new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense

As large language models (LLMs) are increasingly deployed in diverse applications, including chatbot assistants and code generation, aligning their behavior with safety and ethical standards has become paramount. However, jailbreak attacks, which exploit vulnerabilities to elicit unintended or harmful outputs, threaten LLMs' safety significantly. In this paper, we introduce Layer-AdvPatcher, a novel methodology designed to defend against jailbreak attacks by utilizing an unlearning strategy to patch specific layers within LLMs through self-augmented datasets. Our insight is that certain layer(s), tend to produce affirmative tokens when faced with harmful prompts. By identifying these layers and adversarially exposing them to generate more harmful data, one can understand their inherent and diverse vulnerabilities to attacks. With these exposures, we then "unlearn" these issues, reducing the impact of affirmative tokens and hence minimizing jailbreak risks while keeping the model's responses to safe queries intact. We conduct extensive experiments on two models, four benchmark datasets, and multiple state-of-the-art jailbreak benchmarks to demonstrate the efficacy of our approach. Results indicate that our framework reduces the harmfulness and attack success rate of jailbreak attacks without compromising utility for benign queries compared to recent defense methods.

  • 8 authors
·
Jan 5, 2025

Broken-Token: Filtering Obfuscated Prompts by Counting Characters-Per-Token

Large Language Models (LLMs) are susceptible to jailbreak attacks where malicious prompts are disguised using ciphers and character-level encodings to bypass safety guardrails. While these guardrails often fail to interpret the encoded content, the underlying models can still process the harmful instructions. We introduce CPT-Filtering, a novel, model-agnostic with negligible-costs and near-perfect accuracy guardrail technique that aims to mitigate these attacks by leveraging the intrinsic behavior of Byte-Pair Encoding (BPE) tokenizers. Our method is based on the principle that tokenizers, trained on natural language, represent out-of-distribution text, such as ciphers, using a significantly higher number of shorter tokens. Our technique uses a simple yet powerful artifact of using language models: the average number of Characters Per Token (CPT) in the text. This approach is motivated by the high compute cost of modern methods - relying on added modules such as dedicated LLMs or perplexity models. We validate our approach across a large dataset of over 100,000 prompts, testing numerous encoding schemes with several popular tokenizers. Our experiments demonstrate that a simple CPT threshold robustly identifies encoded text with high accuracy, even for very short inputs. CPT-Filtering provides a practical defense layer that can be immediately deployed for real-time text filtering and offline data curation.

  • 2 authors
·
Oct 30, 2025

Breaking Bad Tokens: Detoxification of LLMs Using Sparse Autoencoders

Large language models (LLMs) are now ubiquitous in user-facing applications, yet they still generate undesirable toxic outputs, including profanity, vulgarity, and derogatory remarks. Although numerous detoxification methods exist, most apply broad, surface-level fixes and can therefore easily be circumvented by jailbreak attacks. In this paper we leverage sparse autoencoders (SAEs) to identify toxicity-related directions in the residual stream of models and perform targeted activation steering using the corresponding decoder vectors. We introduce three tiers of steering aggressiveness and evaluate them on GPT-2 Small and Gemma-2-2B, revealing trade-offs between toxicity reduction and language fluency. At stronger steering strengths, these causal interventions surpass competitive baselines in reducing toxicity by up to 20%, though fluency can degrade noticeably on GPT-2 Small depending on the aggressiveness. Crucially, standard NLP benchmark scores upon steering remain stable, indicating that the model's knowledge and general abilities are preserved. We further show that feature-splitting in wider SAEs hampers safety interventions, underscoring the importance of disentangled feature learning. Our findings highlight both the promise and the current limitations of SAE-based causal interventions for LLM detoxification, further suggesting practical guidelines for safer language-model deployment.

  • 6 authors
·
May 20, 2025