- PyMOLfold: Interactive Protein and Ligand Structure Prediction in PyMOL PyMOLfold is a flexible and open-source plugin designed to seamlessly integrate AI-based protein structure prediction and visualization within the widely used PyMOL molecular graphics system. By leveraging state-of-the-art protein folding models such as ESM3, Boltz-1, and Chai-1, PyMOLfold allows researchers to directly predict protein tertiary structures from amino acid sequences without requiring external tools or complex workflows. Furthermore, with certain models, users can provide a SMILES string of a ligand and have the small molecule placed in the protein structure. This unique capability bridges the gap between computational folding and structural visualization, enabling users to input a primary sequence, perform a folding prediction, and immediately explore the resulting 3D structure within the same intuitive platform. 4 authors · Feb 1, 2025
1 Inverse Protein Folding Using Deep Bayesian Optimization Inverse protein folding -- the task of predicting a protein sequence from its backbone atom coordinates -- has surfaced as an important problem in the "top down", de novo design of proteins. Contemporary approaches have cast this problem as a conditional generative modelling problem, where a large generative model over protein sequences is conditioned on the backbone. While these generative models very rapidly produce promising sequences, independent draws from generative models may fail to produce sequences that reliably fold to the correct backbone. Furthermore, it is challenging to adapt pure generative approaches to other settings, e.g., when constraints exist. In this paper, we cast the problem of improving generated inverse folds as an optimization problem that we solve using recent advances in "deep" or "latent space" Bayesian optimization. Our approach consistently produces protein sequences with greatly reduced structural error to the target backbone structure as measured by TM score and RMSD while using fewer computational resources. Additionally, we demonstrate other advantages of an optimization-based approach to the problem, such as the ability to handle constraints. 8 authors · May 24, 2023
1 Template estimation in computational anatomy: Fréchet means in top and quotient spaces are not consistent In this article, we study the consistency of the template estimation with the Fr\'echet mean in quotient spaces. The Fr\'echet mean in quotient spaces is often used when the observations are deformed or transformed by a group action. We show that in most cases this estimator is actually inconsistent. We exhibit a sufficient condition for this inconsistency, which amounts to the folding of the distribution of the noisy template when it is projected to the quotient space. This condition appears to be fulfilled as soon as the support of the noise is large enough. To quantify this inconsistency we provide lower and upper bounds of the bias as a function of the variability (the noise level). This shows that the consistency bias cannot be neglected when the variability increases. 4 authors · Aug 12, 2016
- RadDiff: Retrieval-Augmented Denoising Diffusion for Protein Inverse Folding Protein inverse folding, the design of an amino acid sequence based on a target 3D structure, is a fundamental problem of computational protein engineering. Existing methods either generate sequences without leveraging external knowledge or relying on protein language models (PLMs). The former omits the evolutionary information stored in protein databases, while the latter is parameter-inefficient and inflexible to adapt to ever-growing protein data. To overcome the above drawbacks, in this paper we propose a novel method, called retrieval-augmented denoising diffusion (RadDiff), for protein inverse folding. Given the target protein backbone, RadDiff uses a hierarchical search strategy to efficiently retrieve structurally similar proteins from large protein databases. The retrieved structures are then aligned residue-by-residue to the target to construct a position-specific amino acid profile, which serves as an evolutionary-informed prior that conditions the denoising process. A lightweight integration module is further designed to incorporate this prior effectively. Experimental results on the CATH, PDB, and TS50 datasets show that RadDiff consistently outperforms existing methods, improving sequence recovery rate by up to 19%. Experimental results also demonstrate that RadDiff generates highly foldable sequences and scales effectively with database size. 3 authors · Nov 28, 2025
- FoldAct: Efficient and Stable Context Folding for Long-Horizon Search Agents Long-horizon reinforcement learning (RL) for large language models faces critical scalability challenges from unbounded context growth, leading to context folding methods that compress interaction history during task execution. However, existing approaches treat summary actions as standard actions, overlooking that summaries fundamentally modify the agent's future observation space, creating a policy-dependent, non-stationary observation distribution that violates core RL assumptions. This introduces three fundamental challenges: (1) gradient dilution where summary tokens receive insufficient training signal, (2) self-conditioning where policy updates change summary distributions, creating a vicious cycle of training collapse, and (3) computational cost from processing unique contexts at each turn. We introduce FoldActhttps://github.com/SHAO-Jiaqi757/FoldAct, a framework that explicitly addresses these challenges through three key innovations: separated loss computation for independent gradient signals on summary and action tokens, full context consistency loss to reduce distribution shift, and selective segment training to reduce computational cost. Our method enables stable training of long-horizon search agents with context folding, addressing the non-stationary observation problem while improving training efficiency with 5.19times speedup. 4 authors · Dec 27, 2025
- The Space Between: On Folding, Symmetries and Sampling Recent findings suggest that consecutive layers of neural networks with the ReLU activation function fold the input space during the learning process. While many works hint at this phenomenon, an approach to quantify the folding was only recently proposed by means of a space folding measure based on Hamming distance in the ReLU activation space. We generalize this measure to a wider class of activation functions through introduction of equivalence classes of input data, analyse its mathematical and computational properties and come up with an efficient sampling strategy for its implementation. Moreover, it has been observed that space folding values increase with network depth when the generalization error is low, but decrease when the error increases. This underpins that learned symmetries in the data manifold (e.g., invariance under reflection) become visible in terms of space folds, contributing to the network's generalization capacity. Inspired by these findings, we outline a novel regularization scheme that encourages the network to seek solutions characterized by higher folding values. 4 authors · Mar 11, 2025
- mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics Recent advancements in protein structure determination are revolutionizing our understanding of proteins. Still, a significant gap remains in the availability of comprehensive datasets that focus on the dynamics of proteins, which are crucial for understanding protein function, folding, and interactions. To address this critical gap, we introduce mdCATH, a dataset generated through an extensive set of all-atom molecular dynamics simulations of a diverse and representative collection of protein domains. This dataset comprises all-atom systems for 5,398 domains, modeled with a state-of-the-art classical force field, and simulated in five replicates each at five temperatures from 320 K to 413 K. The mdCATH dataset records coordinates and forces every 1 ns, for over 62 ms of accumulated simulation time, effectively capturing the dynamics of the various classes of domains and providing a unique resource for proteome-wide statistical analyses of protein unfolding thermodynamics and kinetics. We outline the dataset structure and showcase its potential through four easily reproducible case studies, highlighting its capabilities in advancing protein science. 3 authors · Jul 20, 2024
- Triangle Multiplication Is All You Need For Biomolecular Structure Representations AlphaFold has transformed protein structure prediction, but emerging applications such as virtual ligand screening, proteome-wide folding, and de novo binder design demand predictions at a massive scale, where runtime and memory costs become prohibitive. A major bottleneck lies in the Pairformer backbone of AlphaFold3-style models, which relies on computationally expensive triangular primitives-especially triangle attention-for pairwise reasoning. We introduce Pairmixer, a streamlined alternative that eliminates triangle attention while preserving higher-order geometric reasoning capabilities that are critical for structure prediction. Pairmixer substantially improves computational efficiency, matching state-of-the-art structure predictors across folding and docking benchmarks, delivering up to 4x faster inference on long sequences while reducing training cost by 34%. Its efficiency alleviates the computational burden of downstream applications such as modeling large protein complexes, high-throughput ligand and binder screening, and hallucination-based design. Within BoltzDesign, for example, Pairmixer delivers over 2x faster sampling and scales to sequences ~30% longer than the memory limits of Pairformer. 10 authors · Oct 21, 2025
- Side-Channel Extraction of Dataflow AI Accelerator Hardware Parameters Dataflow neural network accelerators efficiently process AI tasks on FPGAs, with deployment simplified by ready-to-use frameworks and pre-trained models. However, this convenience makes them vulnerable to malicious actors seeking to reverse engineer valuable Intellectual Property (IP) through Side-Channel Attacks (SCA). This paper proposes a methodology to recover the hardware configuration of dataflow accelerators generated with the FINN framework. Through unsupervised dimensionality reduction, we reduce the computational overhead compared to the state-of-the-art, enabling lightweight classifiers to recover both folding and quantization parameters. We demonstrate an attack phase requiring only 337 ms to recover the hardware parameters with an accuracy of more than 95% and 421 ms to fully recover these parameters with an averaging of 4 traces for a FINN-based accelerator running a CNN, both using a random forest classifier on side-channel traces, even with the accelerator dataflow fully loaded. This approach offers a more realistic attack scenario than existing methods, and compared to SoA attacks based on tsfresh, our method requires 940x and 110x less time for preparation and attack phases, respectively, and gives better results even without averaging traces. 6 authors · Jun 18, 2025