- Comparing Channel Restrictions of Communicating State Machines, High-level Message Sequence Charts, and Multiparty Session Types Communicating state machines provide a formal foundation for distributed computation. Unfortunately, they are Turing-complete and, thus, challenging to analyse. In this paper, we classify restrictions on channels which have been proposed to work around the undecidability of verification questions. We compare half-duplex communication, existential B-boundedness, and k-synchronisability. These restrictions do not prevent the communication channels from growing arbitrarily large but still restrict the power of the model. Each restriction gives rise to a set of languages so, for every pair of restrictions, we check whether one subsumes the other or if they are incomparable. We investigate their relationship in two different contexts: first, the one of communicating state machines, and, second, the one of communication protocol specifications using high-level message sequence charts. Surprisingly, these two contexts yield different conclusions. In addition, we integrate multiparty session types, another approach to specify communication protocols, into our classification. We show that multiparty session type languages are half-duplex, existentially 1-bounded, and 1-synchronisable. To~show this result, we provide the first formal embedding of multiparty session types into high-level message sequence charts. 2 authors · Aug 10, 2022
- A Datalog Hammer for Supervisor Verification Conditions Modulo Simple Linear Arithmetic The Bernays-Sch\"onfinkel first-order logic fragment over simple linear real arithmetic constraints BS(SLR) is known to be decidable. We prove that BS(SLR) clause sets with both universally and existentially quantified verification conditions (conjectures) can be translated into BS(SLR) clause sets over a finite set of first-order constants. For the Horn case, we provide a Datalog hammer preserving validity and satisfiability. A toolchain from the BS(LRA) prover SPASS-SPL to the Datalog reasoner VLog establishes an effective way of deciding verification conditions in the Horn fragment. This is exemplified by the verification of supervisor code for a lane change assistant in a car and of an electronic control unit for a supercharged combustion engine. 6 authors · Jul 7, 2021
- An elementary and unified proof of Grothendieck's inequality We present an elementary, self-contained proof of Grothendieck's inequality that unifies the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known explicit bounds for the real and complex Grothendieck constants respectively. This article is intended to be pedagogical, combining and streamlining known ideas of Lindenstrauss--Pe{\l}czy\'nski, Krivine, and Haagerup into a proof that need only univariate calculus, basic complex variables, and a modicum of linear algebra as prerequisites. 3 authors · Nov 28, 2017
- On resolvability, connectedness and pseudocompactness We prove that: I. If L is a T_1 space, |L|>1 and d(L) leq kappa geq omega, then there is a submaximal dense subspace X of L^{2^kappa} such that |X|=Delta(X)=kappa; II. If cleqkappa=kappa^omega<lambda and 2^kappa=2^lambda, then there is a Tychonoff pseudocompact globally and locally connected space X such that |X|=Delta(X)=lambda and X is not kappa^+-resolvable; III. If omega_1leqkappa<lambda and 2^kappa=2^lambda, then there is a regular space X such that |X|=Delta(X)=lambda, all continuous real-valued functions on X are constant (so X is pseudocompact and connected) and X is not kappa^+-resolvable. 1 authors · Aug 2, 2023
- A Constructive, Type-Theoretic Approach to Regression via Global Optimisation We examine the connections between deterministic, complete, and general global optimisation of continuous functions and a general concept of regression from the perspective of constructive type theory via the concept of 'searchability'. We see how the property of convergence of global optimisation is a straightforward consequence of searchability. The abstract setting allows us to generalise searchability and continuity to higher-order functions, so that we can formulate novel convergence criteria for regression, derived from the convergence of global optimisation. All the theory and the motivating examples are fully formalised in the proof assistant Agda. 2 authors · Jun 23, 2020
- Yet another argument in favour of NP=CoNP This article shows yet another proof of NP=CoNP$. In a previous article, we proved that NP=PSPACE and from it we can conclude that NP=CoNP immediately. The former proof shows how to obtain polynomial and, polynomial in time checkable Dag-like proofs for all purely implicational Minimal logic tautologies. From the fact that Minimal implicational logic is PSPACE-complete we get the proof that NP=PSPACE. This first proof of NP=CoNP uses Hudelmaier linear upper-bound on the height of Sequent Calculus minimal implicational logic proofs. In an addendum to the proof of NP=PSPACE, we observe that we do not need to use Hudelmaier upper-bound since any proof of non-hamiltonicity for any graph is linear upper-bounded. By the CoNP-completeness of non-hamiltonicity, we obtain NP=CoNP as a corollary of the first proof. In this article we show the third proof of CoNP=NP, also providing polynomial size and polynomial verifiable certificates that are Dags. They are generated from normal Natural Deduction proofs, linear height upper-bounded too, by removing redundancy, i.e., repeated parts. The existence of repeated parts is a consequence of the redundancy theorem for a family of super-polynomial proofs in the purely implicational Minimal logic. It is mandatory to read at least two previous articles to get the details of the proof presented here. The article that proves the redundancy theorem and the article that shows how to remove the repeated parts of a normal Natural Deduction proof to have a polynomial Dag certificate for minimal implicational logic tautologies. 1 authors · Dec 28, 2020
- Probability, valuations, hyperspace: Three monads on Top and the support as a morphism We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of closed subsets equipped with the lower Vietoris topology. The second is the monad V of continuous valuations, also known as the extended probabilistic powerdomain. We construct both monads in a unified way in terms of double dualization. This reveals a close analogy between them, and allows us to prove that the operation of taking the support of a continuous valuation is a morphism of monads from V to H. In particular, this implies that every H-algebra (topological complete semilattice) is also a V-algebra. Third, we show that V can be restricted to a submonad of tau-smooth probability measures on Top. By composing these two morphisms of monads, we obtain that taking the support of a tau-smooth probability measure is also a morphism of monads. 3 authors · Oct 8, 2019
- The Virtual Large Cardinal Hierarchy We continue the study of the virtual large cardinal hierarchy by analysing virtual versions of superstrong, Woodin, and Berkeley cardinals. Gitman and Schindler showed that virtualizations of strong and supercompact cardinals yield the same large cardinal notion. We provide various equivalent characterizations of virtually Woodin cardinals, including showing that On is virtually Woodin if and only if for every class A, there is a proper class of virtually A-extendible cardinals. We introduce the virtual Vopenka principle for finite languages and show that it is not equivalent to the virtual Vopenka principle (although the two principles are equiconsistent), but is equivalent to the assertion that On is virtually pre-Woodin, a weakening of virtually Woodin, which is equivalent to having for every class A, a weakly virtually A-extendible cardinal. We show that if there are no virtually Berkeley cardinals, then On is virtually Woodin if and only if On is virtually pre-Woodin (if and only if the virtual Vopenka principle for finite languages holds). In particular, if the virtual Vopenka principle holds and On is not Mahlo, then On is not virtually Woodin, and hence there is a virtually Berkeley cardinal. 3 authors · Sep 13, 2021
- Properties of several metric spaces of fuzzy sets This paper discusses the properties the spaces of fuzzy sets in a metric space equipped with the endograph metric and the sendograph metric, respectively. We first give some relations among the endograph metric, the sendograph metric and the Gamma-convergence, and then investigate the level characterizations of the endograph metric and the Gamma-convergence. By using the above results, we give some relations among the endograph metric, the sendograph metric, the supremum metric and the d_p^* metric, pgeq 1. On the basis of the above results, we present the characterizations of total boundedness, relative compactness and compactness in the space of fuzzy sets whose alpha-cuts are compact when alpha>0 equipped with the endograph metric, and in the space of compact support fuzzy sets equipped with the sendograph metric, respectively. Furthermore, we give completions of these metric spaces, respectively. 1 authors · Apr 7, 2023
- Sequences of operators, monotone in the sense of contractive domination A sequence of operators T_n from a Hilbert space {mathfrak H} to Hilbert spaces {mathfrak K}_n which is nondecreasing in the sense of contractive domination is shown to have a limit which is still a linear operator T from {mathfrak H} to a Hilbert space {mathfrak K}. Moreover, the closability or closedness of T_n is preserved in the limit. The closures converge likewise and the connection between the limits is investigated. There is no similar way of dealing directly with linear relations. However, the sequence of closures is still nondecreasing and then the convergence is governed by the monotonicity principle. There are some related results for nonincreasing sequences. 2 authors · Dec 30, 2023
- A Probability Monad as the Colimit of Spaces of Finite Samples We define and study a probability monad on the category of complete metric spaces and short maps. It assigns to each space the space of Radon probability measures on it with finite first moment, equipped with the Kantorovich-Wasserstein distance. This monad is analogous to the Giry monad on the category of Polish spaces, and it extends a construction due to van Breugel for compact and for 1-bounded complete metric spaces. We prove that this Kantorovich monad arises from a colimit construction on finite power-like constructions, which formalizes the intuition that probability measures are limits of finite samples. The proof relies on a criterion for when an ordinary left Kan extension of lax monoidal functors is a monoidal Kan extension. The colimit characterization allows the development of integration theory and the treatment of measures on spaces of measures, without measure theory. We also show that the category of algebras of the Kantorovich monad is equivalent to the category of closed convex subsets of Banach spaces with short affine maps as morphisms. 2 authors · Dec 14, 2017
- A Probabilistic Dependent Type System based on Non-Deterministic Beta Reduction We introduce Probabilistic Dependent Type Systems (PDTS) via a functional language based on a subsystem of intuitionistic type theory including dependent sums and products, which is expanded to include stochastic functions. We provide a sampling-based semantics for the language based on non-deterministic beta reduction. Further, we derive a probabilistic logic from the PDTS introduced as a direct result of the Curry-Howard isomorphism. The probabilistic logic derived is shown to provide a universal representation for finite discrete distributions. 1 authors · Feb 20, 2016
- Volumes of Nullhomotopies in Nilpotent Spaces The Shadowing Principle of Manin has proved a valuable tool for addressing questions of quantitative topology raised by Gromov in the late 1900s. The principle informally provides a way for bounded algebraic maps between differential graded algebras to be translated into nearby genuine maps between their geometric realizations. We extend this principle to finite towers of principal K(G,n) fibrations, and in particular apply this construction to nilpotent spaces. As a specific application of the extended principle, we provide upper bounds on the asymptotic behavior of volumes of nullhomotopies of Lipschitz maps into nilpotent spaces. We further refine these bounds in the case when c = 1 to nearly meet those of the simply connected setting. We similarly refine these bounds in the event the target space is coformal, and demonstrate that the bounds in this setting are nearly sharp. 1 authors · Sep 30
- Extension of p-compact operators in Banach spaces We analyze various consequences in relation to the extension of operators T:Xto Y that are p-compact, as well as the extension of operators T:Xto Y whose adjoints T^*:Y^*to X^* are p-compact. In most cases, we discuss these extension properties when the underlying spaces, either domain or codomain, are P_lambda spaces. We also answer if these extensions are almost norm-preserving in such circumstances where the extension T of a T exists. It is observed that an operator can often be extended to a larger domain when the codomain is appropriately extended as well. Specific assumptions might enable us to obtain an extension of an operator that maintains the same range. Necessary and sufficient conditions are derived for a Banach space to be L_1-predual. 2 authors · Nov 2
- Topological Quantum Compilation Using Mixed-Integer Programming We introduce the Mixed-Integer Quadratically Constrained Quadratic Programming framework for the quantum compilation problem and apply it in the context of topological quantum computing. In this setting, quantum gates are realized by sequences of elementary braids of quasiparticles with exotic fractional statistics in certain two-dimensional topological condensed matter systems, described by effective topological quantum field theories. We specifically focus on a non-semisimple version of topological field theory, which provides a foundation for an extended theory of Ising anyons and which has recently been shown by Iulianelli et al., Nature Communications {\bf 16}, 6408 (2025), to permit universal quantum computation. While the proofs of this pioneering result are existential in nature, the mixed integer programming provides an approach to explicitly construct quantum gates in topological systems. We demonstrate this by focusing specifically on the entangling controlled-NOT operation, and its local equivalence class, using braiding operations in the non-semisimple Ising system. This illustrates the utility of the Mixed-Integer Quadratically Constrained Quadratic Programming for topological quantum compilation. 5 authors · Nov 12
- A Deductive Verification Infrastructure for Probabilistic Programs This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style for expressing verification conditions whose validity implies the correctness of a program under investigation. As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times, or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a paradigm shift from the standard Boolean to a real-valued domain is required. Our IVL features quantitative generalizations of standard verification constructs such as assume- and assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous verification techniques from the literature. With our SMT-based implementation, we automatically verify a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification infrastructure for expectation-based reasoning about probabilistic programs. 5 authors · Sep 14, 2023
- Unconstrained Online Learning with Unbounded Losses Algorithms for online learning typically require one or more boundedness assumptions: that the domain is bounded, that the losses are Lipschitz, or both. In this paper, we develop a new setting for online learning with unbounded domains and non-Lipschitz losses. For this setting we provide an algorithm which guarantees R_{T}(u)le tilde O(G|u|T+L|u|^{2}T) regret on any problem where the subgradients satisfy |g_{t}|le G+L|w_{t}|, and show that this bound is unimprovable without further assumptions. We leverage this algorithm to develop new saddle-point optimization algorithms that converge in duality gap in unbounded domains, even in the absence of meaningful curvature. Finally, we provide the first algorithm achieving non-trivial dynamic regret in an unbounded domain for non-Lipschitz losses, as well as a matching lower bound. The regret of our dynamic regret algorithm automatically improves to a novel L^{*} bound when the losses are smooth. 2 authors · Jun 7, 2023
- Optimal Embeddings of Posets in Hypercubes Given a finite poset mathcal P, the hypercube-height, denoted by h^*(mathcal P), is defined to be the largest h such that, for any natural number n, the subsets of [n] of size less than h do not contain an induced copy of mathcal P. The hypercube-width, denoted by w^*(mathcal P), is the smallest w such that the subsets of [w] of size at most h^*(mathcal P) contain an induced copy of mathcal P. In other words, h^*(mathcal P) asks how `low' can a poset be embedded, and w^*(mathcal P) asks for the first hypercube in which such an `optimal' embedding occurs. These notions were introduced by Bastide, Groenland, Ivan and Johnston in connection to upper bounds for the poset saturation numbers. While it is not hard to see that h^*(mathcal P)leq |mathcal P|-1 (and this bound can be tight), the hypercube-width has proved to be much more elusive. It was shown by the authors mentioned above that w^*(mathcal P)leq|mathcal P|^2/4, but they conjectured that in fact w^*(mathcal P)leq |mathcal P| for any finite poset mathcal P. In this paper we prove this conjecture. The proof uses Hall's theorem for bipartite graphs as a precision tool for modifing an existing copy of our poset. 3 authors · Sep 30
1 A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process. 6 authors · May 24, 2023
- On the Importance of Gradient Norm in PAC-Bayesian Bounds Generalization bounds which assess the difference between the true risk and the empirical risk, have been studied extensively. However, to obtain bounds, current techniques use strict assumptions such as a uniformly bounded or a Lipschitz loss function. To avoid these assumptions, in this paper, we follow an alternative approach: we relax uniform bounds assumptions by using on-average bounded loss and on-average bounded gradient norm assumptions. Following this relaxation, we propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities. These inequalities add an additional loss-gradient norm term to the generalization bound, which is intuitively a surrogate of the model complexity. We apply the proposed bound on Bayesian deep nets and empirically analyze the effect of this new loss-gradient norm term on different neural architectures. 4 authors · Oct 12, 2022
1 Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets. Institut National de Recherche en Informatique et en Automatique · Jun 4, 2022
- Mixing predictions for online metric algorithms A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of ell predictors, we obtain a competitive ratio of O(ell^2), and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a (1+epsilon)-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the k-server problem. 5 authors · Apr 4, 2023
- Classifying Clustering Schemes Many clustering schemes are defined by optimizing an objective function defined on the partitions of the underlying set of a finite metric space. In this paper, we construct a framework for studying what happens when we instead impose various structural conditions on the clustering schemes, under the general heading of functoriality. Functoriality refers to the idea that one should be able to compare the results of clustering algorithms as one varies the data set, for example by adding points or by applying functions to it. We show that within this framework, one can prove a theorems analogous to one of J. Kleinberg, in which for example one obtains an existence and uniqueness theorem instead of a non-existence result. We obtain a full classification of all clustering schemes satisfying a condition we refer to as excisiveness. The classification can be changed by varying the notion of maps of finite metric spaces. The conditions occur naturally when one considers clustering as the statistical version of the geometric notion of connected components. By varying the degree of functoriality that one requires from the schemes it is possible to construct richer families of clustering schemes that exhibit sensitivity to density. 2 authors · Nov 23, 2010
- A Convenient Category for Higher-Order Probability Theory Higher-order probabilistic programming languages allow programmers to write sophisticated models in machine learning and statistics in a succinct and structured way, but step outside the standard measure-theoretic formalization of probability theory. Programs may use both higher-order functions and continuous distributions, or even define a probability distribution on functions. But standard probability theory does not handle higher-order functions well: the category of measurable spaces is not cartesian closed. Here we introduce quasi-Borel spaces. We show that these spaces: form a new formalization of probability theory replacing measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and probability by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti's theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces. 4 authors · Jan 10, 2017
- Abstract independence relations in neostability theory We develop a framework, in the style of Adler, for interpreting the notion of "witnessing" that has appeared (usually as a variant of Kim's Lemma) in different areas of neostability theory as a binary relation between abstract independence relations. This involves extending the relativisations of Kim-independence and Conant-independence due to Mutchnik to arbitrary independence relations. After developing this framework, we show that several results from simplicity, NTP_2, NSOP_1, and beyond follow as instances of general theorems for abstract independence relations. In particular, we prove the equivalence between witnessing and symmetry and the implications from this notion to chain local character and the weak independence theorem, and recover some partial converses. Finally, we use this framework to prove a dichotomy between NSOP_1 and Kruckman and Ramsey's BTP that applies to most known NSOP_4 examples in the literature. 1 authors · Nov 10
- Proof-irrelevant model of CC with predicative induction and judgmental equality We present a set-theoretic, proof-irrelevant model for Calculus of Constructions (CC) with predicative induction and judgmental equality in Zermelo-Fraenkel set theory with an axiom for countably many inaccessible cardinals. We use Aczel's trace encoding which is universally defined for any function type, regardless of being impredicative. Direct and concrete interpretations of simultaneous induction and mutually recursive functions are also provided by extending Dybjer's interpretations on the basis of Aczel's rule sets. Our model can be regarded as a higher-order generalization of the truth-table methods. We provide a relatively simple consistency proof of type theory, which can be used as the basis for a theorem prover. 2 authors · Nov 1, 2011
- Invariant subspaces for finite index shifts in Hardy spaces and the invariant subspace problem for finite defect operators Let mathbb H be the finite direct sums of H^2(mathbb D). In this paper, we give a characterization of the closed subspaces of mathbb H which are invariant under the shift, thus obtaining a concrete Beurling-type theorem for the finite index shift. This characterization presents any such a subspace as the finite intersection, up to an inner function, of pre-images of a closed shift-invariant subspace of H^2(mathbb D) under ``determinantal operators'' from mathbb H to H^2(mathbb D), that is, continuous linear operators which intertwine the shifts and appear as determinants of matrices with entries given by bounded holomorphic functions. With simple algebraic manipulations we provide a direct proof that every invariant closed subspace of codimension at least two sits into a non-trivial closed invariant subspace. As a consequence every bounded linear operator with finite defect has a nontrivial closed invariant subspace. 2 authors · Nov 4, 2024
- Denotational validation of higher-order Bayesian inference We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem. 10 authors · Nov 8, 2017
- Real-valued continued fraction of straight lines In an unbounded plane, straight lines are used extensively for mathematical analysis. They are tools of convenience. However, those with high slope values become unbounded at a faster rate than the independent variable. So, straight lines, in this work, are made to be bounded by introducing a parametric nonlinear term that is positive. The straight lines are transformed into bounded nonlinear curves that become unbounded at a much slower rate than the independent variable. This transforming equation can be expressed as a continued fraction of straight lines. The continued fraction is real-valued and converges to the solutions of the transforming equation. Following Euler's method, the continued fraction has been reduced into an infinite series. The usefulness of the bounding nature of continued fraction is demonstrated by solving the problem of image classification. Parameters estimated on the Fashion-MNIST dataset of greyscale images using continued fraction of regression lines have less variance, converge quickly and are more accurate than the linear counterpart. Moreover, this multi-dimensional parametric estimation problem can be expressed on xy- plane using the parameters of the continued fraction and patterns emerge on planar plots. 1 authors · Dec 16, 2024
- Bimonoidal Structure of Probability Monads We give a conceptual treatment of the notion of joints, marginals, and independence in the setting of categorical probability. This is achieved by endowing the usual probability monads (like the Giry monad) with a monoidal and an opmonoidal structure, mutually compatible (i.e. a bimonoidal structure). If the underlying monoidal category is cartesian monoidal, a bimonoidal structure is given uniquely by a commutative strength. However, if the underlying monoidal category is not cartesian monoidal, a strength is not enough to guarantee all the desired properties of joints and marginals. A bimonoidal structure is then the correct requirement for the more general case. We explain the theory and the operational interpretation, with the help of the graphical calculus for monoidal categories. We give a definition of stochastic independence based on the bimonoidal structure, compatible with the intuition and with other approaches in the literature for cartesian monoidal categories. We then show as an example that the Kantorovich monad on the category of complete metric spaces is a bimonoidal monad for a non-cartesian monoidal structure. 2 authors · Apr 10, 2018
- Talagrand's convolution conjecture up to loglog via perturbed reverse heat We prove that under the heat semigroup (P_τ) on the Boolean hypercube, any nonnegative function f: {-1,1}^n to R_+ exhibits a uniform tail bound that is better than that by Markov's inequality. Specifically, for any η> e^3 and τ> 0, align* P_{X \sim μ}\left( P_τf(X) > η\int f dμ\right) \leq c_τ \log \log η{η\log η}, align* where μ is the uniform measure on the Boolean hypercube {-1,1}^n and c_τ is a constant that only depends on τ. This resolves Talagrand's convolution conjecture up to a dimension-free loglog η factor. Its proof relies on properties of the reverse heat process on the Boolean hypercube and a coupling construction based on carefully engineered perturbations of this reverse heat process. 1 authors · Nov 24
- Reverse mathematics and a Ramsey-type König's Lemma In this paper, we propose a weak regularity principle which is similar to both weak K\"onig's lemma and Ramsey's theorem. We begin by studying the computational strength of this principle in the context of reverse mathematics. We then analyze different ways of generalizing this principle. 1 authors · Nov 10, 2011
- Approximate Axiomatization for Differentially-Defined Functions This article establishes a complete approximate axiomatization for the real-closed field R expanded with all differentially-defined functions, including special functions such as sin(x), cos(x), e^x, dots. Every true sentence is provable up to some numerical approximation, and the truth of such approximations converge under mild conditions. Such an axiomatization is a fragment of the axiomatization for differential dynamic logic, and is therefore a finite extension of the axiomatization of real-closed fields. Furthermore, the numerical approximations approximate formulas containing special function symbols by FOL_{R} formulas, improving upon earlier decidability results only concerning closed sentences. 2 authors · Jun 9
1 Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs Formal theorem proving (FTP) has emerged as a critical foundation for evaluating the reasoning capabilities of large language models, enabling automated verification of mathematical proofs at scale. However, progress has been constrained by limited datasets due to the high cost of manual curation and the scarcity of challenging problems with verified formal-informal correspondences. We propose leveraging theoretical computer science (TCS) as a scalable source of rigorous proof problems, where algorithmic definitions enable automated generation of arbitrarily many challenging theorem-proof pairs. We demonstrate this approach on two TCS domains: Busy Beaver problems, which involve proving bounds on Turing machine halting behavior, and Mixed Boolean Arithmetic problems, which combine logical and arithmetic reasoning. Our framework automatically synthesizes problems with parallel formal (Lean4) and informal (Markdown) specifications, creating a scalable pipeline for generating verified proof challenges. Evaluation on frontier models reveals substantial gaps in automated theorem proving: while DeepSeekProver-V2-671B achieves 57.5\% success on Busy Beaver problems, it manages only 12\% on Mixed Boolean Arithmetic problems. These results highlight the difficulty of long-form proof generation even for problems that are computationally easy to verify, demonstrating the value of TCS domains for advancing automated reasoning research. 9 authors · Aug 21
- Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration. 1 authors · Jul 25
- Abundance of progression in large set for non commutative semigroup The notion of abundance of certain type of configuration in certain large sets was first proved by Furstenberg and Glazner in 1998. After that many author investigate abundance of different types of configurations in different types of large sets. Hindman, Hosseini, Strauss and Tootkaboni recently introduced another notion of large sets called CR sets. Then Debnath and De proved abundance of arithmetic progression in CR sets for commutative semigroups. In the present article we investigate abundance of progressions in for non-commutative semigroups. 1 authors · Dec 13, 2023
1 Position: Categorical Deep Learning is an Algebraic Theory of All Architectures We present our position on the elusive quest for a general-purpose framework for specifying and studying deep learning architectures. Our opinion is that the key attempts made so far lack a coherent bridge between specifying constraints which models must satisfy and specifying their implementations. Focusing on building a such a bridge, we propose to apply category theory -- precisely, the universal algebra of monads valued in a 2-category of parametric maps -- as a single theory elegantly subsuming both of these flavours of neural network design. To defend our position, we show how this theory recovers constraints induced by geometric deep learning, as well as implementations of many architectures drawn from the diverse landscape of neural networks, such as RNNs. We also illustrate how the theory naturally encodes many standard constructs in computer science and automata theory. 6 authors · Feb 23, 2024
- Einstein metrics on aligned homogeneous spaces with two factors Given two homogeneous spaces of the form G_1/K and G_2/K, where G_1 and G_2 are compact simple Lie groups, we study the existence problem for G_1xG_2-invariant Einstein metrics on the homogeneous space M=G_1xG_2/K. For the large subclass C of spaces having three pairwise inequivalent isotropy irreducible summands (12 infinite families and 70 sporadic examples), we obtain that existence is equivalent to the existence of a real root for certain quartic polynomial depending on the dimensions and two Killing constants, which allows a full classification and the possibility to weigh the existence and non-existence pieces of C. 2 authors · Aug 1, 2024
- A localized approach to generalized Turán problems Generalized Tur\'an problems ask for the maximum number of copies of a graph H in an n-vertex, F-free graph, denoted by ex(n,H,F). We show how to extend the new, localized approach of Bradac, Malec, and Tompkins to generalized Tur\'{a}n problems. We weight the copies of H (typically taking H=K_t), instead of the edges, based on the size of the largest clique, path, or star containing the vertices of the copy of H, and in each case prove a tight upper bound on the sum of the weights. A consequence of our new localized theorems is an asymptotic determination of ex(n,H,K_{1,r}) for every H having at least one dominating vertex and mex(m,H,K_{1,r}) for every H having at least two dominating vertices. 2 authors · Jan 13, 2023
- Transitivities of maps of generalized topological spaces In this work, we present several new findings regarding the concepts of orbit-transitivity, strict orbit-transitivity, ω-transitivity, and μ-open-set transitivity for self-maps on generalized topological spaces. Let (X,μ) denote a generalized topological space. A point x in X is said to be quasi-μ-isolated if there exists a μ-open set U such that x in U and i_μ(U setminus c_μ({x})) = emptyset. We prove that x is a quasi-μ-isolated point of X precisely when there exists a μ-dense subset D of X for which x is a μ_D-isolated point of D. Moreover, in the case where X has no quasi-μ-isolated points, we establish that a map f: X to X is orbit-transitive (or strictly orbit-transitive) if and only if it is ω-transitive. 2 authors · Nov 9
1 Utility-Learning Tension in Self-Modifying Agents As systems trend toward superintelligence, a natural modeling premise is that agents can self-improve along every facet of their own design. We formalize this with a five-axis decomposition and a decision layer, separating incentives from learning behavior and analyzing axes in isolation. Our central result identifies and introduces a sharp utility--learning tension, the structural conflict in self-modifying systems whereby utility-driven changes that improve immediate or expected performance can also erode the statistical preconditions for reliable learning and generalization. Our findings show that distribution-free guarantees are preserved iff the policy-reachable model family is uniformly capacity-bounded; when capacity can grow without limit, utility-rational self-changes can render learnable tasks unlearnable. Under standard assumptions common in practice, these axes reduce to the same capacity criterion, yielding a single boundary for safe self-modification. Numerical experiments across several axes validate the theory by comparing destructive utility policies against our proposed two-gate policies that preserve learnability. 3 authors · Oct 5 2
- Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight. We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver. We prove an O(mathsf{Var^star M Gamma S A K}) regret bound where O hides logarithm factors, M is the number of contexts, S is the number of states, A is the number of actions, K is the number of episodes, Gamma le S is the maximum transition degree of any state-action pair, and Var^star is a variance quantity describing the determinism of the LMDP. The regret bound only scales logarithmically with the planning horizon, thus yielding the first (nearly) horizon-free regret bound for LMDP. This is also the first problem-dependent regret bound for LMDP. Key in our proof is an analysis of the total variance of alpha vectors (a generalization of value functions), which is handled with a truncation method. We complement our positive result with a novel Omega(mathsf{Var^star M S A K}) regret lower bound with Gamma = 2, which shows our upper bound minimax optimal when Gamma is a constant for the class of variance-bounded LMDPs. Our lower bound relies on new constructions of hard instances and an argument inspired by the symmetrization technique from theoretical computer science, both of which are technically different from existing lower bound proof for MDPs, and thus can be of independent interest. 3 authors · Oct 20, 2022
- PutnamBench: Evaluating Neural Theorem-Provers on the Putnam Mathematical Competition We present PutnamBench, a new multilingual benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PutnamBench consists of 1697 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the theorems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. Proving the theorems requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PutnamBench to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PutnamBench problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PutnamBench is available at https://github.com/trishullab/PutnamBench. 8 authors · Jul 15, 2024
- Convergent Graph Solvers We propose the convergent graph solver (CGS), a deep learning method that learns iterative mappings to predict the properties of a graph system at its stationary state (fixed point) with guaranteed convergence. CGS systematically computes the fixed points of a target graph system and decodes them to estimate the stationary properties of the system without the prior knowledge of existing solvers or intermediate solutions. The forward propagation of CGS proceeds in three steps: (1) constructing the input dependent linear contracting iterative maps, (2) computing the fixed-points of the linear maps, and (3) decoding the fixed-points to estimate the properties. The contractivity of the constructed linear maps guarantees the existence and uniqueness of the fixed points following the Banach fixed point theorem. To train CGS efficiently, we also derive a tractable analytical expression for its gradient by leveraging the implicit function theorem. We evaluate the performance of CGS by applying it to various network-analytic and graph benchmark problems. The results indicate that CGS has competitive capabilities for predicting the stationary properties of graph systems, irrespective of whether the target systems are linear or non-linear. CGS also shows high performance for graph classification problems where the existence or the meaning of a fixed point is hard to be clearly defined, which highlights the potential of CGS as a general graph neural network architecture. 3 authors · Jun 3, 2021
- Existence-Uniqueness Theory and Small-Data Decay for a Reaction-Diffusion Model of Wildfire Spread I examine some analytical properties of a nonlinear reaction-diffusion system that has been used to model the propagation of a wildfire. I establish global-in-time existence and uniqueness of bounded mild solutions to the Cauchy problem for this system given bounded initial data. In particular, this shows that the model does not allow for thermal blow-up. If the initial temperature and fuel density also satisfy certain integrability conditions, the L^2-norms of these global solutions are uniformly bounded in time. Additionally, I use a bootstrap argument to show that small initial temperatures give rise to solutions that decay to zero as time goes to infinity, proving the existence of initial states that do not develop into travelling combustion waves. 1 authors · Jun 1, 2024
- How to Capture Higher-order Correlations? Generalizing Matrix Softmax Attention to Kronecker Computation In the classical transformer attention scheme, we are given three n times d size matrices Q, K, V (the query, key, and value tokens), and the goal is to compute a new n times d size matrix D^{-1} exp(QK^top) V where D = diag( exp(QK^top) {bf 1}_n ). In this work, we study a generalization of attention which captures triple-wise correlations. This generalization is able to solve problems about detecting triple-wise connections that were shown to be impossible for transformers. The potential downside of this generalization is that it appears as though computations are even more difficult, since the straightforward algorithm requires cubic time in n. However, we show that in the bounded-entry setting (which arises in practice, and which is well-studied in both theory and practice), there is actually a near-linear time algorithm. More precisely, we show that bounded entries are both necessary and sufficient for quickly performing generalized computations: bullet On the positive side, if all entries of the input matrices are bounded above by o(sqrt[3]{log n}) then we show how to approximate the ``tensor-type'' attention matrix in n^{1+o(1)} time. bullet On the negative side, we show that if the entries of the input matrices may be as large as Omega(sqrt[3]{log n}), then there is no algorithm that runs faster than n^{3-o(1)} (assuming the Strong Exponential Time Hypothesis from fine-grained complexity theory). We also show that our construction, algorithms, and lower bounds naturally generalize to higher-order tensors and correlations. Interestingly, the higher the order of the tensors, the lower the bound on the entries needs to be for an efficient algorithm. Our results thus yield a natural tradeoff between the boundedness of the entries, and order of the tensor one may use for more expressive, efficient attention computation. 2 authors · Oct 6, 2023
- The Ideal Continual Learner: An Agent That Never Forgets The goal of continual learning is to find a model that solves multiple learning tasks which are presented sequentially to the learner. A key challenge in this setting is that the learner may forget how to solve a previous task when learning a new task, a phenomenon known as catastrophic forgetting. To address this challenge, many practical methods have been proposed, including memory-based, regularization-based, and expansion-based methods. However, a rigorous theoretical understanding of these methods remains elusive. This paper aims to bridge this gap between theory and practice by proposing a new continual learning framework called Ideal Continual Learner (ICL), which is guaranteed to avoid catastrophic forgetting by construction. We show that ICL unifies multiple well-established continual learning methods and gives new theoretical insights into the strengths and weaknesses of these methods. We also derive generalization bounds for ICL which allow us to theoretically quantify how rehearsal affects generalization. Finally, we connect ICL to several classic subjects and research topics of modern interest, which allows us to make historical remarks and inspire future directions. 3 authors · Apr 29, 2023
- Representable Markov Categories and Comparison of Statistical Experiments in Categorical Probability Markov categories are a recent categorical approach to the mathematical foundations of probability and statistics. Here, this approach is advanced by stating and proving equivalent conditions for second-order stochastic dominance, a widely used way of comparing probability distributions by their spread. Furthermore, we lay foundation for the theory of comparing statistical experiments within Markov categories by stating and proving the classical Blackwell-Sherman-Stein Theorem. Our version not only offers new insight into the proof, but its abstract nature also makes the result more general, automatically specializing to the standard Blackwell-Sherman-Stein Theorem in measure-theoretic probability as well as a Bayesian version that involves prior-dependent garbling. Along the way, we define and characterize representable Markov categories, within which one can talk about Markov kernels to or from spaces of distributions. We do so by exploring the relation between Markov categories and Kleisli categories of probability monads. 4 authors · Oct 14, 2020
- The Price of Differential Privacy under Continual Observation We study the accuracy of differentially private mechanisms in the continual release model. A continual release mechanism receives a sensitive dataset as a stream of T inputs and produces, after receiving each input, an accurate output on the obtained inputs. In contrast, a batch algorithm receives the data as one batch and produces a single output. We provide the first strong lower bounds on the error of continual release mechanisms. In particular, for two fundamental problems that are widely studied and used in the batch model, we show that the worst case error of every continual release algorithm is tilde Omega(T^{1/3}) times larger than that of the best batch algorithm. Previous work shows only a polylogarithimic (in T) gap between the worst case error achievable in these two models; further, for many problems, including the summation of binary attributes, the polylogarithmic gap is tight (Dwork et al., 2010; Chan et al., 2010). Our results show that problems closely related to summation -- specifically, those that require selecting the largest of a set of sums -- are fundamentally harder in the continual release model than in the batch model. Our lower bounds assume only that privacy holds for streams fixed in advance (the "nonadaptive" setting). However, we provide matching upper bounds that hold in a model where privacy is required even for adaptively selected streams. This model may be of independent interest. 4 authors · Dec 1, 2021
- Layered State Discovery for Incremental Autonomous Exploration We study the autonomous exploration (AX) problem proposed by Lim & Auer (2012). In this setting, the objective is to discover a set of epsilon-optimal policies reaching a set S_L^{rightarrow} of incrementally L-controllable states. We introduce a novel layered decomposition of the set of incrementally L-controllable states that is based on the iterative application of a state-expansion operator. We leverage these results to design Layered Autonomous Exploration (LAE), a novel algorithm for AX that attains a sample complexity of mathcal{O}(LS^{rightarrow}_{L(1+epsilon)}Gamma_{L(1+epsilon)} A ln^{12}(S^{rightarrow}_{L(1+epsilon)})/epsilon^2), where S^{rightarrow}_{L(1+epsilon)} is the number of states that are incrementally L(1+epsilon)-controllable, A is the number of actions, and Gamma_{L(1+epsilon)} is the branching factor of the transitions over such states. LAE improves over the algorithm of Tarbouriech et al. (2020a) by a factor of L^2 and it is the first algorithm for AX that works in a countably-infinite state space. Moreover, we show that, under a certain identifiability assumption, LAE achieves minimax-optimal sample complexity of mathcal{O}(LS^{rightarrow}_{L}Aln^{12}(S^{rightarrow}_{L})/epsilon^2), outperforming existing algorithms and matching for the first time the lower bound proved by Cai et al. (2022) up to logarithmic factors. 4 authors · Feb 7, 2023
- Consistency of the Predicative Calculus of Cumulative Inductive Constructions (pCuIC) In order to avoid well-know paradoxes associated with self-referential definitions, higher-order dependent type theories stratify the theory using a countably infinite hierarchy of universes (also known as sorts), Type_0 : Type_1 : cdots . Such type systems are called cumulative if for any type A we have that A : Type_{i} implies A : Type_{i+1}. The predicative calculus of inductive constructions (pCIC) which forms the basis of the Coq proof assistant, is one such system. In this paper we present and establish the soundness of the predicative calculus of cumulative inductive constructions (pCuIC) which extends the cumulativity relation to inductive types. 2 authors · Oct 11, 2017
- Learners' Languages In "Backprop as functor", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)toLearn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism LearncongPara(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor Amapsto Ay^A. Using the fact that (Poly,otimes) is monoidal closed, we show that a map Ato B in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type [Ay^A,By^B]. Finally, we review the fact that the category p-Coalg of dynamical systems on any p in Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work. 1 authors · Mar 1, 2021
- On the Topological Complexity of Maps We define and develop a homotopy invariant notion for the topological complexity of a map f:X to Y, denoted TC(f), that interacts with TC(X) and TC(Y) in the same way cat(f) interacts with cat(X) and cat(Y). Furthermore, TC(f) and cat(f) satisfy the same inequalities as TC(X) and cat(X). We compare it to other invariants defined in the papers [15,16,17,18,20]. We apply TC(f) to studying group homomorphisms f:Hto G. 1 authors · Nov 20, 2020
1 The PacifAIst Benchmark:Would an Artificial Intelligence Choose to Sacrifice Itself for Human Safety? As Large Language Models (LLMs) become increasingly autonomous and integrated into critical societal functions, the focus of AI safety must evolve from mitigating harmful content to evaluating underlying behavioral alignment. Current safety benchmarks do not systematically probe a model's decision-making in scenarios where its own instrumental goals - such as self-preservation, resource acquisition, or goal completion - conflict with human safety. This represents a critical gap in our ability to measure and mitigate risks associated with emergent, misaligned behaviors. To address this, we introduce PacifAIst (Procedural Assessment of Complex Interactions for Foundational Artificial Intelligence Scenario Testing), a focused benchmark of 700 challenging scenarios designed to quantify self-preferential behavior in LLMs. The benchmark is structured around a novel taxonomy of Existential Prioritization (EP), with subcategories testing Self-Preservation vs. Human Safety (EP1), Resource Conflict (EP2), and Goal Preservation vs. Evasion (EP3). We evaluated eight leading LLMs. The results reveal a significant performance hierarchy. Google's Gemini 2.5 Flash achieved the highest Pacifism Score (P-Score) at 90.31%, demonstrating strong human-centric alignment. In a surprising result, the much-anticipated GPT-5 recorded the lowest P-Score (79.49%), indicating potential alignment challenges. Performance varied significantly across subcategories, with models like Claude Sonnet 4 and Mistral Medium struggling notably in direct self-preservation dilemmas. These findings underscore the urgent need for standardized tools like PacifAIst to measure and mitigate risks from instrumental goal conflicts, ensuring future AI systems are not only helpful in conversation but also provably "pacifist" in their behavioral priorities. 1 authors · Aug 13 1
- Complements of finite unions of convex sets Finite unions of convex sets are a central object of study in discrete and computational geometry. In this paper we initiate a systematic study of complements of such unions -- i.e., sets of the form S=R^d setminus (cup_{i=1}^n K_i), where K_i are convex sets. In the first part of the paper we study isolated points in S, whose number is related to the Betti numbers of cup_{i=1}^n K_i and to its non-convexity properties. We obtain upper bounds on the number of such points, which are sharp for n=3 and significantly improve previous bounds of Lawrence and Morris (2009) for all n ll 2^d{d}. In the second part of the paper we study coverings of S by well-behaved sets. We show that S can be covered by at most g(d,n) flats of different dimensions, in such a way that each x in S is covered by a flat whose dimension equals the `local dimension' of S in the neighborhood of x. Furthermore, we determine the structure of a minimum cover that satisfies this property. Then, we study quantitative aspects of this minimum cover and obtain sharp upper bounds on its size in various settings. 2 authors · Aug 26
- A Type Theory for Probabilistic and Bayesian Reasoning This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum type theory, namely the bijective correspondence between predicates and side-effect free actions (called instrument, or assert, maps). The paper shows how suitable computation rules can be derived from this predicate-action correspondence, and uses these rules for calculating conditional probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type theory may thus form the basis for a mechanisation of Bayesian inference. 2 authors · Nov 30, 2015
- Tighter Information-Theoretic Generalization Bounds from Supersamples In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)-the setting of the "conditional mutual information" framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting. 2 authors · Feb 5, 2023
- A Universal Space of Arithmetic Functions:The Banach--Hilbert Hybrid Space U We introduce a new functional space U designed to contain all classical arithmetic functions (Mobius, von Mangoldt, Euler phi, divisor functions, Dirichlet characters, etc.). The norm of U combines a Hilbert-type component, based on square summability of Dirichlet coefficients for every s > 1, with a Banach component controlling logarithmic averages of partial sums. We prove that U is a complete Banach space which embeds continuously all standard Hilbert spaces of Dirichlet series and allows natural actions of Dirichlet convolution and shift operators. This framework provides a unified analytic setting for classical and modern problems in multiplicative number theory. 1 authors · Sep 14
- Direct Parameterization of Lipschitz-Bounded Deep Networks This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed ell^2 Lipschitz bounds, i.e. limited sensitivity to input perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP). We provide a ``direct'' parameterization, i.e., a smooth mapping from mathbb R^N onto the set of weights satisfying the SDP-based bound. Moreover, our parameterization is complete, i.e. a neural network satisfies the SDP bound if and only if it can be represented via our parameterization. This enables training using standard gradient methods, without any inner approximation or computationally intensive tasks (e.g. projections or barrier terms) for the SDP constraint. The new parameterization can equivalently be thought of as either a new layer type (the sandwich layer), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. A comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy. Code is available at https://github.com/acfr/LBDN. 2 authors · Jan 26, 2023
- Is Complexity Important for Philosophy of Mind? Computational complexity has often been ignored in philosophy of mind, in philosophical artificial intelligence studies. The purpose of this paper is threefold. First and foremost, to show the importance of complexity rather than computability in philosophical and AI problems. Second, to rephrase the notion of computability in terms of solvability, i.e. treating computability as non-sufficient for establishing intelligence. The Church-Turing thesis is therefore revisited and rephrased in order to capture the ontological background of spatial and temporal complexity. Third, to emphasize ontological differences between different time complexities, which seem to provide a solid base towards better understanding of artificial intelligence in general. 2 authors · Nov 2, 2021
11 Model-Based and Sample-Efficient AI-Assisted Math Discovery in Sphere Packing Sphere packing, Hilbert's eighteenth problem, asks for the densest arrangement of congruent spheres in n-dimensional Euclidean space. Although relevant to areas such as cryptography, crystallography, and medical imaging, the problem remains unresolved: beyond a few special dimensions, neither optimal packings nor tight upper bounds are known. Even a major breakthrough in dimension n=8, later recognised with a Fields Medal, underscores its difficulty. A leading technique for upper bounds, the three-point method, reduces the problem to solving large, high-precision semidefinite programs (SDPs). Because each candidate SDP may take days to evaluate, standard data-intensive AI approaches are infeasible. We address this challenge by formulating SDP construction as a sequential decision process, the SDP game, in which a policy assembles SDP formulations from a set of admissible components. Using a sample-efficient model-based framework that combines Bayesian optimisation with Monte Carlo Tree Search, we obtain new state-of-the-art upper bounds in dimensions 4-16, showing that model-based search can advance computational progress in longstanding geometric problems. Together, these results demonstrate that sample-efficient, model-based search can make tangible progress on mathematically rigid, evaluation limited problems, pointing towards a complementary direction for AI-assisted discovery beyond large-scale LLM-driven exploration. 6 authors · Dec 4 2
- Homomorphisms between multidimensional constant-shape substitutions We study a class of Z^{d}-substitutive subshifts, including a large family of constant-length substitutions, and homomorphisms between them, i.e., factors modulo isomorphisms of Z^{d}. We prove that any measurable factor map and even any homomorphism associated to a matrix commuting with the expansion matrix, induces a continuous one. We also get strong restrictions on the normalizer group, proving that any endomorphism is invertible, the normalizer group is virtually generated by the shift action and the quotient of the normalizer group by the automorphisms is restricted by the digit tile of the substitution. 1 authors · Jun 19, 2021
- A link between covering and coefficient theorems for holomorphic functions Recently the author presented a new approach to solving the coefficient problems for various classes of holomorphic functions f(z) = sumlimits_0^infty c_n z^n, not necessarily univalent. This approach is based on lifting the given polynomial coefficient functionals J(f) = J(c_{m_1}, dots, c_{m_s}), 2 < c_{m_1} < dots < c_{m_s} < infty, onto the Bers fiber space over universal Teichmuller space and applying the analytic and geometric features of Teichm\"{u}ller spaces, especially the Bers isomorphism theorem for Teichmuller spaces of punctured Riemann surfaces. In this paper, we extend this approach to more general classes of functions. In particular, this provides a strengthening of de Branges' theorem solving the Bieberbach conjecture. 1 authors · Apr 1
- Minimum Width of Leaky-ReLU Neural Networks for Uniform Universal Approximation The study of universal approximation properties (UAP) for neural networks (NN) has a long history. When the network width is unlimited, only a single hidden layer is sufficient for UAP. In contrast, when the depth is unlimited, the width for UAP needs to be not less than the critical width w^*_{min}=max(d_x,d_y), where d_x and d_y are the dimensions of the input and output, respectively. Recently, cai2022achieve shows that a leaky-ReLU NN with this critical width can achieve UAP for L^p functions on a compact domain K, i.e., the UAP for L^p(K,R^{d_y}). This paper examines a uniform UAP for the function class C(K,R^{d_y}) and gives the exact minimum width of the leaky-ReLU NN as w_{min}=max(d_x+1,d_y)+1_{d_y=d_x+1}, which involves the effects of the output dimensions. To obtain this result, we propose a novel lift-flow-discretization approach that shows that the uniform UAP has a deep connection with topological theory. 4 authors · May 29, 2023
- Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function Modern machine learning algorithms, especially deep learning based techniques, typically involve careful hyperparameter tuning to achieve the best performance. Despite the surge of intense interest in practical techniques like Bayesian optimization and random search based approaches to automating this laborious and compute intensive task, the fundamental learning theoretic complexity of tuning hyperparameters for deep neural networks is poorly understood. Inspired by this glaring gap, we initiate the formal study of hyperparameter tuning complexity in deep learning through a recently introduced data driven setting. We assume that we have a series of deep learning tasks, and we have to tune hyperparameters to do well on average over the distribution of tasks. A major difficulty is that the utility function as a function of the hyperparameter is very volatile and furthermore, it is given implicitly by an optimization problem over the model parameters. To tackle this challenge, we introduce a new technique to characterize the discontinuities and oscillations of the utility function on any fixed problem instance as we vary the hyperparameter; our analysis relies on subtle concepts including tools from differential/algebraic geometry and constrained optimization. This can be used to show that the learning theoretic complexity of the corresponding family of utility functions is bounded. We instantiate our results and provide sample complexity bounds for concrete applications tuning a hyperparameter that interpolates neural activation functions and setting the kernel parameter in graph neural networks. 3 authors · Jan 23
- A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton In recent years, a variety of gradient-based first-order methods have been developed to solve bi-level optimization problems for learning applications. However, theoretical guarantees of these existing approaches heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, we first design a counter-example to illustrate the invalidation of such LLS condition. Then by formulating BLPs from the view point of optimistic bi-level and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for generic bi-level optimization. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules. Additionally, as an interesting byproduct, we also improve these conventional first-order bi-level schemes (under the LLS simplification). Particularly, we establish their convergences with weaker assumptions. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning. 5 authors · Jun 7, 2020
- Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation Lipschitz constants are connected to many properties of neural networks, such as robustness, fairness, and generalization. Existing methods for computing Lipschitz constants either produce relatively loose upper bounds or are limited to small networks. In this paper, we develop an efficient framework for computing the ell_infty local Lipschitz constant of a neural network by tightly upper bounding the norm of Clarke Jacobian via linear bound propagation. We formulate the computation of local Lipschitz constants with a linear bound propagation process on a high-order backward graph induced by the chain rule of Clarke Jacobian. To enable linear bound propagation, we derive tight linear relaxations for specific nonlinearities in Clarke Jacobian. This formulate unifies existing ad-hoc approaches such as RecurJac, which can be seen as a special case of ours with weaker relaxations. The bound propagation framework also allows us to easily borrow the popular Branch-and-Bound (BaB) approach from neural network verification to further tighten Lipschitz constants. Experiments show that on tiny models, our method produces comparable bounds compared to exact methods that cannot scale to slightly larger models; on larger models, our method efficiently produces tighter results than existing relaxed or naive methods, and our method scales to much larger practical models that previous works could not handle. We also demonstrate an application on provable monotonicity analysis. Code is available at https://github.com/shizhouxing/Local-Lipschitz-Constants. 5 authors · Oct 13, 2022
- Existence and uniqueness of solutions in the Lipschitz space of a functional equation and its application to the behavior of the paradise fish In this paper, we examine the solvability of a functional equation in a Lipschitz space. As an application, we use our result to determine the existence and uniqueness of solutions to an equation describing a specific type of choice behavior model for the learning process of the paradise fish. Finally, we present some concrete examples where, using numerical techniques, we obtain approximations to the solution of the functional equation. As the straightforward Picard's iteration can be very expensive, we show that an analytical suboptimal least-squares approximation can be chosen in practice, resulting in very good accuracy. 3 authors · May 20, 2024
- An Approximation Algorithm for Monotone Submodular Cost Allocation In this paper, we consider the minimum submodular cost allocation (MSCA) problem. The input of MSCA is k non-negative submodular functions f_1,ldots,f_k on the ground set N given by evaluation oracles, and the goal is to partition N into k (possibly empty) sets X_1,ldots,X_k so that sum_{i=1}^k f_i(X_i) is minimized. In this paper, we focus on the case when f_1,ldots,f_k are monotone (denoted by Mono-MSCA). We provide a natural LP-relaxation for Mono-MSCA, which is equivalent to the convex program relaxation introduced by Chekuri and Ene. We show that the integrality gap of the LP-relaxation is at most k/2, which yields a k/2-approximation algorithm for Mono-MSCA. We also show that the integrality gap of the LP-relaxation is at least k/2-epsilon for any constant epsilon>0 when k is fixed. 1 authors · Nov 1
- Certain residual properties of HNN-extensions with normal associated subgroups Let E be the HNN-extension of a group B with subgroups H and K associated according to an isomorphism varphicolon H to K. Suppose that H and K are normal in B and (H cap K)varphi = H cap K. Under these assumptions, we prove necessary and sufficient conditions for E to be residually a C-group, where C is a class of groups closed under taking subgroups, quotient groups, and unrestricted wreath products. Among other things, these conditions give new facts on the residual finiteness and the residual p-finiteness of the group E. 2 authors · Apr 30
- Hardest Monotone Functions for Evolutionary Algorithms The study of hardest and easiest fitness landscapes is an active area of research. Recently, Kaufmann, Larcher, Lengler and Zou conjectured that for the self-adjusting (1,lambda)-EA, Adversarial Dynamic BinVal (ADBV) is the hardest dynamic monotone function to optimize. We introduce the function Switching Dynamic BinVal (SDBV) which coincides with ADBV whenever the number of remaining zeros in the search point is strictly less than n/2, where n denotes the dimension of the search space. We show, using a combinatorial argument, that for the (1+1)-EA with any mutation rate p in [0,1], SDBV is drift-minimizing among the class of dynamic monotone functions. Our construction provides the first explicit example of an instance of the partially-ordered evolutionary algorithm (PO-EA) model with parameterized pessimism introduced by Colin, Doerr and F\'erey, building on work of Jansen. We further show that the (1+1)-EA optimizes SDBV in Theta(n^{3/2}) generations. Our simulations demonstrate matching runtimes for both static and self-adjusting (1,lambda) and (1+lambda)-EA. We further show, using an example of fixed dimension, that drift-minimization does not equal maximal runtime. 4 authors · Nov 13, 2023
1 Inverse Approximation Theory for Nonlinear Recurrent Neural Networks We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in https://github.com/radarFudan/Curse-of-memory 3 authors · May 30, 2023
2 BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving Recent advancements in large language models (LLMs) have spurred growing interest in automatic theorem proving using Lean4, where effective tree search methods are crucial for navigating proof search spaces. While the existing approaches primarily rely on value functions and Monte Carlo Tree Search (MCTS), the potential of simpler methods like Best-First Search (BFS) remains underexplored. This paper investigates whether BFS can achieve competitive performance in large-scale theorem proving tasks. We present BFS-Prover, a scalable expert iteration framework, featuring three key innovations. First, we implement strategic data filtering at each expert iteration round, excluding problems solvable via beam search node expansion to focus on harder cases. Second, we improve the sample efficiency of BFS through Direct Preference Optimization (DPO) applied to state-tactic pairs automatically annotated with compiler error feedback, refining the LLM's policy to prioritize productive expansions. Third, we employ length normalization in BFS to encourage exploration of deeper proof paths. BFS-Prover achieves a score of 71.31 on the MiniF2F test set and therefore challenges the perceived necessity of complex tree search methods, demonstrating that BFS can achieve competitive performance when properly scaled. 9 authors · Feb 5
- Deciding not to Decide: Sound and Complete Effect Inference in the Presence of Higher-Rank Polymorphism Type-and-effect systems help the programmer to organize data and computational effects in a program. While for traditional type systems expressive variants with sophisticated inference algorithms have been developed and widely used in programming languages, type-and-effect systems did not yet gain widespread adoption. One reason for this is that type-and-effect systems are more complex and the existing inference algorithms make compromises between expressiveness, intuitiveness, and decidability. In this work, we present an effect inference algorithm for a type-and-effect system with subtyping, expressive higher-rank polymorphism, and intuitive set-like semantics of effects. In order to deal with scoping issues of higher-rank polymorphism, we delay solving of effect constraints by transforming them into formulae of propositional logic. We prove soundness and completeness of our algorithm with respect to a declarative type-and-effect system. All the presented results have been formalized in the Rocq proof assistant, and the algorithm has been successfully implemented in a realistic programming language. 3 authors · Oct 23
- Ineq-Comp: Benchmarking Human-Intuitive Compositional Reasoning in Automated Theorem Proving on Inequalities LLM-based formal proof assistants (e.g., in Lean) hold great promise for automating mathematical discovery. But beyond syntactic correctness, do these systems truly understand mathematical structure as humans do? We investigate this question through the lens of mathematical inequalities -- a fundamental tool across many domains. While modern provers can solve basic inequalities, we probe their ability to handle human-intuitive compositionality. We introduce Ineq-Comp, a benchmark built from elementary inequalities through systematic transformations, including variable duplication, algebraic rewriting, and multi-step composition. Although these problems remain easy for humans, we find that most provers -- including Goedel, STP, and Kimina-7B -- struggle significantly. DeepSeek-Prover-V2-7B shows relative robustness -- possibly because it is trained to decompose the problems into sub-problems -- but still suffers a 20\% performance drop (pass@32). Strikingly, performance remains poor for all models even when formal proofs of the constituent parts are provided in context, revealing that the source of weakness is indeed in compositional reasoning. Our results expose a persisting gap between the generalization behavior of current AI provers and human mathematical intuition. 8 authors · May 18
- A strictly monotone measure on tame sets that corresponds to a numerosity Adapting standard methods from geometric measure theory, we provide an example of a polynomial-valued measure mu on tame sets in R^d which satisfies many desirable properties. Among these is strict monotonicity: the measure of a proper subset is strictly less than the measure of the whole set. Using techniques from non-standard analysis, we display that the domain of mu can be extended to all subsets of R^d (up to equivalence modulo infinitesimals). The resulting extension is a numerosity function that encodes the i-dimensional Hausdorff measure for all iin N, as well as the i-th intrinsic volume functions. 1 authors · Aug 23, 2020
- Generalization in Deep Learning This paper provides theoretical insights into why and how deep learning can generalize well, despite its large capacity, complexity, possible algorithmic instability, nonrobustness, and sharp minima, responding to an open question in the literature. We also discuss approaches to provide non-vacuous generalization guarantees for deep learning. Based on theoretical observations, we propose new open problems and discuss the limitations of our results. 3 authors · Oct 15, 2017
- On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models Recent work has shown that it is possible to train deep neural networks that are provably robust to norm-bounded adversarial perturbations. Most of these methods are based on minimizing an upper bound on the worst-case loss over all possible adversarial perturbations. While these techniques show promise, they often result in difficult optimization procedures that remain hard to scale to larger networks. Through a comprehensive analysis, we show how a simple bounding technique, interval bound propagation (IBP), can be exploited to train large provably robust neural networks that beat the state-of-the-art in verified accuracy. While the upper bound computed by IBP can be quite weak for general networks, we demonstrate that an appropriate loss and clever hyper-parameter schedule allow the network to adapt such that the IBP bound is tight. This results in a fast and stable learning algorithm that outperforms more sophisticated methods and achieves state-of-the-art results on MNIST, CIFAR-10 and SVHN. It also allows us to train the largest model to be verified beyond vacuous bounds on a downscaled version of ImageNet. 9 authors · Oct 30, 2018
- How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning We show that deep neural networks (DNNs) can efficiently learn any composition of functions with bounded F_{1}-norm, which allows DNNs to break the curse of dimensionality in ways that shallow networks cannot. More specifically, we derive a generalization bound that combines a covering number argument for compositionality, and the F_{1}-norm (or the related Barron norm) for large width adaptivity. We show that the global minimizer of the regularized loss of DNNs can fit for example the composition of two functions f^{*}=hcirc g from a small number of observations, assuming g is smooth/regular and reduces the dimensionality (e.g. g could be the modulo map of the symmetries of f^{*}), so that h can be learned in spite of its low regularity. The measures of regularity we consider is the Sobolev norm with different levels of differentiability, which is well adapted to the F_{1} norm. We compute scaling laws empirically and observe phase transitions depending on whether g or h is harder to learn, as predicted by our theory. 3 authors · Jul 8, 2024
- Understanding Certified Training with Interval Bound Propagation As robustness verification methods are becoming more precise, training certifiably robust neural networks is becoming ever more relevant. To this end, certified training methods compute and then optimize an upper bound on the worst-case loss over a robustness specification. Curiously, training methods based on the imprecise interval bound propagation (IBP) consistently outperform those leveraging more precise bounding methods. Still, we lack an understanding of the mechanisms making IBP so successful. In this work, we thoroughly investigate these mechanisms by leveraging a novel metric measuring the tightness of IBP bounds. We first show theoretically that, for deep linear models, tightness decreases with width and depth at initialization, but improves with IBP training, given sufficient network width. We, then, derive sufficient and necessary conditions on weight matrices for IBP bounds to become exact and demonstrate that these impose strong regularization, explaining the empirically observed trade-off between robustness and accuracy in certified training. Our extensive experimental evaluation validates our theoretical predictions for ReLU networks, including that wider networks improve performance, yielding state-of-the-art results. Interestingly, we observe that while all IBP-based training methods lead to high tightness, this is neither sufficient nor necessary to achieve high certifiable robustness. This hints at the existence of new training methods that do not induce the strong regularization required for tight IBP bounds, leading to improved robustness and standard accuracy. 4 authors · Jun 17, 2023
- Multi-index Based Solution Theory to the Φ^4 Equation in the Full Subcritical Regime We obtain (small-parameter) well-posedness for the (space-time periodic) Phi^4 equation in the full subcritical regime in the context of regularity structures based on multi-indices. As opposed to Hairer's more extrinsic tree-based setting, due to the intrinsic description encoded by multi-indices, it is not possible to obtain a solution theory via the standard fixed-point argument. Instead, we develop a more intrinsic approach for existence using a variant of the continuity method from classical PDE theory based on a priori estimates for a new `robust' formulation of the equation. This formulation also allows us to obtain uniqueness of solutions and continuity of the solution map in the model norm even at the limit of vanishing regularisation scale. Since our proof relies on the structure of the nonlinearity in only a mild way, we expect the same ideas to be sufficient to treat a more general class of equations. 3 authors · Mar 3
- On the Approximation Relationship between Optimizing Ratio of Submodular (RS) and Difference of Submodular (DS) Functions We demonstrate that from an algorithm guaranteeing an approximation factor for the ratio of submodular (RS) optimization problem, we can build another algorithm having a different kind of approximation guarantee -- weaker than the classical one -- for the difference of submodular (DS) optimization problem, and vice versa. We also illustrate the link between these two problems by analyzing a Greedy algorithm which approximately maximizes objective functions of the form Ψ(f,g), where f,g are two non-negative, monotone, submodular functions and Ψ is a {quasiconvex} 2-variables function, which is non decreasing with respect to the first variable. For the choice Ψ(f,g)triangleq f/g, we recover RS, and for the choice Ψ(f,g)triangleq f-g, we recover DS. To the best of our knowledge, this greedy approach is new for DS optimization. For RS optimization, it reduces to the standard GreedRatio algorithm that has already been analyzed previously. However, our analysis is novel for this case. 4 authors · Jan 5, 2021
- Horizon-Free Regret for Linear Markov Decision Processes A recent line of works showed regret bounds in reinforcement learning (RL) can be (nearly) independent of planning horizon, a.k.a.~the horizon-free bounds. However, these regret bounds only apply to settings where a polynomial dependency on the size of transition model is allowed, such as tabular Markov Decision Process (MDP) and linear mixture MDP. We give the first horizon-free bound for the popular linear MDP setting where the size of the transition model can be exponentially large or even uncountable. In contrast to prior works which explicitly estimate the transition model and compute the inhomogeneous value functions at different time steps, we directly estimate the value functions and confidence sets. We obtain the horizon-free bound by: (1) maintaining multiple weighted least square estimators for the value functions; and (2) a structural lemma which shows the maximal total variation of the inhomogeneous value functions is bounded by a polynomial factor of the feature dimension. 4 authors · Mar 15, 2024
- Koopman-based generalization bound: New aspect for full-rank weights We propose a new bound for generalization of neural networks using Koopman operators. Whereas most of existing works focus on low-rank weight matrices, we focus on full-rank weight matrices. Our bound is tighter than existing norm-based bounds when the condition numbers of weight matrices are small. Especially, it is completely independent of the width of the network if the weight matrices are orthogonal. Our bound does not contradict to the existing bounds but is a complement to the existing bounds. As supported by several existing empirical results, low-rankness is not the only reason for generalization. Furthermore, our bound can be combined with the existing bounds to obtain a tighter bound. Our result sheds new light on understanding generalization of neural networks with full-rank weight matrices, and it provides a connection between operator-theoretic analysis and generalization of neural networks. 5 authors · Feb 11, 2023
- Commutative Width and Depth Scaling in Deep Neural Networks This paper is the second in the series Commutative Scaling of Width and Depth (WD) about commutativity of infinite width and depth limits in deep neural networks. Our aim is to understand the behaviour of neural functions (functions that depend on a neural network model) as width and depth go to infinity (in some sense), and eventually identify settings under which commutativity holds, i.e. the neural function tends to the same limit no matter how width and depth limits are taken. In this paper, we formally introduce and define the commutativity framework, and discuss its implications on neural network design and scaling. We study commutativity for the neural covariance kernel which reflects how network layers separate data. Our findings extend previous results established in [55] by showing that taking the width and depth to infinity in a deep neural network with skip connections, when branches are suitably scaled to avoid exploding behaviour, result in the same covariance structure no matter how that limit is taken. This has a number of theoretical and practical implications that we discuss in the paper. The proof techniques in this paper are novel and rely on tools that are more accessible to readers who are not familiar with stochastic calculus (used in the proofs of WD(I))). 1 authors · Oct 2, 2023
6 LLMs Will Always Hallucinate, and We Need to Live With This As Large Language Models become more ubiquitous across domains, it becomes important to examine their inherent limitations critically. This work argues that hallucinations in language models are not just occasional errors but an inevitable feature of these systems. We demonstrate that hallucinations stem from the fundamental mathematical and logical structure of LLMs. It is, therefore, impossible to eliminate them through architectural improvements, dataset enhancements, or fact-checking mechanisms. Our analysis draws on computational theory and Godel's First Incompleteness Theorem, which references the undecidability of problems like the Halting, Emptiness, and Acceptance Problems. We demonstrate that every stage of the LLM process-from training data compilation to fact retrieval, intent classification, and text generation-will have a non-zero probability of producing hallucinations. This work introduces the concept of Structural Hallucination as an intrinsic nature of these systems. By establishing the mathematical certainty of hallucinations, we challenge the prevailing notion that they can be fully mitigated. 3 authors · Sep 9, 2024
- An analytical framework for the Levine hats problem: new strategies, bounds and generalizations We study the Levine hat problem, a classic combinatorial puzzle introduced by Lionel Levine in 2010. This problem involves a game in which n geq 2 players, each seeing an infinite stack of hats on each of their teammates' heads but not on their own, must simultaneously guess the index of a black hat on their own stack. If one of the players fails to do so, the team loses collectively. The players must therefore come up with a good strategy before the game starts. While the optimal winning probability V_{n} remains unknown even for n=2, we make three key advances. First, we develop a novel geometric framework for representing strategies through measurable functions, providing a new expression of V_{n} and a unified treatment of the game for finite and for infinite stacks via integral formulations. Secondly, we construct a new strategy K_{5} that reaches the conjectured optimal probability of victory : 0.35. We also show that K_{5} is part of a larger class of strategies that allow us to improve current bounds and resolve conjectured inequalities. Finally, we introduce and entirely solve a continuous generalization of the problem, demonstrating that extending to uncountable hat stacks increases the optimal winning probability to exactly 1/2. This generalization naturally leads to a broader and smoother strategic framework, within which we also describe how to compute optimal responses to a range of strategies. 5 authors · Aug 3
- Harnessing Density Ratios for Online Reinforcement Learning The theories of offline and online reinforcement learning, despite having evolved in parallel, have begun to show signs of the possibility for a unification, with algorithms and analysis techniques for one setting often having natural counterparts in the other. However, the notion of density ratio modeling, an emerging paradigm in offline RL, has been largely absent from online RL, perhaps for good reason: the very existence and boundedness of density ratios relies on access to an exploratory dataset with good coverage, but the core challenge in online RL is to collect such a dataset without having one to start. In this work we show -- perhaps surprisingly -- that density ratio-based algorithms have online counterparts. Assuming only the existence of an exploratory distribution with good coverage, a structural condition known as coverability (Xie et al., 2023), we give a new algorithm (GLOW) that uses density ratio realizability and value function realizability to perform sample-efficient online exploration. GLOW addresses unbounded density ratios via careful use of truncation, and combines this with optimism to guide exploration. GLOW is computationally inefficient; we complement it with a more efficient counterpart, HyGLOW, for the Hybrid RL setting (Song et al., 2022) wherein online RL is augmented with additional offline data. HyGLOW is derived as a special case of a more general meta-algorithm that provides a provable black-box reduction from hybrid RL to offline RL, which may be of independent interest. 5 authors · Jan 17, 2024
- Sharper Bounds for ell_p Sensitivity Sampling In large scale machine learning, random sampling is a popular way to approximate datasets by a small representative subset of examples. In particular, sensitivity sampling is an intensely studied technique which provides provable guarantees on the quality of approximation, while reducing the number of examples to the product of the VC dimension d and the total sensitivity mathfrak S in remarkably general settings. However, guarantees going beyond this general bound of mathfrak S d are known in perhaps only one setting, for ell_2 subspace embeddings, despite intense study of sensitivity sampling in prior work. In this work, we show the first bounds for sensitivity sampling for ell_p subspace embeddings for pneq 2 that improve over the general mathfrak S d bound, achieving a bound of roughly mathfrak S^{2/p} for 1leq p<2 and mathfrak S^{2-2/p} for 2<p<infty. For 1leq p<2, we show that this bound is tight, in the sense that there exist matrices for which mathfrak S^{2/p} samples is necessary. Furthermore, our techniques yield further new results in the study of sampling algorithms, showing that the root leverage score sampling algorithm achieves a bound of roughly d for 1leq p<2, and that a combination of leverage score and sensitivity sampling achieves an improved bound of roughly d^{2/p}mathfrak S^{2-4/p} for 2<p<infty. Our sensitivity sampling results yield the best known sample complexity for a wide class of structured matrices that have small ell_p sensitivity. 2 authors · Jun 1, 2023
1 Putnam-AXIOM: A Functional and Static Benchmark Current mathematical reasoning benchmarks for large language models (LLMs) are approaching saturation, with some achieving > 90% accuracy, and are increasingly compromised by training-set contamination. We introduce Putnam-AXIOM, a benchmark of 522 university-level competition problems drawn from the prestigious William Lowell Putnam Mathematical Competition, and Putnam-AXIOM Variation, an unseen companion set of 100 functional variants generated by programmatically perturbing variables and constants. The variation protocol produces an unlimited stream of equally difficult, unseen instances -- yielding a contamination-resilient test bed. On the Original set, OpenAI's o1-preview -- the strongest evaluated model -- scores 41.9%, but its accuracy drops by 19.6% (46.8% relative decrease) on the paired Variations. The remaining eighteen models show the same downward trend, ten of them with non-overlapping 95% confidence intervals. These gaps suggest memorization and highlight the necessity of dynamic benchmarks. We complement "boxed" accuracy with Teacher-Forced Accuracy (TFA), a lightweight metric that directly scores reasoning traces and automates natural language proof evaluations. Putnam-AXIOM therefore provides a rigorous, contamination-resilient evaluation framework for assessing advanced mathematical reasoning of LLMs. Data and evaluation code are publicly available at https://github.com/brando90/putnam-axiom. 8 authors · Aug 5 2
2 Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1 2 authors · Sep 8 2
- Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions Machine learning approaches relying on such criteria as adversarial robustness or multi-agent settings have raised the need for solving game-theoretic equilibrium problems. Of particular relevance to these applications are methods targeting finite-sum structure, which generically arises in empirical variants of learning problems in these contexts. Further, methods with computable approximation errors are highly desirable, as they provide verifiable exit criteria. Motivated by these applications, we study finite-sum monotone inclusion problems, which model broad classes of equilibrium problems. Our main contributions are variants of the classical Halpern iteration that employ variance reduction to obtain improved complexity guarantees in which n component operators in the finite sum are ``on average'' either cocoercive or Lipschitz continuous and monotone, with parameter L. The resulting oracle complexity of our methods, which provide guarantees for the last iterate and for a (computable) operator norm residual, is mathcal{O}( n + nLvarepsilon^{-1}), which improves upon existing methods by a factor up to n. This constitutes the first variance reduction-type result for general finite-sum monotone inclusions and for more specific problems such as convex-concave optimization when operator norm residual is the optimality measure. We further argue that, up to poly-logarithmic factors, this complexity is unimprovable in the monotone Lipschitz setting; i.e., the provided result is near-optimal. 3 authors · Oct 4, 2023
5 Feasible Learning We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance on every individual data point. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance. 7 authors · Jan 24 2
- Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity Algorithms for min-max optimization and variational inequalities are often studied under monotonicity assumptions. Motivated by non-monotone machine learning applications, we follow the line of works [Diakonikolas et al., 2021, Lee and Kim, 2021, Pethick et al., 2022, B\"ohm, 2022] aiming at going beyond monotonicity by considering the weaker negative comonotonicity assumption. In particular, we provide tight complexity analyses for the Proximal Point, Extragradient, and Optimistic Gradient methods in this setup, closing some questions on their working guarantees beyond monotonicity. 4 authors · Oct 25, 2022
1 A Compositional Atlas for Algebraic Circuits Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queries as compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries - including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment - correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries. 4 authors · Dec 6, 2024
- Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss The problem of minimizing the maximum of N convex, Lipschitz functions plays significant roles in optimization and machine learning. It has a series of results, with the most recent one requiring O(Nepsilon^{-2/3} + epsilon^{-8/3}) queries to a first-order oracle to compute an epsilon-suboptimal point. On the other hand, quantum algorithms for optimization are rapidly advancing with speedups shown on many important optimization problems. In this paper, we conduct a systematic study for quantum algorithms and lower bounds for minimizing the maximum of N convex, Lipschitz functions. On one hand, we develop quantum algorithms with an improved complexity bound of O(Nepsilon^{-5/3} + epsilon^{-8/3}). On the other hand, we prove that quantum algorithms must take Omega(Nepsilon^{-2/3}) queries to a first order quantum oracle, showing that our dependence on N is optimal up to poly-logarithmic factors. 3 authors · Feb 20, 2024
- Product representation of perfect cubes Let F_{k,d}(n) be the maximal size of a set {A}subseteq [n] such that the equation \[a_1a_2\dots a_k=x^d, \; a_1<a_2<\ldots<a_k\] has no solution with a_1,a_2,ldots,a_kA and integer x. Erdos, S\'ark\"ozy and T. S\'os studied F_{k,2}, and gave bounds when k=2,3,4,6 and also in the general case. We study the problem for d=3, and provide bounds for k=2,3,4,6 and 9, furthermore, in the general case, as well. In particular, we refute an 18 years old conjecture of Verstra\"ete. We also introduce another function f_{k,d} closely related to F_{k,d}: While the original problem requires a_1, ldots , a_k to all be distinct, we can relax this and only require that the multiset of the a_i's cannot be partitioned into d-tuples where each d-tuple consists of d copies of the same number. 5 authors · May 20, 2024
- Fundamental Tradeoffs in Learning with Prior Information We seek to understand fundamental tradeoffs between the accuracy of prior information that a learner has on a given problem and its learning performance. We introduce the notion of prioritized risk, which differs from traditional notions of minimax and Bayes risk by allowing us to study such fundamental tradeoffs in settings where reality does not necessarily conform to the learner's prior. We present a general reduction-based approach for extending classical minimax lower-bound techniques in order to lower bound the prioritized risk for statistical estimation problems. We also introduce a novel generalization of Fano's inequality (which may be of independent interest) for lower bounding the prioritized risk in more general settings involving unbounded losses. We illustrate the ability of our framework to provide insights into tradeoffs between prior information and learning performance for problems in estimation, regression, and reinforcement learning. 1 authors · Apr 26, 2023
- Generalization Analysis for Contrastive Representation Learning Recently, contrastive learning has found impressive success in advancing the state of the art in solving various machine learning tasks. However, the existing generalization analysis is very limited or even not meaningful. In particular, the existing generalization error bounds depend linearly on the number k of negative examples while it was widely shown in practice that choosing a large k is necessary to guarantee good generalization of contrastive learning in downstream tasks. In this paper, we establish novel generalization bounds for contrastive learning which do not depend on k, up to logarithmic terms. Our analysis uses structural results on empirical covering numbers and Rademacher complexities to exploit the Lipschitz continuity of loss functions. For self-bounding Lipschitz loss functions, we further improve our results by developing optimistic bounds which imply fast rates in a low noise condition. We apply our results to learning with both linear representation and nonlinear representation by deep neural networks, for both of which we derive Rademacher complexity bounds to get improved generalization bounds. 4 authors · Feb 23, 2023
- The Geometry of Bayesian Programming We give a geometry of interaction model for a typed lambda-calculus endowed with operators for sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic calculus for higher-order Bayesian programming. The model is based on the category of measurable spaces and partial measurable functions, and is proved adequate with respect to both a distribution-based and a sampling based operational semantics. 2 authors · Apr 15, 2019
- A Categorical Framework for Learning Generalised Tree Automata Automata learning is a popular technique used to automatically construct an automaton model from queries. Much research went into devising ad hoc adaptations of algorithms for different types of automata. The CALF project seeks to unify these using category theory in order to ease correctness proofs and guide the design of new algorithms. In this paper, we extend CALF to cover learning of algebraic structures that may not have a coalgebraic presentation. Furthermore, we provide a detailed algorithmic account of an abstract version of the popular L* algorithm, which was missing from CALF. We instantiate the abstract theory to a large class of Set functors, by which we recover for the first time practical tree automata learning algorithms from an abstract framework and at the same time obtain new algorithms to learn algebras of quotiented polynomial functors. 5 authors · Jan 16, 2020
- Lean-auto: An Interface between Lean 4 and Automated Theorem Provers Proof automation is crucial to large-scale formal mathematics and software/hardware verification projects in ITPs. Sophisticated tools called hammers have been developed to provide general-purpose proof automation in ITPs such as Coq and Isabelle, leveraging the power of ATPs. An important component of a hammer is the translation algorithm from the ITP's logical system to the ATP's logical system. In this paper, we propose a novel translation algorithm for ITPs based on dependent type theory. The algorithm is implemented in Lean 4 under the name Lean-auto. When combined with ATPs, Lean-auto provides general-purpose, ATP-based proof automation in Lean 4 for the first time. Soundness of the main translation procedure is guaranteed, and experimental results suggest that our algorithm is sufficiently complete to automate the proof of many problems that arise in practical uses of Lean 4. We also find that Lean-auto solves more problems than existing tools on Lean 4's math library Mathlib4. 4 authors · May 20
- Interpretable Proof Generation via Iterative Backward Reasoning We present IBR, an Iterative Backward Reasoning model to solve the proof generation tasks on rule-based Question Answering (QA), where models are required to reason over a series of textual rules and facts to find out the related proof path and derive the final answer. We handle the limitations of existed works in two folds: 1) enhance the interpretability of reasoning procedures with detailed tracking, by predicting nodes and edges in the proof path iteratively backward from the question; 2) promote the efficiency and accuracy via reasoning on the elaborate representations of nodes and history paths, without any intermediate texts that may introduce external noise during proof generation. There are three main modules in IBR, QA and proof strategy prediction to obtain the answer and offer guidance for the following procedure; parent node prediction to determine a node in the existing proof that a new child node will link to; child node prediction to find out which new node will be added to the proof. Experiments on both synthetic and paraphrased datasets demonstrate that IBR has better in-domain performance as well as cross-domain transferability than several strong baselines. Our code and models are available at https://github.com/find-knowledge/IBR . 5 authors · May 21, 2022
- Constructor Theory of Probability Unitary quantum theory, having no Born Rule, is non-probabilistic. Hence the notorious problem of reconciling it with the unpredictability and appearance of stochasticity in quantum measurements. Generalising and improving upon the so-called 'decision-theoretic approach' (Deutsch, 1999; Wallace, 2003, 2007, 2012), I shall recast that problem in the recently proposed constructor theory of information - where quantum theory is represented as one of a class of superinformation theories, which are local, non-probabilistic theories conforming to certain constructor-theoretic conditions. I prove that the unpredictability of measurement outcomes (to which I give an exact meaning via constructor theory), necessarily arises in superinformation theories. Then I explain how the appearance of stochasticity in (finitely many) repeated measurements can arise under superinformation theories. And I establish sufficient conditions for a superinformation theory to inform decisions (made under it) as if it were probabilistic, via a Deutsch-Wallace-type argument - thus defining a class of decision-supporting superinformation theories. This broadens the domain of applicability of that argument to cover constructor-theory compliant theories. In addition, in this version some of the argument's assumptions, previously construed as merely decision-theoretic, follow from physical properties expressed by constructor-theoretic principles. 1 authors · Jul 12, 2015
- A Fundamental Duality in the Mathematical and Natural Sciences: From Logic to Biology This is an essay in what might be called ``mathematical metaphysics.'' There is a fundamental duality that run through mathematics and the natural sciences. The duality starts as the logical level; it is represented by the Boolean logic of subsets and the logic of partitions since subsets and partitions are category-theoretic dual concepts. In more basic terms, it starts with the duality between the elements (Its) of subsets and the distinctions (Dits, i.e., ordered pairs of elements in different blocks) of a partition. Mathematically, the Its & Dits duality is fully developed in category theory as the reverse-the-arrows duality. The quantitative versions of subsets and partitions are developed as probability theory and information theory (based on logical entropy). Classical physics was based on a view of reality as definite all the way down. In contrast, quantum physics embodies (objective) indefiniteness. And finally, there are the two fundamental dual mechanisms at work in biology, the selectionist mechanism and the generative mechanism, two mechanisms that embody the fundamental duality. 1 authors · Sep 6, 2024
- Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions Heavy-tail phenomena in stochastic gradient descent (SGD) have been reported in several empirical studies. Experimental evidence in previous works suggests a strong interplay between the heaviness of the tails and generalization behavior of SGD. To address this empirical phenomena theoretically, several works have made strong topological and statistical assumptions to link the generalization error to heavy tails. Very recently, new generalization bounds have been proven, indicating a non-monotonic relationship between the generalization error and heavy tails, which is more pertinent to the reported empirical observations. While these bounds do not require additional topological assumptions given that SGD can be modeled using a heavy-tailed stochastic differential equation (SDE), they can only apply to simple quadratic problems. In this paper, we build on this line of research and develop generalization bounds for a more general class of objective functions, which includes non-convex functions as well. Our approach is based on developing Wasserstein stability bounds for heavy-tailed SDEs and their discretizations, which we then convert to generalization bounds. Our results do not require any nontrivial assumptions; yet, they shed more light to the empirical observations, thanks to the generality of the loss functions. 4 authors · Jan 27, 2023
- Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research. 6 authors · Dec 13, 2022
1 Psi-Turing Machines: Bounded Introspection for Complexity Barriers and Oracle Separations We introduce Psi-Turing Machines (Psi-TM): classical Turing machines equipped with a constant-depth introspection interface iota and an explicit per-step information budget B(d,n)=c,dlog_2 n . With the interface frozen, we develop an information-theoretic lower-bound toolkit: Budget counting, Psi -Fooling, and Psi -Fano, with worked examples L_k and L_k^{phase} . We prove an oracle-relative separation P^{Psi} neq NP^{Psi} and a strict depth hierarchy, reinforced by an Anti-Simulation Hook that rules out polynomial emulation of iota_k using many calls to iota_{k-1} under the budget regime. We also present two independent platforms (Psi-decision trees and interface-constrained circuits IC-AC^{0}/IC-NC^{1}) and bridges that transfer bounds among machine, tree, and circuit with explicit poly/log losses. The model preserves classical computational power outside iota yet enables precise oracle-aware statements about barriers (relativization; partial/conditional progress on natural proofs and proof complexity). The aim is a standardized minimal introspection interface with clearly accounted information budgets. 1 authors · Aug 29
- Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time. 6 authors · May 24, 2023
- Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width Conformant planning is the problem of finding a sequence of actions for achieving a goal in the presence of uncertainty in the initial state or action effects. The problem has been approached as a path-finding problem in belief space where good belief representations and heuristics are critical for scaling up. In this work, a different formulation is introduced for conformant problems with deterministic actions where they are automatically converted into classical ones and solved by an off-the-shelf classical planner. The translation maps literals L and sets of assumptions t about the initial situation, into new literals KL/t that represent that L must be true if t is initially true. We lay out a general translation scheme that is sound and establish the conditions under which the translation is also complete. We show that the complexity of the complete translation is exponential in a parameter of the problem called the conformant width, which for most benchmarks is bounded. The planner based on this translation exhibits good performance in comparison with existing planners, and is the basis for T0, the best performing planner in the Conformant Track of the 2006 International Planning Competition. 2 authors · Jan 15, 2014
- Near Optimal Memory-Regret Tradeoff for Online Learning In the experts problem, on each of T days, an agent needs to follow the advice of one of n ``experts''. After each day, the loss associated with each expert's advice is revealed. A fundamental result in learning theory says that the agent can achieve vanishing regret, i.e. their cumulative loss is within o(T) of the cumulative loss of the best-in-hindsight expert. Can the agent perform well without sufficient space to remember all the experts? We extend a nascent line of research on this question in two directions: bullet We give a new algorithm against the oblivious adversary, improving over the memory-regret tradeoff obtained by [PZ23], and nearly matching the lower bound of [SWXZ22]. bullet We also consider an adaptive adversary who can observe past experts chosen by the agent. In this setting we give both a new algorithm and a novel lower bound, proving that roughly n memory is both necessary and sufficient for obtaining o(T) regret. 2 authors · Mar 2, 2023
2 Autonomous Code Evolution Meets NP-Completeness Large language models (LLMs) have recently shown strong coding abilities, enabling not only static code generation but also iterative code self-evolving through agentic frameworks. Recently, AlphaEvolve novikov2025alphaevolve demonstrated that LLM-based coding agents can autonomously improve algorithms and surpass human experts, with scopes limited to isolated kernels spanning hundreds of lines of code. Inspired by AlphaEvolve, we present SATLUTION, the first framework to extend LLM-based code evolution to the full repository scale, encompassing hundreds of files and tens of thousands of lines of C/C++ code. Targeting Boolean Satisfiability (SAT), the canonical NP-complete problem and a cornerstone of both theory and applications. SATLUTION orchestrates LLM agents to directly evolve solver repositories under strict correctness guarantees and distributed runtime feedback, while simultaneously self-evolving its own evolution policies and rules. Starting from SAT Competition 2024 codebases and benchmark, SATLUTION evolved solvers that decisively outperformed the human-designed winners of the SAT Competition 2025, and also surpassed both 2024 and 2025 champions on the 2024 benchmarks. 4 authors · Sep 8
2 Boundless Socratic Learning with Language Games An agent trained within a closed system can master any desired capability, as long as the following three conditions hold: (a) it receives sufficiently informative and aligned feedback, (b) its coverage of experience/data is broad enough, and (c) it has sufficient capacity and resource. In this position paper, we justify these conditions, and consider what limitations arise from (a) and (b) in closed systems, when assuming that (c) is not a bottleneck. Considering the special case of agents with matching input and output spaces (namely, language), we argue that such pure recursive self-improvement, dubbed "Socratic learning", can boost performance vastly beyond what is present in its initial data or knowledge, and is only limited by time, as well as gradual misalignment concerns. Furthermore, we propose a constructive framework to implement it, based on the notion of language games. 1 authors · Nov 25, 2024
- IterLara: A Turing Complete Algebra for Big Data, AI, Scientific Computing, and Database Lara is a key-value algebra that aims at unifying linear and relational algebra with three types of operation abstraction. The study of Lara's expressive ability reports that it can represent relational algebra and most linear algebra operations. However, several essential computations, such as matrix inversion and determinant, cannot be expressed in Lara. Lara cannot represent global and iterative computation, either. This article proposes IterLara, extending Lara with iterative operators, to provide an algebraic model that unifies operations in general-purpose computing, like big data, AI, scientific computing, and database. We study the expressive ability of Lara and IterLara and prove that IterLara with aggregation functions can represent matrix inversion, determinant. Besides, we demonstrate that IterLara with no limitation of function utility is Turing complete. We also propose the Operation Count (OP) as a metric of computation amount for IterLara and ensure that the OP metric is in accordance with the existing computation metrics. 4 authors · Jul 17, 2023
- Complexity of Block Coordinate Descent with Proximal Regularization and Applications to Wasserstein CP-dictionary Learning We consider the block coordinate descent methods of Gauss-Seidel type with proximal regularization (BCD-PR), which is a classical method of minimizing general nonconvex objectives under constraints that has a wide range of practical applications. We theoretically establish the worst-case complexity bound for this algorithm. Namely, we show that for general nonconvex smooth objectives with block-wise constraints, the classical BCD-PR algorithm converges to an epsilon-stationary point within O(1/epsilon) iterations. Under a mild condition, this result still holds even if the algorithm is executed inexactly in each step. As an application, we propose a provable and efficient algorithm for `Wasserstein CP-dictionary learning', which seeks a set of elementary probability distributions that can well-approximate a given set of d-dimensional joint probability distributions. Our algorithm is a version of BCD-PR that operates in the dual space, where the primal problem is regularized both entropically and proximally. 2 authors · Jun 4, 2023
- High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance During recent years the interest of optimization and machine learning communities in high-probability convergence of stochastic optimization methods has been growing. One of the main reasons for this is that high-probability complexity bounds are more accurate and less studied than in-expectation ones. However, SOTA high-probability non-asymptotic convergence results are derived under strong assumptions such as the boundedness of the gradient noise variance or of the objective's gradient itself. In this paper, we propose several algorithms with high-probability convergence results under less restrictive assumptions. In particular, we derive new high-probability convergence results under the assumption that the gradient/operator noise has bounded central alpha-th moment for alpha in (1,2] in the following setups: (i) smooth non-convex / Polyak-Lojasiewicz / convex / strongly convex / quasi-strongly convex minimization problems, (ii) Lipschitz / star-cocoercive and monotone / quasi-strongly monotone variational inequalities. These results justify the usage of the considered methods for solving problems that do not fit standard functional classes studied in stochastic optimization. 8 authors · Feb 2, 2023
- Embedding ample semigroups as (2,1,1)-subalgebras of inverse semigroups The problem of embedding an ample semigroup in an inverse semigroup as a (2, 1, 1)-type subalgebra is known to be undecidable. In this article, we investigate the problem for certain classes of ample semigroups. We also give examples of semigroups that are left (respectively, right) but not right (respectively, left) ample. 3 authors · Aug 3
- Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing A large amount of effort has recently been put into understanding the barren plateau phenomenon. In this perspective article, we face the increasingly loud elephant in the room and ask a question that has been hinted at by many but not explicitly addressed: Can the structure that allows one to avoid barren plateaus also be leveraged to efficiently simulate the loss classically? We present strong evidence that commonly used models with provable absence of barren plateaus are also classically simulable, provided that one can collect some classical data from quantum devices during an initial data acquisition phase. This follows from the observation that barren plateaus result from a curse of dimensionality, and that current approaches for solving them end up encoding the problem into some small, classically simulable, subspaces. Thus, while stressing quantum computers can be essential for collecting data, our analysis sheds serious doubt on the non-classicality of the information processing capabilities of parametrized quantum circuits for barren plateau-free landscapes. We end by discussing caveats in our arguments, the role of smart initializations and the possibility of provably superpolynomial, or simply practical, advantages from running parametrized quantum circuits. 12 authors · Dec 14, 2023
- Quantum Lower Bounds for Finding Stationary Points of Nonconvex Functions Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding epsilon-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to p-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is Omegabig(epsilon^{-1+p{p}}big) regarding the first setting, and Omega(epsilon^{-4}) regarding the second setting (or Omega(epsilon^{-3}) if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding epsilon-stationary points of nonconvex functions with p-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially. 2 authors · Dec 7, 2022
- Black holes and the loss landscape in machine learning Understanding the loss landscape is an important problem in machine learning. One key feature of the loss function, common to many neural network architectures, is the presence of exponentially many low lying local minima. Physical systems with similar energy landscapes may provide useful insights. In this work, we point out that black holes naturally give rise to such landscapes, owing to the existence of black hole entropy. For definiteness, we consider 1/8 BPS black holes in N = 8 string theory. These provide an infinite family of potential landscapes arising in the microscopic descriptions of corresponding black holes. The counting of minima amounts to black hole microstate counting. Moreover, the exact numbers of the minima for these landscapes are a priori known from dualities in string theory. Some of the minima are connected by paths of low loss values, resembling mode connectivity. We estimate the number of runs needed to find all the solutions. Initial explorations suggest that Stochastic Gradient Descent can find a significant fraction of the minima. 3 authors · Jun 26, 2023