encoder-decoder attention and heterogeneous layers. Then we train a SuperTransformer that covers all candidates in the design space, and efficiently produces many SubTransformers with weight sharing. Finally, we perform an evolutionary search with a hardware latency constraint to find a specialized SubTransformer dedicated to run fast on the target hardware. Extensive experiments on four machine translation tasks demonstrate that HAT can discover efficient models for different hardware (CPU, GPU, IoT device). When running WMT'14 translation task on Raspberry Pi-4, HAT can achieve 3times speedup, 3.7times smaller size over baseline Transformer; 2.7times speedup, 3.6times smaller size over Evolved Transformer with 12,041times less search cost and no performance loss. HAT code is https://github.com/mit-han-lab/hardware-aware-transformers.git
Faith and Fate: Limits of Transformers on Compositionality
Transformer large language models (LLMs) have sparked admiration for their exceptional performance on tasks that demand intricate multi-step reasoning. Yet, these models simultaneously show failures on surprisingly trivial problems. This begs the question: Are these errors incidental, or do they signal more substantial limitations? In an attempt to demystify Transformers, we investigate the limits of these models across three representative compositional tasks -- multi-digit multiplication, logic grid puzzles, and a classic dynamic programming problem. These tasks require breaking problems down into sub-steps and synthesizing these steps into a precise answer. We formulate compositional tasks as computation graphs to systematically quantify the level of complexity, and break down reasoning steps into intermediate sub-procedures. Our empirical findings suggest that Transformers solve compositional tasks by reducing multi-step compositional reasoning into linearized subgraph matching, without necessarily developing systematic problem-solving skills. To round off our empirical study, we provide theoretical arguments on abstract multi-step reasoning problems that highlight how Transformers' performance will rapidly decay with increased task complexity.
An Extendable, Efficient and Effective Transformer-based Object Detector
Transformers have been widely used in numerous vision problems especially for visual recognition and detection. Detection transformers are the first fully end-to-end learning systems for object detection, while vision transformers are the first fully transformer-based architecture for image classification. In this paper, we integrate Vision and Detection Transformers (ViDT) to construct an effective and efficient object detector. ViDT introduces a reconfigured attention module to extend the recent Swin Transformer to be a standalone object detector, followed by a computationally efficient transformer decoder that exploits multi-scale features and auxiliary techniques essential to boost the detection performance without much increase in computational load. In addition, we extend it to ViDT+ to support joint-task learning for object detection and instance segmentation. Specifically, we attach an efficient multi-scale feature fusion layer and utilize two more auxiliary training losses, IoU-aware loss and token labeling loss. Extensive evaluation results on the Microsoft COCO benchmark dataset demonstrate that ViDT obtains the best AP and latency trade-off among existing fully transformer-based object detectors, and its extended ViDT+ achieves 53.2AP owing to its high scalability for large models. The source code and trained models are available at https://github.com/naver-ai/vidt.
Going deeper with Image Transformers
Transformers have been recently adapted for large scale image classification, achieving high scores shaking up the long supremacy of convolutional neural networks. However the optimization of image transformers has been little studied so far. In this work, we build and optimize deeper transformer networks for image classification. In particular, we investigate the interplay of architecture and optimization of such dedicated transformers. We make two transformers architecture changes that significantly improve the accuracy of deep transformers. This leads us to produce models whose performance does not saturate early with more depth, for instance we obtain 86.5% top-1 accuracy on Imagenet when training with no external data, we thus attain the current SOTA with less FLOPs and parameters. Moreover, our best model establishes the new state of the art on Imagenet with Reassessed labels and Imagenet-V2 / match frequency, in the setting with no additional training data. We share our code and models.
Home-made Diffusion Model from Scratch to Hatch
We introduce Home-made Diffusion Model (HDM), an efficient yet powerful text-to-image diffusion model optimized for training (and inferring) on consumer-grade hardware. HDM achieves competitive 1024x1024 generation quality while maintaining a remarkably low training cost of $535-620 using four RTX5090 GPUs, representing a significant reduction in computational requirements compared to traditional approaches. Our key contributions include: (1) Cross-U-Transformer (XUT), a novel U-shape transformer, Cross-U-Transformer (XUT), that employs cross-attention for skip connections, providing superior feature integration that leads to remarkable compositional consistency; (2) a comprehensive training recipe that incorporates TREAD acceleration, a novel shifted square crop strategy for efficient arbitrary aspect-ratio training, and progressive resolution scaling; and (3) an empirical demonstration that smaller models (343M parameters) with carefully crafted architectures can achieve high-quality results and emergent capabilities, such as intuitive camera control. Our work provides an alternative paradigm of scaling, demonstrating a viable path toward democratizing high-quality text-to-image generation for individual researchers and smaller organizations with limited computational resources.
S2WAT: Image Style Transfer via Hierarchical Vision Transformer using Strips Window Attention
Transformer's recent integration into style transfer leverages its proficiency in establishing long-range dependencies, albeit at the expense of attenuated local modeling. This paper introduces Strips Window Attention Transformer (S2WAT), a novel hierarchical vision transformer designed for style transfer. S2WAT employs attention computation in diverse window shapes to capture both short- and long-range dependencies. The merged dependencies utilize the "Attn Merge" strategy, which adaptively determines spatial weights based on their relevance to the target. Extensive experiments on representative datasets show the proposed method's effectiveness compared to state-of-the-art (SOTA) transformer-based and other approaches. The code and pre-trained models are available at https://github.com/AlienZhang1996/S2WAT.
Improving Transformers with Probabilistic Attention Keys
Multi-head attention is a driving force behind state-of-the-art transformers, which achieve remarkable performance across a variety of natural language processing (NLP) and computer vision tasks. It has been observed that for many applications, those attention heads learn redundant embedding, and most of them can be removed without degrading the performance of the model. Inspired by this observation, we propose Transformer with a Mixture of Gaussian Keys (Transformer-MGK), a novel transformer architecture that replaces redundant heads in transformers with a mixture of keys at each head. These mixtures of keys follow a Gaussian mixture model and allow each attention head to focus on different parts of the input sequence efficiently. Compared to its conventional transformer counterpart, Transformer-MGK accelerates training and inference, has fewer parameters, and requires fewer FLOPs to compute while achieving comparable or better accuracy across tasks. Transformer-MGK can also be easily extended to use with linear attention. We empirically demonstrate the advantage of Transformer-MGK in a range of practical applications, including language modeling and tasks that involve very long sequences. On the Wikitext-103 and Long Range Arena benchmark, Transformer-MGKs with 4 heads attain comparable or better performance to the baseline transformers with 8 heads.
Looped Transformers as Programmable Computers
We present a framework for using transformer networks as universal computers by programming them with specific weights and placing them in a loop. Our input sequence acts as a punchcard, consisting of instructions and memory for data read/writes. We demonstrate that a constant number of encoder layers can emulate basic computing blocks, including embedding edit operations, non-linear functions, function calls, program counters, and conditional branches. Using these building blocks, we emulate a small instruction-set computer. This allows us to map iterative algorithms to programs that can be executed by a looped, 13-layer transformer. We show how this transformer, instructed by its input, can emulate a basic calculator, a basic linear algebra library, and in-context learning algorithms that employ backpropagation. Our work highlights the versatility of the attention mechanism, and demonstrates that even shallow transformers can execute full-fledged, general-purpose programs.
Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation
Modern machine learning systems rely on large datasets to attain broad generalization, and this often poses a challenge in robot learning, where each robotic platform and task might have only a small dataset. By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets, which in turn can lead to better generalization and robustness. However, training a single policy on multi-robot data is challenging because robots can have widely varying sensors, actuators, and control frequencies. We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment. We train CrossFormer on the largest and most diverse dataset to date, 900K trajectories across 20 different robot embodiments. We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds. Unlike prior work, our model does not require manual alignment of the observation or action spaces. Extensive experiments in the real world show that our method matches the performance of specialist policies tailored for each embodiment, while also significantly outperforming the prior state of the art in cross-embodiment learning.
Heterogeneous Encoders Scaling In The Transformer For Neural Machine Translation
Although the Transformer is currently the best-performing architecture in the homogeneous configuration (self-attention only) in Neural Machine Translation, many State-of-the-Art models in Natural Language Processing are made of a combination of different Deep Learning approaches. However, these models often focus on combining a couple of techniques only and it is unclear why some methods are chosen over others. In this work, we investigate the effectiveness of integrating an increasing number of heterogeneous methods. Based on a simple combination strategy and performance-driven synergy criteria, we designed the Multi-Encoder Transformer, which consists of up to five diverse encoders. Results showcased that our approach can improve the quality of the translation across a variety of languages and dataset sizes and it is particularly effective in low-resource languages where we observed a maximum increase of 7.16 BLEU compared to the single-encoder model.
LLM4DistReconfig: A Fine-tuned Large Language Model for Power Distribution Network Reconfiguration
Power distribution networks are evolving due to the integration of DERs and increased customer participation. To maintain optimal operation, minimize losses, and meet varying load demands, frequent network reconfiguration is necessary. Traditionally, the reconfiguration task relies on optimization software and expert operators, but as systems grow more complex, faster and more adaptive solutions are required without expert intervention. Data-driven reconfiguration is gaining traction for its accuracy, speed, and robustness against incomplete network data. LLMs, with their ability to capture complex patterns, offer a promising approach for efficient and responsive network reconfiguration in evolving complex power networks. In this work, we introduce LLM4DistReconfig, a deep learning-based approach utilizing a fine-tuned LLM to solve the distribution network reconfiguration problem. By carefully crafting prompts and designing a custom loss function, we train the LLM with inputs representing network parameters such as buses, available lines, open lines, node voltages, and system loss. The model then predicts optimal reconfigurations by outputting updated network configurations that minimize system loss while meeting operational constraints. Our approach significantly reduces inference time compared to classical algorithms, allowing for near real-time optimal reconfiguration after training. Experimental results show that our method generates optimal configurations minimizing system loss for five individual and a combined test dataset. It also produces minimal invalid edges, no cycles, or subgraphs across all datasets, fulfilling domain-specific needs. Additionally, the generated responses contain less than 5% improper outputs on seen networks and satisfactory results on unseen networks, demonstrating its effectiveness and reliability for the reconfiguration task.
Universal Approximation Theorem for a Single-Layer Transformer
Deep learning employs multi-layer neural networks trained via the backpropagation algorithm. This approach has achieved success across many domains and relies on adaptive gradient methods such as the Adam optimizer. Sequence modeling evolved from recurrent neural networks to attention-based models, culminating in the Transformer architecture. Transformers have achieved state-of-the-art performance in natural language processing (for example, BERT and GPT-3) and have been applied in computer vision and computational biology. However, theoretical understanding of these models remains limited. In this paper, we examine the mathematical foundations of deep learning and Transformers and present a novel theoretical result. We review key concepts from linear algebra, probability, and optimization that underpin deep learning, and we analyze the multi-head self-attention mechanism and the backpropagation algorithm in detail. Our main contribution is a universal approximation theorem for Transformers: we prove that a single-layer Transformer, comprising one self-attention layer followed by a position-wise feed-forward network with ReLU activation, can approximate any continuous sequence-to-sequence mapping on a compact domain to arbitrary precision. We provide a formal statement and a complete proof. Finally, we present case studies that demonstrate the practical implications of this result. Our findings advance the theoretical understanding of Transformer models and help bridge the gap between theory and practice.
DeLighT: Deep and Light-weight Transformer
We introduce a deep and light-weight transformer, DeLighT, that delivers similar or better performance than standard transformer-based models with significantly fewer parameters. DeLighT more efficiently allocates parameters both (1) within each Transformer block using the DeLighT transformation, a deep and light-weight transformation, and (2) across blocks using block-wise scaling, which allows for shallower and narrower DeLighT blocks near the input and wider and deeper DeLighT blocks near the output. Overall, DeLighT networks are 2.5 to 4 times deeper than standard transformer models and yet have fewer parameters and operations. Experiments on benchmark machine translation and language modeling tasks show that DeLighT matches or improves the performance of baseline Transformers with 2 to 3 times fewer parameters on average. Our source code is available at: https://github.com/sacmehta/delight
Neural Architecture Search on Efficient Transformers and Beyond
Recently, numerous efficient Transformers have been proposed to reduce the quadratic computational complexity of standard Transformers caused by the Softmax attention. However, most of them simply swap Softmax with an efficient attention mechanism without considering the customized architectures specially for the efficient attention. In this paper, we argue that the handcrafted vanilla Transformer architectures for Softmax attention may not be suitable for efficient Transformers. To address this issue, we propose a new framework to find optimal architectures for efficient Transformers with the neural architecture search (NAS) technique. The proposed method is validated on popular machine translation and image classification tasks. We observe that the optimal architecture of the efficient Transformer has the reduced computation compared with that of the standard Transformer, but the general accuracy is less comparable. It indicates that the Softmax attention and efficient attention have their own distinctions but neither of them can simultaneously balance the accuracy and efficiency well. This motivates us to mix the two types of attention to reduce the performance imbalance. Besides the search spaces that commonly used in existing NAS Transformer approaches, we propose a new search space that allows the NAS algorithm to automatically search the attention variants along with architectures. Extensive experiments on WMT' 14 En-De and CIFAR-10 demonstrate that our searched architecture maintains comparable accuracy to the standard Transformer with notably improved computational efficiency.
The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training
Transformers consist of diverse building blocks, such as embedding layers, normalization layers, self-attention mechanisms, and point-wise feedforward networks. Thus, understanding the differences and interactions among these blocks is important. In this paper, we uncover a clear Sharpness Disparity across these blocks, which emerges early in training and intriguingly persists throughout the training process. Motivated by this finding, we propose Blockwise Learning Rate (LR), a strategy that tailors the LR to each block's sharpness, accelerating large language model (LLM) pre-training. By integrating Blockwise LR into AdamW, we consistently achieve lower terminal loss and nearly 2times speedup compared to vanilla AdamW. We demonstrate this acceleration across GPT-2 and LLaMA, with model sizes ranging from 0.12B to 1.1B and datasets of OpenWebText and MiniPile. Finally, we incorporate Blockwise LR into Adam-mini (Zhang et al., 2024), a recently proposed memory-efficient variant of Adam, achieving a combined 2times speedup and 2times memory saving. These results underscore the potential of exploiting the sharpness disparity to improve LLM training.
Trained Transformers Learn Linear Models In-Context
Attention-based neural networks such as transformers have demonstrated a remarkable ability to exhibit in-context learning (ICL): Given a short prompt sequence of tokens from an unseen task, they can formulate relevant per-token and next-token predictions without any parameter updates. By embedding a sequence of labeled training data and unlabeled test data as a prompt, this allows for transformers to behave like supervised learning algorithms. Indeed, recent work has shown that when training transformer architectures over random instances of linear regression problems, these models' predictions mimic those of ordinary least squares. Towards understanding the mechanisms underlying this phenomenon, we investigate the dynamics of ICL in transformers with a single linear self-attention layer trained by gradient flow on linear regression tasks. We show that despite non-convexity, gradient flow with a suitable random initialization finds a global minimum of the objective function. At this global minimum, when given a test prompt of labeled examples from a new prediction task, the transformer achieves prediction error competitive with the best linear predictor over the test prompt distribution. We additionally characterize the robustness of the trained transformer to a variety of distribution shifts and show that although a number of shifts are tolerated, shifts in the covariate distribution of the prompts are not. Motivated by this, we consider a generalized ICL setting where the covariate distributions can vary across prompts. We show that although gradient flow succeeds at finding a global minimum in this setting, the trained transformer is still brittle under mild covariate shifts. We complement this finding with experiments on large, nonlinear transformer architectures which we show are more robust under covariate shifts.
A Neural ODE Interpretation of Transformer Layers
Transformer layers, which use an alternating pattern of multi-head attention and multi-layer perceptron (MLP) layers, provide an effective tool for a variety of machine learning problems. As the transformer layers use residual connections to avoid the problem of vanishing gradients, they can be viewed as the numerical integration of a differential equation. In this extended abstract, we build upon this connection and propose a modification of the internal architecture of a transformer layer. The proposed model places the multi-head attention sublayer and the MLP sublayer parallel to each other. Our experiments show that this simple modification improves the performance of transformer networks in multiple tasks. Moreover, for the image classification task, we show that using neural ODE solvers with a sophisticated integration scheme further improves performance.
Pay Attention to MLPs
Transformers have become one of the most important architectural innovations in deep learning and have enabled many breakthroughs over the past few years. Here we propose a simple network architecture, gMLP, based on MLPs with gating, and show that it can perform as well as Transformers in key language and vision applications. Our comparisons show that self-attention is not critical for Vision Transformers, as gMLP can achieve the same accuracy. For BERT, our model achieves parity with Transformers on pretraining perplexity and is better on some downstream NLP tasks. On finetuning tasks where gMLP performs worse, making the gMLP model substantially larger can close the gap with Transformers. In general, our experiments show that gMLP can scale as well as Transformers over increased data and compute.
What Language Model to Train if You Have One Million GPU Hours?
The crystallization of modeling methods around the Transformer architecture has been a boon for practitioners. Simple, well-motivated architectural variations can transfer across tasks and scale, increasing the impact of modeling research. However, with the emergence of state-of-the-art 100B+ parameters models, large language models are increasingly expensive to accurately design and train. Notably, it can be difficult to evaluate how modeling decisions may impact emergent capabilities, given that these capabilities arise mainly from sheer scale alone. In the process of building BLOOM--the Big Science Large Open-science Open-access Multilingual language model--our goal is to identify an architecture and training setup that makes the best use of our 1,000,000 A100-GPU-hours budget. Specifically, we perform an ablation study at the billion-parameter scale comparing different modeling practices and their impact on zero-shot generalization. In addition, we study the impact of various popular pre-training corpora on zero-shot generalization. We also study the performance of a multilingual model and how it compares to the English-only one. Finally, we consider the scaling behaviour of Transformers to choose the target model size, shape, and training setup. All our models and code are open-sourced at https://huggingface.co/bigscience .
Cross-Architecture Knowledge Distillation
Transformer attracts much attention because of its ability to learn global relations and superior performance. In order to achieve higher performance, it is natural to distill complementary knowledge from Transformer to convolutional neural network (CNN). However, most existing knowledge distillation methods only consider homologous-architecture distillation, such as distilling knowledge from CNN to CNN. They may not be suitable when applying to cross-architecture scenarios, such as from Transformer to CNN. To deal with this problem, a novel cross-architecture knowledge distillation method is proposed. Specifically, instead of directly mimicking output/intermediate features of the teacher, partially cross attention projector and group-wise linear projector are introduced to align the student features with the teacher's in two projected feature spaces. And a multi-view robust training scheme is further presented to improve the robustness and stability of the framework. Extensive experiments show that the proposed method outperforms 14 state-of-the-arts on both small-scale and large-scale datasets.
The Transient Nature of Emergent In-Context Learning in Transformers
Transformer neural networks can exhibit a surprising capacity for in-context learning (ICL) despite not being explicitly trained for it. Prior work has provided a deeper understanding of how ICL emerges in transformers, e.g. through the lens of mechanistic interpretability, Bayesian inference, or by examining the distributional properties of training data. However, in each of these cases, ICL is treated largely as a persistent phenomenon; namely, once ICL emerges, it is assumed to persist asymptotically. Here, we show that the emergence of ICL during transformer training is, in fact, often transient. We train transformers on synthetic data designed so that both ICL and in-weights learning (IWL) strategies can lead to correct predictions. We find that ICL first emerges, then disappears and gives way to IWL, all while the training loss decreases, indicating an asymptotic preference for IWL. The transient nature of ICL is observed in transformers across a range of model sizes and datasets, raising the question of how much to "overtrain" transformers when seeking compact, cheaper-to-run models. We find that L2 regularization may offer a path to more persistent ICL that removes the need for early stopping based on ICL-style validation tasks. Finally, we present initial evidence that ICL transience may be caused by competition between ICL and IWL circuits.
Modularized Transfomer-based Ranking Framework
Recent innovations in Transformer-based ranking models have advanced the state-of-the-art in information retrieval. However, these Transformers are computationally expensive, and their opaque hidden states make it hard to understand the ranking process. In this work, we modularize the Transformer ranker into separate modules for text representation and interaction. We show how this design enables substantially faster ranking using offline pre-computed representations and light-weight online interactions. The modular design is also easier to interpret and sheds light on the ranking process in Transformer rankers.
