Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSeeing Space and Motion: Enhancing Latent Actions with Spatial and Dynamic Awareness for VLA
Latent Action Models (LAMs) enable Vision-Language-Action (VLA) systems to learn semantic action representations from large-scale unannotated data. Yet, we identify two bottlenecks of LAMs: 1) the commonly adopted end-to-end trained image encoder suffers from poor spatial understanding; 2) LAMs can be fragile when input frames are distant, leading to limited temporal perception. Such factors inevitably hinder stable and clear action modeling. To this end, we propose Farsighted-LAM, a latent action framework with geometry-aware spatial encoding and multi-scale temporal modeling, capturing structural priors and dynamic motion patterns from consecutive frames. We further propose SSM-VLA, an end-to-end VLA framework built upon Farsighted-LAM, which integrates structured perception with a visual Chain-of-Thought module to explicitly reason about environmental dynamics, enhancing decision consistency and interpretability. We validate SSM-VLA on multiple VLA tasks in both simulation and real-world settings, and achieve state-of-the-art performance. Our results demonstrate that our strategy of combining geometry-aware modeling, temporal coherence, and explicit reasoning is effective in enhancing the robustness and generalizability of embodied intelligence.
Learning to Act without Actions
Pre-training large models on vast amounts of web data has proven to be an effective approach for obtaining powerful, general models in domains such as language and vision. However, this paradigm has not yet taken hold in reinforcement learning. This is because videos, the most abundant form of embodied behavioral data on the web, lack the action labels required by existing methods for imitating behavior from demonstrations. We introduce Latent Action Policies (LAPO), a method for recovering latent action information, and thereby latent-action policies, world models, and inverse dynamics models, purely from videos. LAPO is the first method able to recover the structure of the true action space just from observed dynamics, even in challenging procedurally-generated environments. LAPO enables training latent-action policies that can be rapidly fine-tuned into expert-level policies, either offline using a small action-labeled dataset, or online with rewards. LAPO takes a first step towards pre-training powerful, generalist policies and world models on the vast amounts of videos readily available on the web.
StaMo: Unsupervised Learning of Generalizable Robot Motion from Compact State Representation
A fundamental challenge in embodied intelligence is developing expressive and compact state representations for efficient world modeling and decision making. However, existing methods often fail to achieve this balance, yielding representations that are either overly redundant or lacking in task-critical information. We propose an unsupervised approach that learns a highly compressed two-token state representation using a lightweight encoder and a pre-trained Diffusion Transformer (DiT) decoder, capitalizing on its strong generative prior. Our representation is efficient, interpretable, and integrates seamlessly into existing VLA-based models, improving performance by 14.3% on LIBERO and 30% in real-world task success with minimal inference overhead. More importantly, we find that the difference between these tokens, obtained via latent interpolation, naturally serves as a highly effective latent action, which can be further decoded into executable robot actions. This emergent capability reveals that our representation captures structured dynamics without explicit supervision. We name our method StaMo for its ability to learn generalizable robotic Motion from compact State representation, which is encoded from static images, challenging the prevalent dependence to learning latent action on complex architectures and video data. The resulting latent actions also enhance policy co-training, outperforming prior methods by 10.4% with improved interpretability. Moreover, our approach scales effectively across diverse data sources, including real-world robot data, simulation, and human egocentric video.
Weakly-Supervised Action Localization by Hierarchically-structured Latent Attention Modeling
Weakly-supervised action localization aims to recognize and localize action instancese in untrimmed videos with only video-level labels. Most existing models rely on multiple instance learning(MIL), where the predictions of unlabeled instances are supervised by classifying labeled bags. The MIL-based methods are relatively well studied with cogent performance achieved on classification but not on localization. Generally, they locate temporal regions by the video-level classification but overlook the temporal variations of feature semantics. To address this problem, we propose a novel attention-based hierarchically-structured latent model to learn the temporal variations of feature semantics. Specifically, our model entails two components, the first is an unsupervised change-points detection module that detects change-points by learning the latent representations of video features in a temporal hierarchy based on their rates of change, and the second is an attention-based classification model that selects the change-points of the foreground as the boundaries. To evaluate the effectiveness of our model, we conduct extensive experiments on two benchmark datasets, THUMOS-14 and ActivityNet-v1.3. The experiments show that our method outperforms current state-of-the-art methods, and even achieves comparable performance with fully-supervised methods.
LatBot: Distilling Universal Latent Actions for Vision-Language-Action Models
Learning transferable latent actions from large-scale object manipulation videos can significantly enhance generalization in downstream robotics tasks, as such representations are agnostic to different robot embodiments. Existing approaches primarily rely on visual reconstruction objectives while neglecting physical priors, leading to sub-optimal performance in learning universal representations. To address these challenges, we propose a Universal Latent Action Learning framework that takes task instructions and multiple frames as inputs, and optimizes both future frame reconstruction and action sequence prediction. Unlike prior works, incorporating action predictions (e.g., gripper or hand trajectories and orientations) allows the model to capture richer physical priors such as real-world distances and orientations, thereby enabling seamless transferability to downstream tasks. We further decompose the latent actions into learnable motion and scene tokens to distinguish the robot's active movements from environmental changes, thus filtering out irrelevant dynamics. By distilling the learned latent actions into the latest VLA models, we achieve strong performance across both simulated (SIMPLER and LIBERO) and real-world robot settings. Notably, with only 10 real-world trajectories per task collected on a Franka robot, our approach successfully completes all five challenging tasks, demonstrating strong few-shot transferability in robotic manipulation.
ViPRA: Video Prediction for Robot Actions
Can we turn a video prediction model into a robot policy? Videos, including those of humans or teleoperated robots, capture rich physical interactions. However, most of them lack labeled actions, which limits their use in robot learning. We present Video Prediction for Robot Actions (ViPRA), a simple pretraining-finetuning framework that learns continuous robot control from these actionless videos. Instead of directly predicting actions, we train a video-language model to predict both future visual observations and motion-centric latent actions, which serve as intermediate representations of scene dynamics. We train these latent actions using perceptual losses and optical flow consistency to ensure they reflect physically grounded behavior. For downstream control, we introduce a chunked flow matching decoder that maps latent actions to robot-specific continuous action sequences, using only 100 to 200 teleoperated demonstrations. This approach avoids expensive action annotation, supports generalization across embodiments, and enables smooth, high-frequency continuous control upto 22 Hz via chunked action decoding. Unlike prior latent action works that treat pretraining as autoregressive policy learning, explicitly models both what changes and how. Our method outperforms strong baselines, with a 16% gain on the SIMPLER benchmark and a 13% improvement across real world manipulation tasks. We will release models and code at https://vipra-project.github.io
TD-JEPA: Latent-predictive Representations for Zero-Shot Reinforcement Learning
Latent prediction--where agents learn by predicting their own latents--has emerged as a powerful paradigm for training general representations in machine learning. In reinforcement learning (RL), this approach has been explored to define auxiliary losses for a variety of settings, including reward-based and unsupervised RL, behavior cloning, and world modeling. While existing methods are typically limited to single-task learning, one-step prediction, or on-policy trajectory data, we show that temporal difference (TD) learning enables learning representations predictive of long-term latent dynamics across multiple policies from offline, reward-free transitions. Building on this, we introduce TD-JEPA, which leverages TD-based latent-predictive representations into unsupervised RL. TD-JEPA trains explicit state and task encoders, a policy-conditioned multi-step predictor, and a set of parameterized policies directly in latent space. This enables zero-shot optimization of any reward function at test time. Theoretically, we show that an idealized variant of TD-JEPA avoids collapse with proper initialization, and learns encoders that capture a low-rank factorization of long-term policy dynamics, while the predictor recovers their successor features in latent space. Empirically, TD-JEPA matches or outperforms state-of-the-art baselines on locomotion, navigation, and manipulation tasks across 13 datasets in ExoRL and OGBench, especially in the challenging setting of zero-shot RL from pixels.
LAC: Latent Action Composition for Skeleton-based Action Segmentation
Skeleton-based action segmentation requires recognizing composable actions in untrimmed videos. Current approaches decouple this problem by first extracting local visual features from skeleton sequences and then processing them by a temporal model to classify frame-wise actions. However, their performances remain limited as the visual features cannot sufficiently express composable actions. In this context, we propose Latent Action Composition (LAC), a novel self-supervised framework aiming at learning from synthesized composable motions for skeleton-based action segmentation. LAC is composed of a novel generation module towards synthesizing new sequences. Specifically, we design a linear latent space in the generator to represent primitive motion. New composed motions can be synthesized by simply performing arithmetic operations on latent representations of multiple input skeleton sequences. LAC leverages such synthesized sequences, which have large diversity and complexity, for learning visual representations of skeletons in both sequence and frame spaces via contrastive learning. The resulting visual encoder has a high expressive power and can be effectively transferred onto action segmentation tasks by end-to-end fine-tuning without the need for additional temporal models. We conduct a study focusing on transfer-learning and we show that representations learned from pre-trained LAC outperform the state-of-the-art by a large margin on TSU, Charades, PKU-MMD datasets.
Efficient Planning with Latent Diffusion
Temporal abstraction and efficient planning pose significant challenges in offline reinforcement learning, mainly when dealing with domains that involve temporally extended tasks and delayed sparse rewards. Existing methods typically plan in the raw action space and can be inefficient and inflexible. Latent action spaces offer a more flexible paradigm, capturing only possible actions within the behavior policy support and decoupling the temporal structure between planning and modeling. However, current latent-action-based methods are limited to discrete spaces and require expensive planning. This paper presents a unified framework for continuous latent action space representation learning and planning by leveraging latent, score-based diffusion models. We establish the theoretical equivalence between planning in the latent action space and energy-guided sampling with a pretrained diffusion model and incorporate a novel sequence-level exact sampling method. Our proposed method, LatentDiffuser, demonstrates competitive performance on low-dimensional locomotion control tasks and surpasses existing methods in higher-dimensional tasks.
Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models
With the release of large-scale motion datasets with textual annotations, the task of establishing a robust latent space for language and 3D human motion has recently witnessed a surge of interest. Methods have been proposed to convert human motion and texts into features to achieve accurate correspondence between them. Despite these efforts to align language and motion representations, we claim that the temporal element is often overlooked, especially for compound actions, resulting in chronological inaccuracies. To shed light on the temporal alignment in motion-language latent spaces, we propose Chronologically Accurate Retrieval (CAR) to evaluate the chronological understanding of the models. We decompose textual descriptions into events, and prepare negative text samples by shuffling the order of events in compound action descriptions. We then design a simple task for motion-language models to retrieve the more likely text from the ground truth and its chronologically shuffled version. CAR reveals many cases where current motion-language models fail to distinguish the event chronology of human motion, despite their impressive performance in terms of conventional evaluation metrics. To achieve better temporal alignment between text and motion, we further propose to use these texts with shuffled sequence of events as negative samples during training to reinforce the motion-language models. We conduct experiments on text-motion retrieval and text-to-motion generation using the reinforced motion-language models, which demonstrate improved performance over conventional approaches, indicating the necessity to consider temporal elements in motion-language alignment.
Reuse and Diffuse: Iterative Denoising for Text-to-Video Generation
Inspired by the remarkable success of Latent Diffusion Models (LDMs) for image synthesis, we study LDM for text-to-video generation, which is a formidable challenge due to the computational and memory constraints during both model training and inference. A single LDM is usually only capable of generating a very limited number of video frames. Some existing works focus on separate prediction models for generating more video frames, which suffer from additional training cost and frame-level jittering, however. In this paper, we propose a framework called "Reuse and Diffuse" dubbed VidRD to produce more frames following the frames already generated by an LDM. Conditioned on an initial video clip with a small number of frames, additional frames are iteratively generated by reusing the original latent features and following the previous diffusion process. Besides, for the autoencoder used for translation between pixel space and latent space, we inject temporal layers into its decoder and fine-tune these layers for higher temporal consistency. We also propose a set of strategies for composing video-text data that involve diverse content from multiple existing datasets including video datasets for action recognition and image-text datasets. Extensive experiments show that our method achieves good results in both quantitative and qualitative evaluations. Our project page is available https://anonymous0x233.github.io/ReuseAndDiffuse/{here}.
Masked Temporal Interpolation Diffusion for Procedure Planning in Instructional Videos
In this paper, we address the challenge of procedure planning in instructional videos, aiming to generate coherent and task-aligned action sequences from start and end visual observations. Previous work has mainly relied on text-level supervision to bridge the gap between observed states and unobserved actions, but it struggles with capturing intricate temporal relationships among actions. Building on these efforts, we propose the Masked Temporal Interpolation Diffusion (MTID) model that introduces a latent space temporal interpolation module within the diffusion model. This module leverages a learnable interpolation matrix to generate intermediate latent features, thereby augmenting visual supervision with richer mid-state details. By integrating this enriched supervision into the model, we enable end-to-end training tailored to task-specific requirements, significantly enhancing the model's capacity to predict temporally coherent action sequences. Additionally, we introduce an action-aware mask projection mechanism to restrict the action generation space, combined with a task-adaptive masked proximity loss to prioritize more accurate reasoning results close to the given start and end states over those in intermediate steps. Simultaneously, it filters out task-irrelevant action predictions, leading to contextually aware action sequences. Experimental results across three widely used benchmark datasets demonstrate that our MTID achieves promising action planning performance on most metrics. The code is available at https://github.com/WiserZhou/MTID.
IGOR: Image-GOal Representations are the Atomic Control Units for Foundation Models in Embodied AI
We introduce Image-GOal Representations (IGOR), aiming to learn a unified, semantically consistent action space across human and various robots. Through this unified latent action space, IGOR enables knowledge transfer among large-scale robot and human activity data. We achieve this by compressing visual changes between an initial image and its goal state into latent actions. IGOR allows us to generate latent action labels for internet-scale video data. This unified latent action space enables the training of foundation policy and world models across a wide variety of tasks performed by both robots and humans. We demonstrate that: (1) IGOR learns a semantically consistent action space for both human and robots, characterizing various possible motions of objects representing the physical interaction knowledge; (2) IGOR can "migrate" the movements of the object in the one video to other videos, even across human and robots, by jointly using the latent action model and world model; (3) IGOR can learn to align latent actions with natural language through the foundation policy model, and integrate latent actions with a low-level policy model to achieve effective robot control. We believe IGOR opens new possibilities for human-to-robot knowledge transfer and control.
ACT-JEPA: Joint-Embedding Predictive Architecture Improves Policy Representation Learning
Learning efficient representations for decision-making policies is a challenge in imitation learning (IL). Current IL methods require expert demonstrations, which are expensive to collect. Consequently, they often have underdeveloped world models. Self-supervised learning (SSL) offers an alternative by allowing models to learn from diverse, unlabeled data, including failures. However, SSL methods often operate in raw input space, making them inefficient. In this work, we propose ACT-JEPA, a novel architecture that integrates IL and SSL to enhance policy representations. We train a policy to predict (1) action sequences and (2) abstract observation sequences. The first objective uses action chunking to improve action prediction and reduce compounding errors. The second objective extends this idea of chunking by predicting abstract observation sequences. We utilize Joint-Embedding Predictive Architecture to predict in abstract representation space, allowing the model to filter out irrelevant details, improve efficiency, and develop a robust world model. Our experiments show that ACT-JEPA improves the quality of representations by learning temporal environment dynamics. Additionally, the model's ability to predict abstract observation sequences results in representations that effectively generalize to action sequence prediction. ACT-JEPA performs on par with established baselines across a range of decision-making tasks.
Latent Action Pretraining from Videos
We introduce Latent Action Pretraining for general Action models (LAPA), an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels. Existing Vision-Language-Action models require action labels typically collected by human teleoperators during pretraining, which significantly limits possible data sources and scale. In this work, we propose a method to learn from internet-scale videos that do not have robot action labels. We first train an action quantization model leveraging VQ-VAE-based objective to learn discrete latent actions between image frames, then pretrain a latent VLA model to predict these latent actions from observations and task descriptions, and finally finetune the VLA on small-scale robot manipulation data to map from latent to robot actions. Experimental results demonstrate that our method significantly outperforms existing techniques that train robot manipulation policies from large-scale videos. Furthermore, it outperforms the state-of-the-art VLA model trained with robotic action labels on real-world manipulation tasks that require language conditioning, generalization to unseen objects, and semantic generalization to unseen instructions. Training only on human manipulation videos also shows positive transfer, opening up the potential for leveraging web-scale data for robotics foundation model.
UniVLA: Learning to Act Anywhere with Task-centric Latent Actions
A generalist robot should perform effectively across various environments. However, most existing approaches heavily rely on scaling action-annotated data to enhance their capabilities. Consequently, they are often limited to single physical specification and struggle to learn transferable knowledge across different embodiments and environments. To confront these limitations, we propose UniVLA, a new framework for learning cross-embodiment vision-language-action (VLA) policies. Our key innovation is to derive task-centric action representations from videos with a latent action model. This enables us to exploit extensive data across a wide spectrum of embodiments and perspectives. To mitigate the effect of task-irrelevant dynamics, we incorporate language instructions and establish a latent action model within the DINO feature space. Learned from internet-scale videos, the generalist policy can be deployed to various robots through efficient latent action decoding. We obtain state-of-the-art results across multiple manipulation and navigation benchmarks, as well as real-robot deployments. UniVLA achieves superior performance over OpenVLA with less than 1/20 of pretraining compute and 1/10 of downstream data. Continuous performance improvements are observed as heterogeneous data, even including human videos, are incorporated into the training pipeline. The results underscore UniVLA's potential to facilitate scalable and efficient robot policy learning.
Spatio-Temporal Context Prompting for Zero-Shot Action Detection
Spatio-temporal action detection encompasses the tasks of localizing and classifying individual actions within a video. Recent works aim to enhance this process by incorporating interaction modeling, which captures the relationship between people and their surrounding context. However, these approaches have primarily focused on fully-supervised learning, and the current limitation lies in the lack of generalization capability to recognize unseen action categories. In this paper, we aim to adapt the pretrained image-language models to detect unseen actions. To this end, we propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction. Meanwhile, our Context Prompting module will utilize contextual information to prompt labels, thereby enhancing the generation of more representative text features. Moreover, to address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism which employs pretrained visual knowledge to find each person's interest context tokens, and then these tokens will be used for prompting to generate text features tailored to each individual. To evaluate the ability to detect unseen actions, we propose a comprehensive benchmark on J-HMDB, UCF101-24, and AVA datasets. The experiments show that our method achieves superior results compared to previous approaches and can be further extended to multi-action videos, bringing it closer to real-world applications. The code and data can be found in https://webber2933.github.io/ST-CLIP-project-page.
Latent Collaboration in Multi-Agent Systems
Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.
Joint Visual-Temporal Embedding for Unsupervised Learning of Actions in Untrimmed Sequences
Understanding the structure of complex activities in untrimmed videos is a challenging task in the area of action recognition. One problem here is that this task usually requires a large amount of hand-annotated minute- or even hour-long video data, but annotating such data is very time consuming and can not easily be automated or scaled. To address this problem, this paper proposes an approach for the unsupervised learning of actions in untrimmed video sequences based on a joint visual-temporal embedding space. To this end, we combine a visual embedding based on a predictive U-Net architecture with a temporal continuous function. The resulting representation space allows detecting relevant action clusters based on their visual as well as their temporal appearance. The proposed method is evaluated on three standard benchmark datasets, Breakfast Actions, INRIA YouTube Instructional Videos, and 50 Salads. We show that the proposed approach is able to provide a meaningful visual and temporal embedding out of the visual cues present in contiguous video frames and is suitable for the task of unsupervised temporal segmentation of actions.
Interaction-Aware Prompting for Zero-Shot Spatio-Temporal Action Detection
The goal of spatial-temporal action detection is to determine the time and place where each person's action occurs in a video and classify the corresponding action category. Most of the existing methods adopt fully-supervised learning, which requires a large amount of training data, making it very difficult to achieve zero-shot learning. In this paper, we propose to utilize a pre-trained visual-language model to extract the representative image and text features, and model the relationship between these features through different interaction modules to obtain the interaction feature. In addition, we use this feature to prompt each label to obtain more appropriate text features. Finally, we calculate the similarity between the interaction feature and the text feature for each label to determine the action category. Our experiments on J-HMDB and UCF101-24 datasets demonstrate that the proposed interaction module and prompting make the visual-language features better aligned, thus achieving excellent accuracy for zero-shot spatio-temporal action detection. The code will be available at https://github.com/webber2933/iCLIP.
SAIF: A Sparse Autoencoder Framework for Interpreting and Steering Instruction Following of Language Models
The ability of large language models (LLMs) to follow instructions is crucial for their practical applications, yet the underlying mechanisms remain poorly understood. This paper presents a novel framework that leverages sparse autoencoders (SAE) to interpret how instruction following works in these models. We demonstrate how the features we identify can effectively steer model outputs to align with given instructions. Through analysis of SAE latent activations, we identify specific latents responsible for instruction following behavior. Our findings reveal that instruction following capabilities are encoded by a distinct set of instruction-relevant SAE latents. These latents both show semantic proximity to relevant instructions and demonstrate causal effects on model behavior. Our research highlights several crucial factors for achieving effective steering performance: precise feature identification, the role of final layer, and optimal instruction positioning. Additionally, we demonstrate that our methodology scales effectively across SAEs and LLMs of varying sizes.
iFlyBot-VLA Technical Report
We introduce iFlyBot-VLA, a large-scale Vision-Language-Action (VLA) model trained under a novel framework. The main contributions are listed as follows: (1) a latent action model thoroughly trained on large-scale human and robotic manipulation videos; (2) a dual-level action representation framework that jointly supervises both the Vision-Language Model (VLM) and the action expert during training; (3) a mixed training strategy that combines robot trajectory data with general QA and spatial QA datasets, effectively enhancing the 3D perceptual and reasoning capabilities of the VLM backbone. Specifically, the VLM is trained to predict two complementary forms of actions: latent actions, derived from our latent action model pretrained on cross-embodiment manipulation data, which capture implicit high-level intentions; and structured discrete action tokens, obtained through frequency-domain transformations of continuous control signals, which encode explicit low-level dynamics. This dual supervision aligns the representation spaces of language, vision, and action, enabling the VLM to directly contribute to action generation. Experimental results on the LIBERO Franka benchmark demonstrate the superiority of our frame-work, while real-world evaluations further show that iFlyBot-VLA achieves competitive success rates across diverse and challenging manipulation tasks. Furthermore, we plan to open-source a portion of our self-constructed dataset to support future research in the community
Nonlinear Multiple Response Regression and Learning of Latent Spaces
Identifying low-dimensional latent structures within high-dimensional data has long been a central topic in the machine learning community, driven by the need for data compression, storage, transmission, and deeper data understanding. Traditional methods, such as principal component analysis (PCA) and autoencoders (AE), operate in an unsupervised manner, ignoring label information even when it is available. In this work, we introduce a unified method capable of learning latent spaces in both unsupervised and supervised settings. We formulate the problem as a nonlinear multiple-response regression within an index model context. By applying the generalized Stein's lemma, the latent space can be estimated without knowing the nonlinear link functions. Our method can be viewed as a nonlinear generalization of PCA. Moreover, unlike AE and other neural network methods that operate as "black boxes", our approach not only offers better interpretability but also reduces computational complexity while providing strong theoretical guarantees. Comprehensive numerical experiments and real data analyses demonstrate the superior performance of our method.
Learnable latent embeddings for joint behavioral and neural analysis
Mapping behavioral actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioral data increases, there is growing interest in modeling neural dynamics during adaptive behaviors to probe neural representations. In particular, neural latent embeddings can reveal underlying correlates of behavior, yet, we lack non-linear techniques that can explicitly and flexibly leverage joint behavior and neural data. Here, we fill this gap with a novel method, CEBRA, that jointly uses behavioral and neural data in a hypothesis- or discovery-driven manner to produce consistent, high-performance latent spaces. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species. It allows for single and multi-session datasets to be leveraged for hypothesis testing or can be used label-free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, and rapid, high-accuracy decoding of natural movies from visual cortex.
A Context-based Approach for Dialogue Act Recognition using Simple Recurrent Neural Networks
Dialogue act recognition is an important part of natural language understanding. We investigate the way dialogue act corpora are annotated and the learning approaches used so far. We find that the dialogue act is context-sensitive within the conversation for most of the classes. Nevertheless, previous models of dialogue act classification work on the utterance-level and only very few consider context. We propose a novel context-based learning method to classify dialogue acts using a character-level language model utterance representation, and we notice significant improvement. We evaluate this method on the Switchboard Dialogue Act corpus, and our results show that the consideration of the preceding utterances as a context of the current utterance improves dialogue act detection.
ActAlign: Zero-Shot Fine-Grained Video Classification via Language-Guided Sequence Alignment
We address the task of zero-shot fine-grained video classification, where no video examples or temporal annotations are available for unseen action classes. While contrastive vision-language models such as SigLIP demonstrate strong open-set recognition via mean-pooled image-text similarity, they fail to capture the temporal structure critical for distinguishing fine-grained activities. We introduce ActAlign, a zero-shot framework that formulates video classification as sequence alignment. For each class, a large language model generates an ordered sub-action sequence, which is aligned with video frames using Dynamic Time Warping (DTW) in a shared embedding space. Without any video-text supervision or fine-tuning, ActAlign achieves 30.5% accuracy on the extremely challenging ActionAtlas benchmark, where human accuracy is only 61.6%. ActAlign outperforms billion-parameter video-language models while using approximately 8x less parameters. These results demonstrate that structured language priors, combined with classical alignment techniques, offer a scalable and general approach to unlocking the open-set recognition potential of vision-language models for fine-grained video understanding.
villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
Visual-Language-Action (VLA) models have emerged as a popular paradigm for learning robot manipulation policies that can follow language instructions and generalize to novel scenarios. Recent work has begun to explore the incorporation of latent actions, an abstract representation of visual change between two frames, into VLA pre-training. In this paper, we introduce villa-X, a novel Visual-Language-Latent-Action (ViLLA) framework that advances latent action modeling for learning generalizable robot manipulation policies. Our approach improves both how latent actions are learned and how they are incorporated into VLA pre-training. Together, these contributions enable villa-X to achieve superior performance across simulated environments including SIMPLER and LIBERO, as well as on two real-world robot setups including gripper and dexterous hand manipulation. We believe the ViLLA paradigm holds significant promise, and that our villa-X provides a strong foundation for future research.
Masked Motion Encoding for Self-Supervised Video Representation Learning
How to learn discriminative video representation from unlabeled videos is challenging but crucial for video analysis. The latest attempts seek to learn a representation model by predicting the appearance contents in the masked regions. However, simply masking and recovering appearance contents may not be sufficient to model temporal clues as the appearance contents can be easily reconstructed from a single frame. To overcome this limitation, we present Masked Motion Encoding (MME), a new pre-training paradigm that reconstructs both appearance and motion information to explore temporal clues. In MME, we focus on addressing two critical challenges to improve the representation performance: 1) how to well represent the possible long-term motion across multiple frames; and 2) how to obtain fine-grained temporal clues from sparsely sampled videos. Motivated by the fact that human is able to recognize an action by tracking objects' position changes and shape changes, we propose to reconstruct a motion trajectory that represents these two kinds of change in the masked regions. Besides, given the sparse video input, we enforce the model to reconstruct dense motion trajectories in both spatial and temporal dimensions. Pre-trained with our MME paradigm, the model is able to anticipate long-term and fine-grained motion details. Code is available at https://github.com/XinyuSun/MME.
Classification Matters: Improving Video Action Detection with Class-Specific Attention
Video action detection (VAD) aims to detect actors and classify their actions in a video. We figure that VAD suffers more from classification rather than localization of actors. Hence, we analyze how prevailing methods form features for classification and find that they prioritize actor regions, yet often overlooking the essential contextual information necessary for accurate classification. Accordingly, we propose to reduce the bias toward actor and encourage paying attention to the context that is relevant to each action class. By assigning a class-dedicated query to each action class, our model can dynamically determine where to focus for effective classification. The proposed model demonstrates superior performance on three challenging benchmarks with significantly fewer parameters and less computation.
LLaVAction: evaluating and training multi-modal large language models for action recognition
Understanding human behavior requires measuring behavioral actions. Due to its complexity, behavior is best mapped onto a rich, semantic structure such as language. The recent development of multi-modal large language models (MLLMs) is a promising candidate for a wide range of action understanding tasks. In this work, we focus on evaluating and then improving MLLMs to perform action recognition. We reformulate EPIC-KITCHENS-100, one of the largest and most challenging egocentric action datasets, to the form of video multiple question answering (EPIC-KITCHENS-100-MQA). We show that when we sample difficult incorrect answers as distractors, leading MLLMs struggle to recognize the correct actions. We propose a series of methods that greatly improve the MLLMs' ability to perform action recognition, achieving state-of-the-art on both the EPIC-KITCHENS-100 validation set, as well as outperforming GPT-4o by 21 points in accuracy on EPIC-KITCHENS-100-MQA. Lastly, we show improvements on other action-related video benchmarks such as EgoSchema, PerceptionTest, LongVideoBench, VideoMME and MVBench, suggesting that MLLMs are a promising path forward for complex action tasks. Code and models are available at: https://github.com/AdaptiveMotorControlLab/LLaVAction.
Low-Latency Human Action Recognition with Weighted Multi-Region Convolutional Neural Network
Spatio-temporal contexts are crucial in understanding human actions in videos. Recent state-of-the-art Convolutional Neural Network (ConvNet) based action recognition systems frequently involve 3D spatio-temporal ConvNet filters, chunking videos into fixed length clips and Long Short Term Memory (LSTM) networks. Such architectures are designed to take advantage of both short term and long term temporal contexts, but also requires the accumulation of a predefined number of video frames (e.g., to construct video clips for 3D ConvNet filters, to generate enough inputs for LSTMs). For applications that require low-latency online predictions of fast-changing action scenes, a new action recognition system is proposed in this paper. Termed "Weighted Multi-Region Convolutional Neural Network" (WMR ConvNet), the proposed system is LSTM-free, and is based on 2D ConvNet that does not require the accumulation of video frames for 3D ConvNet filtering. Unlike early 2D ConvNets that are based purely on RGB frames and optical flow frames, the WMR ConvNet is designed to simultaneously capture multiple spatial and short term temporal cues (e.g., human poses, occurrences of objects in the background) with both the primary region (foreground) and secondary regions (mostly background). On both the UCF101 and HMDB51 datasets, the proposed WMR ConvNet achieves the state-of-the-art performance among competing low-latency algorithms. Furthermore, WMR ConvNet even outperforms the 3D ConvNet based C3D algorithm that requires video frame accumulation. In an ablation study with the optical flow ConvNet stream removed, the ablated WMR ConvNet nevertheless outperforms competing algorithms.
Diffusion Action Segmentation
Temporal action segmentation is crucial for understanding long-form videos. Previous works on this task commonly adopt an iterative refinement paradigm by using multi-stage models. We propose a novel framework via denoising diffusion models, which nonetheless shares the same inherent spirit of such iterative refinement. In this framework, action predictions are iteratively generated from random noise with input video features as conditions. To enhance the modeling of three striking characteristics of human actions, including the position prior, the boundary ambiguity, and the relational dependency, we devise a unified masking strategy for the conditioning inputs in our framework. Extensive experiments on three benchmark datasets, i.e., GTEA, 50Salads, and Breakfast, are performed and the proposed method achieves superior or comparable results to state-of-the-art methods, showing the effectiveness of a generative approach for action segmentation.
OST: Refining Text Knowledge with Optimal Spatio-Temporal Descriptor for General Video Recognition
Due to the resource-intensive nature of training vision-language models on expansive video data, a majority of studies have centered on adapting pre-trained image-language models to the video domain. Dominant pipelines propose to tackle the visual discrepancies with additional temporal learners while overlooking the substantial discrepancy for web-scaled descriptive narratives and concise action category names, leading to less distinct semantic space and potential performance limitations. In this work, we prioritize the refinement of text knowledge to facilitate generalizable video recognition. To address the limitations of the less distinct semantic space of category names, we prompt a large language model (LLM) to augment action class names into Spatio-Temporal Descriptors thus bridging the textual discrepancy and serving as a knowledge base for general recognition. Moreover, to assign the best descriptors with different video instances, we propose Optimal Descriptor Solver, forming the video recognition problem as solving the optimal matching flow across frame-level representations and descriptors. Comprehensive evaluations in zero-shot, few-shot, and fully supervised video recognition highlight the effectiveness of our approach. Our best model achieves a state-of-the-art zero-shot accuracy of 75.1% on Kinetics-600.
Prompt Learning for Action Recognition
We present a new general learning approach for action recognition, Prompt Learning for Action Recognition (PLAR), which leverages the strengths of prompt learning to guide the learning process. Our approach is designed to predict the action label by helping the models focus on the descriptions or instructions associated with actions in the input videos. Our formulation uses various prompts, including optical flow, large vision models, and learnable prompts to improve the recognition performance. Moreover, we propose a learnable prompt method that learns to dynamically generate prompts from a pool of prompt experts under different inputs. By sharing the same objective, our proposed PLAR can optimize prompts that guide the model's predictions while explicitly learning input-invariant (prompt experts pool) and input-specific (data-dependent) prompt knowledge. We evaluate our approach on datasets consisting of both ground camera videos and aerial videos, and scenes with single-agent and multi-agent actions. In practice, we observe a 3.17-10.2% accuracy improvement on the aerial multi-agent dataset, Okutamam and 0.8-2.6% improvement on the ground camera single-agent dataset, Something Something V2. We plan to release our code on the WWW.
Behavioral Cloning via Search in Embedded Demonstration Dataset
Behavioural cloning uses a dataset of demonstrations to learn a behavioural policy. To overcome various learning and policy adaptation problems, we propose to use latent space to index a demonstration dataset, instantly access similar relevant experiences, and copy behavior from these situations. Actions from a selected similar situation can be performed by the agent until representations of the agent's current situation and the selected experience diverge in the latent space. Thus, we formulate our control problem as a search problem over a dataset of experts' demonstrations. We test our approach on BASALT MineRL-dataset in the latent representation of a Video PreTraining model. We compare our model to state-of-the-art Minecraft agents. Our approach can effectively recover meaningful demonstrations and show human-like behavior of an agent in the Minecraft environment in a wide variety of scenarios. Experimental results reveal that performance of our search-based approach is comparable to trained models, while allowing zero-shot task adaptation by changing the demonstration examples.
Dialogue Act Classification with Context-Aware Self-Attention
Recent work in Dialogue Act classification has treated the task as a sequence labeling problem using hierarchical deep neural networks. We build on this prior work by leveraging the effectiveness of a context-aware self-attention mechanism coupled with a hierarchical recurrent neural network. We conduct extensive evaluations on standard Dialogue Act classification datasets and show significant improvement over state-of-the-art results on the Switchboard Dialogue Act (SwDA) Corpus. We also investigate the impact of different utterance-level representation learning methods and show that our method is effective at capturing utterance-level semantic text representations while maintaining high accuracy.
Dialogue Act Sequence Labeling using Hierarchical encoder with CRF
Dialogue Act recognition associate dialogue acts (i.e., semantic labels) to utterances in a conversation. The problem of associating semantic labels to utterances can be treated as a sequence labeling problem. In this work, we build a hierarchical recurrent neural network using bidirectional LSTM as a base unit and the conditional random field (CRF) as the top layer to classify each utterance into its corresponding dialogue act. The hierarchical network learns representations at multiple levels, i.e., word level, utterance level, and conversation level. The conversation level representations are input to the CRF layer, which takes into account not only all previous utterances but also their dialogue acts, thus modeling the dependency among both, labels and utterances, an important consideration of natural dialogue. We validate our approach on two different benchmark data sets, Switchboard and Meeting Recorder Dialogue Act, and show performance improvement over the state-of-the-art methods by 2.2% and 4.1% absolute points, respectively. It is worth noting that the inter-annotator agreement on Switchboard data set is 84%, and our method is able to achieve the accuracy of about 79% despite being trained on the noisy data.
LLMs are Good Action Recognizers
Skeleton-based action recognition has attracted lots of research attention. Recently, to build an accurate skeleton-based action recognizer, a variety of works have been proposed. Among them, some works use large model architectures as backbones of their recognizers to boost the skeleton data representation capability, while some other works pre-train their recognizers on external data to enrich the knowledge. In this work, we observe that large language models which have been extensively used in various natural language processing tasks generally hold both large model architectures and rich implicit knowledge. Motivated by this, we propose a novel LLM-AR framework, in which we investigate treating the Large Language Model as an Action Recognizer. In our framework, we propose a linguistic projection process to project each input action signal (i.e., each skeleton sequence) into its ``sentence format'' (i.e., an ``action sentence''). Moreover, we also incorporate our framework with several designs to further facilitate this linguistic projection process. Extensive experiments demonstrate the efficacy of our proposed framework.
Learning from Weakly-labeled Web Videos via Exploring Sub-Concepts
Learning visual knowledge from massive weakly-labeled web videos has attracted growing research interests thanks to the large corpus of easily accessible video data on the Internet. However, for video action recognition, the action of interest might only exist in arbitrary clips of untrimmed web videos, resulting in high label noises in the temporal space. To address this issue, we introduce a new method for pre-training video action recognition models using queried web videos. Instead of trying to filter out, we propose to convert the potential noises in these queried videos to useful supervision signals by defining the concept of Sub-Pseudo Label (SPL). Specifically, SPL spans out a new set of meaningful "middle ground" label space constructed by extrapolating the original weak labels during video querying and the prior knowledge distilled from a teacher model. Consequently, SPL provides enriched supervision for video models to learn better representations. SPL is fairly simple and orthogonal to popular teacher-student self-training frameworks without extra training cost. We validate the effectiveness of our method on four video action recognition datasets and a weakly-labeled image dataset to study the generalization ability. Experiments show that SPL outperforms several existing pre-training strategies using pseudo-labels and the learned representations lead to competitive results when fine-tuning on HMDB-51 and UCF-101 compared with recent pre-training methods.
Multimodal Latent Language Modeling with Next-Token Diffusion
Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video). In this work, we propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers. Specifically, we employ a variational autoencoder (VAE) to represent continuous data as latent vectors and introduce next-token diffusion for autoregressive generation of these vectors. Additionally, we develop sigma-VAE to address the challenges of variance collapse, which is crucial for autoregressive modeling. Extensive experiments demonstrate the effectiveness of LatentLM across various modalities. In image generation, LatentLM surpasses Diffusion Transformers in both performance and scalability. When integrated into multimodal large language models, LatentLM provides a general-purpose interface that unifies multimodal generation and understanding. Experimental results show that LatentLM achieves favorable performance compared to Transfusion and vector quantized models in the setting of scaling up training tokens. In text-to-speech synthesis, LatentLM outperforms the state-of-the-art VALL-E 2 model in speaker similarity and robustness, while requiring 10x fewer decoding steps. The results establish LatentLM as a highly effective and scalable approach to advance large multimodal models.
Masked Diffusion with Task-awareness for Procedure Planning in Instructional Videos
A key challenge with procedure planning in instructional videos lies in how to handle a large decision space consisting of a multitude of action types that belong to various tasks. To understand real-world video content, an AI agent must proficiently discern these action types (e.g., pour milk, pour water, open lid, close lid, etc.) based on brief visual observation. Moreover, it must adeptly capture the intricate semantic relation of the action types and task goals, along with the variable action sequences. Recently, notable progress has been made via the integration of diffusion models and visual representation learning to address the challenge. However, existing models employ rudimentary mechanisms to utilize task information to manage the decision space. To overcome this limitation, we introduce a simple yet effective enhancement - a masked diffusion model. The introduced mask acts akin to a task-oriented attention filter, enabling the diffusion/denoising process to concentrate on a subset of action types. Furthermore, to bolster the accuracy of task classification, we harness more potent visual representation learning techniques. In particular, we learn a joint visual-text embedding, where a text embedding is generated by prompting a pre-trained vision-language model to focus on human actions. We evaluate the method on three public datasets and achieve state-of-the-art performance on multiple metrics. Code is available at https://github.com/ffzzy840304/Masked-PDPP.
Generative Action Tell-Tales: Assessing Human Motion in Synthesized Videos
Despite rapid advances in video generative models, robust metrics for evaluating visual and temporal correctness of complex human actions remain elusive. Critically, existing pure-vision encoders and Multimodal Large Language Models (MLLMs) are strongly appearance-biased, lack temporal understanding, and thus struggle to discern intricate motion dynamics and anatomical implausibilities in generated videos. We tackle this gap by introducing a novel evaluation metric derived from a learned latent space of real-world human actions. Our method first captures the nuances, constraints, and temporal smoothness of real-world motion by fusing appearance-agnostic human skeletal geometry features with appearance-based features. We posit that this combined feature space provides a robust representation of action plausibility. Given a generated video, our metric quantifies its action quality by measuring the distance between its underlying representations and this learned real-world action distribution. For rigorous validation, we develop a new multi-faceted benchmark specifically designed to probe temporally challenging aspects of human action fidelity. Through extensive experiments, we show that our metric achieves substantial improvement of more than 68% compared to existing state-of-the-art methods on our benchmark, performs competitively on established external benchmarks, and has a stronger correlation with human perception. Our in-depth analysis reveals critical limitations in current video generative models and establishes a new standard for advanced research in video generation.
Parallel Test-Time Scaling for Latent Reasoning Models
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. \ This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code released at https://github.com/YRYangang/LatentTTS.
LALM: Long-Term Action Anticipation with Language Models
Understanding human activity is a crucial yet intricate task in egocentric vision, a field that focuses on capturing visual perspectives from the camera wearer's viewpoint. While traditional methods heavily rely on representation learning trained on extensive video data, there exists a significant limitation: obtaining effective video representations proves challenging due to the inherent complexity and variability in human activities.Furthermore, exclusive dependence on video-based learning may constrain a model's capability to generalize across long-tail classes and out-of-distribution scenarios. In this study, we introduce a novel approach for long-term action anticipation using language models (LALM), adept at addressing the complex challenges of long-term activity understanding without the need for extensive training. Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details. By leveraging the context provided by these past events, we devise a prompting strategy for action anticipation using large language models (LLMs). Moreover, we implement Maximal Marginal Relevance for example selection to facilitate in-context learning of the LLMs. Our experimental results demonstrate that LALM surpasses the state-of-the-art methods in the task of long-term action anticipation on the Ego4D benchmark. We further validate LALM on two additional benchmarks, affirming its capacity for generalization across intricate activities with different sets of taxonomies. These are achieved without specific fine-tuning.
Genie: Generative Interactive Environments
We introduce Genie, the first generative interactive environment trained in an unsupervised manner from unlabelled Internet videos. The model can be prompted to generate an endless variety of action-controllable virtual worlds described through text, synthetic images, photographs, and even sketches. At 11B parameters, Genie can be considered a foundation world model. It is comprised of a spatiotemporal video tokenizer, an autoregressive dynamics model, and a simple and scalable latent action model. Genie enables users to act in the generated environments on a frame-by-frame basis despite training without any ground-truth action labels or other domain-specific requirements typically found in the world model literature. Further the resulting learned latent action space facilitates training agents to imitate behaviors from unseen videos, opening the path for training generalist agents of the future.
Decoding in Latent Spaces for Efficient Inference in LLM-based Recommendation
Fine-tuning large language models (LLMs) for recommendation in a generative manner has delivered promising results, but encounters significant inference overhead due to autoregressive decoding in the language space. This work explores bypassing language-space decoding by directly matching candidate items with the LLM's internal thought representations in the latent space, eliminating the time-consuming autoregressive process to reduce computational costs. Towards this, we introduce Light Latent-space Decoding (L2D), an effective and efficient latent-space decoding method. L2D represents user-preferred items by using the hidden states of test sequences reflecting the LLM's internal thought, and obtains candidate item representations from the hidden states of training sequences labeled with the corresponding candidate items. It then matches the two types of representations to decode items, achieving latent-space decoding. In this way, it enables efficient decoding without altering the LLM's generative tuning paradigm, thereby preserving performance. Extensive empirical results demonstrate that L2D is more than 10x faster than language-space decoding while maintaining or enhancing performance.
Towards Principled Representation Learning from Videos for Reinforcement Learning
We study pre-training representations for decision-making using video data, which is abundantly available for tasks such as game agents and software testing. Even though significant empirical advances have been made on this problem, a theoretical understanding remains absent. We initiate the theoretical investigation into principled approaches for representation learning and focus on learning the latent state representations of the underlying MDP using video data. We study two types of settings: one where there is iid noise in the observation, and a more challenging setting where there is also the presence of exogenous noise, which is non-iid noise that is temporally correlated, such as the motion of people or cars in the background. We study three commonly used approaches: autoencoding, temporal contrastive learning, and forward modeling. We prove upper bounds for temporal contrastive learning and forward modeling in the presence of only iid noise. We show that these approaches can learn the latent state and use it to do efficient downstream RL with polynomial sample complexity. When exogenous noise is also present, we establish a lower bound result showing that the sample complexity of learning from video data can be exponentially worse than learning from action-labeled trajectory data. This partially explains why reinforcement learning with video pre-training is hard. We evaluate these representational learning methods in two visual domains, yielding results that are consistent with our theoretical findings.
COMEDIAN: Self-Supervised Learning and Knowledge Distillation for Action Spotting using Transformers
We present COMEDIAN, a novel pipeline to initialize spatio-temporal transformers for action spotting, which involves self-supervised learning and knowledge distillation. Action spotting is a timestamp-level temporal action detection task. Our pipeline consists of three steps, with two initialization stages. First, we perform self-supervised initialization of a spatial transformer using short videos as input. Additionally, we initialize a temporal transformer that enhances the spatial transformer's outputs with global context through knowledge distillation from a pre-computed feature bank aligned with each short video segment. In the final step, we fine-tune the transformers to the action spotting task. The experiments, conducted on the SoccerNet-v2 dataset, demonstrate state-of-the-art performance and validate the effectiveness of COMEDIAN's pretraining paradigm. Our results highlight several advantages of our pretraining pipeline, including improved performance and faster convergence compared to non-pretrained models.
Length-Aware Motion Synthesis via Latent Diffusion
The target duration of a synthesized human motion is a critical attribute that requires modeling control over the motion dynamics and style. Speeding up an action performance is not merely fast-forwarding it. However, state-of-the-art techniques for human behavior synthesis have limited control over the target sequence length. We introduce the problem of generating length-aware 3D human motion sequences from textual descriptors, and we propose a novel model to synthesize motions of variable target lengths, which we dub "Length-Aware Latent Diffusion" (LADiff). LADiff consists of two new modules: 1) a length-aware variational auto-encoder to learn motion representations with length-dependent latent codes; 2) a length-conforming latent diffusion model to generate motions with a richness of details that increases with the required target sequence length. LADiff significantly improves over the state-of-the-art across most of the existing motion synthesis metrics on the two established benchmarks of HumanML3D and KIT-ML.
ActionArt: Advancing Multimodal Large Models for Fine-Grained Human-Centric Video Understanding
Fine-grained understanding of human actions and poses in videos is essential for human-centric AI applications. In this work, we introduce ActionArt, a fine-grained video-caption dataset designed to advance research in human-centric multimodal understanding. Our dataset comprises thousands of videos capturing a broad spectrum of human actions, human-object interactions, and diverse scenarios, each accompanied by detailed annotations that meticulously label every limb movement. We develop eight sub-tasks to evaluate the fine-grained understanding capabilities of existing large multimodal models across different dimensions. Experimental results indicate that, while current large multimodal models perform commendably on various tasks, they often fall short in achieving fine-grained understanding. We attribute this limitation to the scarcity of meticulously annotated data, which is both costly and difficult to scale manually. Since manual annotations are costly and hard to scale, we propose proxy tasks to enhance the model perception ability in both spatial and temporal dimensions. These proxy tasks are carefully crafted to be driven by data automatically generated from existing MLLMs, thereby reducing the reliance on costly manual labels. Experimental results show that the proposed proxy tasks significantly narrow the gap toward the performance achieved with manually annotated fine-grained data.
Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
VILP: Imitation Learning with Latent Video Planning
In the era of generative AI, integrating video generation models into robotics opens new possibilities for the general-purpose robot agent. This paper introduces imitation learning with latent video planning (VILP). We propose a latent video diffusion model to generate predictive robot videos that adhere to temporal consistency to a good degree. Our method is able to generate highly time-aligned videos from multiple views, which is crucial for robot policy learning. Our video generation model is highly time-efficient. For example, it can generate videos from two distinct perspectives, each consisting of six frames with a resolution of 96x160 pixels, at a rate of 5 Hz. In the experiments, we demonstrate that VILP outperforms the existing video generation robot policy across several metrics: training costs, inference speed, temporal consistency of generated videos, and the performance of the policy. We also compared our method with other imitation learning methods. Our findings indicate that VILP can rely less on extensive high-quality task-specific robot action data while still maintaining robust performance. In addition, VILP possesses robust capabilities in representing multi-modal action distributions. Our paper provides a practical example of how to effectively integrate video generation models into robot policies, potentially offering insights for related fields and directions. For more details, please refer to our open-source repository https://github.com/ZhengtongXu/VILP.
Inference-Time Decomposition of Activations (ITDA): A Scalable Approach to Interpreting Large Language Models
Sparse autoencoders (SAEs) are a popular method for decomposing Large Langage Models (LLM) activations into interpretable latents. However, due to their substantial training cost, most academic research uses open-source SAEs which are only available for a restricted set of models of up to 27B parameters. SAE latents are also learned from a dataset of activations, which means they do not transfer between models. Motivated by relative representation similarity measures, we introduce Inference-Time Decomposition of Activations (ITDA) models, an alternative method for decomposing language model activations. To train an ITDA, we greedily construct a dictionary of language model activations on a dataset of prompts, selecting those activations which were worst approximated by matching pursuit on the existing dictionary. ITDAs can be trained in just 1% of the time required for SAEs, using 1% of the data. This allowed us to train ITDAs on Llama-3.1 70B and 405B on a single consumer GPU. ITDAs can achieve similar reconstruction performance to SAEs on some target LLMs, but generally incur a performance penalty. However, ITDA dictionaries enable cross-model comparisons, and a simple Jaccard similarity index on ITDA dictionaries outperforms existing methods like CKA, SVCCA, and relative representation similarity metrics. ITDAs provide a cheap alternative to SAEs where computational resources are limited, or when cross model comparisons are necessary. Code available at https://github.com/pleask/itda.
Conditional Image-to-Video Generation with Latent Flow Diffusion Models
Conditional image-to-video (cI2V) generation aims to synthesize a new plausible video starting from an image (e.g., a person's face) and a condition (e.g., an action class label like smile). The key challenge of the cI2V task lies in the simultaneous generation of realistic spatial appearance and temporal dynamics corresponding to the given image and condition. In this paper, we propose an approach for cI2V using novel latent flow diffusion models (LFDM) that synthesize an optical flow sequence in the latent space based on the given condition to warp the given image. Compared to previous direct-synthesis-based works, our proposed LFDM can better synthesize spatial details and temporal motion by fully utilizing the spatial content of the given image and warping it in the latent space according to the generated temporally-coherent flow. The training of LFDM consists of two separate stages: (1) an unsupervised learning stage to train a latent flow auto-encoder for spatial content generation, including a flow predictor to estimate latent flow between pairs of video frames, and (2) a conditional learning stage to train a 3D-UNet-based diffusion model (DM) for temporal latent flow generation. Unlike previous DMs operating in pixel space or latent feature space that couples spatial and temporal information, the DM in our LFDM only needs to learn a low-dimensional latent flow space for motion generation, thus being more computationally efficient. We conduct comprehensive experiments on multiple datasets, where LFDM consistently outperforms prior arts. Furthermore, we show that LFDM can be easily adapted to new domains by simply finetuning the image decoder. Our code is available at https://github.com/nihaomiao/CVPR23_LFDM.
AQ-GT: a Temporally Aligned and Quantized GRU-Transformer for Co-Speech Gesture Synthesis
The generation of realistic and contextually relevant co-speech gestures is a challenging yet increasingly important task in the creation of multimodal artificial agents. Prior methods focused on learning a direct correspondence between co-speech gesture representations and produced motions, which created seemingly natural but often unconvincing gestures during human assessment. We present an approach to pre-train partial gesture sequences using a generative adversarial network with a quantization pipeline. The resulting codebook vectors serve as both input and output in our framework, forming the basis for the generation and reconstruction of gestures. By learning the mapping of a latent space representation as opposed to directly mapping it to a vector representation, this framework facilitates the generation of highly realistic and expressive gestures that closely replicate human movement and behavior, while simultaneously avoiding artifacts in the generation process. We evaluate our approach by comparing it with established methods for generating co-speech gestures as well as with existing datasets of human behavior. We also perform an ablation study to assess our findings. The results show that our approach outperforms the current state of the art by a clear margin and is partially indistinguishable from human gesturing. We make our data pipeline and the generation framework publicly available.
Dialogue Act Recognition via CRF-Attentive Structured Network
Dialogue Act Recognition (DAR) is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DAR problem ranging from multi-classification to structured prediction, which suffer from handcrafted feature extensions and attentive contextual structural dependencies. In this paper, we consider the problem of DAR from the viewpoint of extending richer Conditional Random Field (CRF) structural dependencies without abandoning end-to-end training. We incorporate hierarchical semantic inference with memory mechanism on the utterance modeling. We then extend structured attention network to the linear-chain conditional random field layer which takes into account both contextual utterances and corresponding dialogue acts. The extensive experiments on two major benchmark datasets Switchboard Dialogue Act (SWDA) and Meeting Recorder Dialogue Act (MRDA) datasets show that our method achieves better performance than other state-of-the-art solutions to the problem. It is a remarkable fact that our method is nearly close to the human annotator's performance on SWDA within 2% gap.
Self-supervised visual learning from interactions with objects
Self-supervised learning (SSL) has revolutionized visual representation learning, but has not achieved the robustness of human vision. A reason for this could be that SSL does not leverage all the data available to humans during learning. When learning about an object, humans often purposefully turn or move around objects and research suggests that these interactions can substantially enhance their learning. Here we explore whether such object-related actions can boost SSL. For this, we extract the actions performed to change from one ego-centric view of an object to another in four video datasets. We then introduce a new loss function to learn visual and action embeddings by aligning the performed action with the representations of two images extracted from the same clip. This permits the performed actions to structure the latent visual representation. Our experiments show that our method consistently outperforms previous methods on downstream category recognition. In our analysis, we find that the observed improvement is associated with a better viewpoint-wise alignment of different objects from the same category. Overall, our work demonstrates that embodied interactions with objects can improve SSL of object categories.
SkeletonX: Data-Efficient Skeleton-based Action Recognition via Cross-sample Feature Aggregation
While current skeleton action recognition models demonstrate impressive performance on large-scale datasets, their adaptation to new application scenarios remains challenging. These challenges are particularly pronounced when facing new action categories, diverse performers, and varied skeleton layouts, leading to significant performance degeneration. Additionally, the high cost and difficulty of collecting skeleton data make large-scale data collection impractical. This paper studies one-shot and limited-scale learning settings to enable efficient adaptation with minimal data. Existing approaches often overlook the rich mutual information between labeled samples, resulting in sub-optimal performance in low-data scenarios. To boost the utility of labeled data, we identify the variability among performers and the commonality within each action as two key attributes. We present SkeletonX, a lightweight training pipeline that integrates seamlessly with existing GCN-based skeleton action recognizers, promoting effective training under limited labeled data. First, we propose a tailored sample pair construction strategy on two key attributes to form and aggregate sample pairs. Next, we develop a concise and effective feature aggregation module to process these pairs. Extensive experiments are conducted on NTU RGB+D, NTU RGB+D 120, and PKU-MMD with various GCN backbones, demonstrating that the pipeline effectively improves performance when trained from scratch with limited data. Moreover, it surpasses previous state-of-the-art methods in the one-shot setting, with only 1/10 of the parameters and much fewer FLOPs. The code and data are available at: https://github.com/zzysteve/SkeletonX
LILA: Language-Informed Latent Actions
We introduce Language-Informed Latent Actions (LILA), a framework for learning natural language interfaces in the context of human-robot collaboration. LILA falls under the shared autonomy paradigm: in addition to providing discrete language inputs, humans are given a low-dimensional controller - e.g., a 2 degree-of-freedom (DoF) joystick that can move left/right and up/down - for operating the robot. LILA learns to use language to modulate this controller, providing users with a language-informed control space: given an instruction like "place the cereal bowl on the tray," LILA may learn a 2-DoF space where one dimension controls the distance from the robot's end-effector to the bowl, and the other dimension controls the robot's end-effector pose relative to the grasp point on the bowl. We evaluate LILA with real-world user studies, where users can provide a language instruction while operating a 7-DoF Franka Emika Panda Arm to complete a series of complex manipulation tasks. We show that LILA models are not only more sample efficient and performant than imitation learning and end-effector control baselines, but that they are also qualitatively preferred by users.
Interpret the Internal States of Recommendation Model with Sparse Autoencoder
Explainable recommendation systems are important to enhance transparency, accuracy, and fairness. Beyond result-level explanations, model-level interpretations can provide valuable insights that allow developers to optimize system designs and implement targeted improvements. However, most current approaches depend on specialized model designs, which often lack generalization capabilities. Given the various kinds of recommendation models, existing methods have limited ability to effectively interpret them. To address this issue, we propose RecSAE, an automatic, generalizable probing method for interpreting the internal states of Recommendation models with Sparse AutoEncoder. RecSAE serves as a plug-in module that does not affect original models during interpretations, while also enabling predictable modifications to their behaviors based on interpretation results. Firstly, we train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models, making the RecSAE latents more interpretable and monosemantic than the original neuron activations. Secondly, we automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences. Thirdly, RecSAE validates these interpretations by predicting latent activations on new item sequences using the concept dictionary and deriving interpretation confidence scores from precision and recall. We demonstrate RecSAE's effectiveness on two datasets, identifying hundreds of highly interpretable concepts from pure ID-based models. Latent ablation studies further confirm that manipulating latent concepts produces corresponding changes in model output behavior, underscoring RecSAE's utility for both understanding and targeted tuning recommendation models. Code and data are publicly available at https://github.com/Alice1998/RecSAE.
SeFAR: Semi-supervised Fine-grained Action Recognition with Temporal Perturbation and Learning Stabilization
Human action understanding is crucial for the advancement of multimodal systems. While recent developments, driven by powerful large language models (LLMs), aim to be general enough to cover a wide range of categories, they often overlook the need for more specific capabilities. In this work, we address the more challenging task of Fine-grained Action Recognition (FAR), which focuses on detailed semantic labels within shorter temporal duration (e.g., "salto backward tucked with 1 turn"). Given the high costs of annotating fine-grained labels and the substantial data needed for fine-tuning LLMs, we propose to adopt semi-supervised learning (SSL). Our framework, SeFAR, incorporates several innovative designs to tackle these challenges. Specifically, to capture sufficient visual details, we construct Dual-level temporal elements as more effective representations, based on which we design a new strong augmentation strategy for the Teacher-Student learning paradigm through involving moderate temporal perturbation. Furthermore, to handle the high uncertainty within the teacher model's predictions for FAR, we propose the Adaptive Regulation to stabilize the learning process. Experiments show that SeFAR achieves state-of-the-art performance on two FAR datasets, FineGym and FineDiving, across various data scopes. It also outperforms other semi-supervised methods on two classical coarse-grained datasets, UCF101 and HMDB51. Further analysis and ablation studies validate the effectiveness of our designs. Additionally, we show that the features extracted by our SeFAR could largely promote the ability of multimodal foundation models to understand fine-grained and domain-specific semantics.
Latent State Estimation Helps UI Agents to Reason
A common problem for agents operating in real-world environments is that the response of an environment to their actions may be non-deterministic and observed through noise. This renders environmental state and progress towards completing a task latent. Despite recent impressive demonstrations of LLM's reasoning abilities on various benchmarks, whether LLMs can build estimates of latent state and leverage them for reasoning has not been explicitly studied. We investigate this problem in the real-world domain of autonomous UI agents. We establish that appropriately prompting LLMs in a zero-shot manner can be formally understood as forming point estimates of latent state in a textual space. In the context of autonomous UI agents we then show that LLMs used in this manner are more than 76% accurate at inferring various aspects of latent state, such as performed (vs. commanded) actions and task progression. Using both public and internal benchmarks and three reasoning methods (zero-shot, CoT-SC & ReAct), we show that LLM-powered agents that explicitly estimate and reason about latent state are able to successfully complete up to 1.6x more tasks than those that do not.
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
Detecting the anomaly of human behavior is paramount to timely recognizing endangering situations, such as street fights or elderly falls. However, anomaly detection is complex since anomalous events are rare and because it is an open set recognition task, i.e., what is anomalous at inference has not been observed at training. We propose COSKAD, a novel model that encodes skeletal human motion by a graph convolutional network and learns to COntract SKeletal kinematic embeddings onto a latent hypersphere of minimum volume for Video Anomaly Detection. We propose three latent spaces: the commonly-adopted Euclidean and the novel spherical and hyperbolic. All variants outperform the state-of-the-art on the most recent UBnormal dataset, for which we contribute a human-related version with annotated skeletons. COSKAD sets a new state-of-the-art on the human-related versions of ShanghaiTech Campus and CUHK Avenue, with performance comparable to video-based methods. Source code and dataset will be released upon acceptance.
ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation
Generative recommendation (GR) is an emerging paradigm where user actions are tokenized into discrete token patterns and autoregressively generated as predictions. However, existing GR models tokenize each action independently, assigning the same fixed tokens to identical actions across all sequences without considering contextual relationships. This lack of context-awareness can lead to suboptimal performance, as the same action may hold different meanings depending on its surrounding context. To address this issue, we propose ActionPiece to explicitly incorporate context when tokenizing action sequences. In ActionPiece, each action is represented as a set of item features, which serve as the initial tokens. Given the action sequence corpora, we construct the vocabulary by merging feature patterns as new tokens, based on their co-occurrence frequency both within individual sets and across adjacent sets. Considering the unordered nature of feature sets, we further introduce set permutation regularization, which produces multiple segmentations of action sequences with the same semantics. Experiments on public datasets demonstrate that ActionPiece consistently outperforms existing action tokenization methods, improving NDCG@10 by 6.00% to 12.82%.
Autoencoders as Cross-Modal Teachers: Can Pretrained 2D Image Transformers Help 3D Representation Learning?
The success of deep learning heavily relies on large-scale data with comprehensive labels, which is more expensive and time-consuming to fetch in 3D compared to 2D images or natural languages. This promotes the potential of utilizing models pretrained with data more than 3D as teachers for cross-modal knowledge transferring. In this paper, we revisit masked modeling in a unified fashion of knowledge distillation, and we show that foundational Transformers pretrained with 2D images or natural languages can help self-supervised 3D representation learning through training Autoencoders as Cross-Modal Teachers (ACT). The pretrained Transformers are transferred as cross-modal 3D teachers using discrete variational autoencoding self-supervision, during which the Transformers are frozen with prompt tuning for better knowledge inheritance. The latent features encoded by the 3D teachers are used as the target of masked point modeling, wherein the dark knowledge is distilled to the 3D Transformer students as foundational geometry understanding. Our ACT pretrained 3D learner achieves state-of-the-art generalization capacity across various downstream benchmarks, e.g., 88.21% overall accuracy on ScanObjectNN. Codes have been released at https://github.com/RunpeiDong/ACT.
A Theoretical Analysis of Contrastive Unsupervised Representation Learning
Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.
Extracting Interaction-Aware Monosemantic Concepts in Recommender Systems
We present a method for extracting monosemantic neurons, defined as latent dimensions that align with coherent and interpretable concepts, from user and item embeddings in recommender systems. Our approach employs a Sparse Autoencoder (SAE) to reveal semantic structure within pretrained representations. In contrast to work on language models, monosemanticity in recommendation must preserve the interactions between separate user and item embeddings. To achieve this, we introduce a prediction aware training objective that backpropagates through a frozen recommender and aligns the learned latent structure with the model's user-item affinity predictions. The resulting neurons capture properties such as genre, popularity, and temporal trends, and support post hoc control operations including targeted filtering and content promotion without modifying the base model. Our method generalizes across different recommendation models and datasets, providing a practical tool for interpretable and controllable personalization. Code and evaluation resources are available at https://github.com/DeltaLabTLV/Monosemanticity4Rec.
Learning Video Representations from Textual Web Supervision
Videos on the Internet are paired with pieces of text, such as titles and descriptions. This text typically describes the most important content in the video, such as the objects in the scene and the actions being performed. Based on this observation, we propose to use text as a method for learning video representations. To accomplish this, we propose a data collection process and use it to collect 70M video clips shared publicly on the Internet, and we then train a model to pair each video with its associated text. We evaluate the model on several down-stream action recognition tasks, including Kinetics, HMDB-51, and UCF-101. We find that this approach is an effective method of pre-training video representations. Specifically, it outperforms all existing methods for self-supervised and cross-modal video representation learning.
Four-Plane Factorized Video Autoencoders
Latent variable generative models have emerged as powerful tools for generative tasks including image and video synthesis. These models are enabled by pretrained autoencoders that map high resolution data into a compressed lower dimensional latent space, where the generative models can subsequently be developed while requiring fewer computational resources. Despite their effectiveness, the direct application of latent variable models to higher dimensional domains such as videos continues to pose challenges for efficient training and inference. In this paper, we propose an autoencoder that projects volumetric data onto a four-plane factorized latent space that grows sublinearly with the input size, making it ideal for higher dimensional data like videos. The design of our factorized model supports straightforward adoption in a number of conditional generation tasks with latent diffusion models (LDMs), such as class-conditional generation, frame prediction, and video interpolation. Our results show that the proposed four-plane latent space retains a rich representation needed for high-fidelity reconstructions despite the heavy compression, while simultaneously enabling LDMs to operate with significant improvements in speed and memory.
ActionHub: A Large-scale Action Video Description Dataset for Zero-shot Action Recognition
Zero-shot action recognition (ZSAR) aims to learn an alignment model between videos and class descriptions of seen actions that is transferable to unseen actions. The text queries (class descriptions) used in existing ZSAR works, however, are often short action names that fail to capture the rich semantics in the videos, leading to misalignment. With the intuition that video content descriptions (e.g., video captions) can provide rich contextual information of visual concepts in videos, we propose to utilize human annotated video descriptions to enrich the semantics of the class descriptions of each action. However, all existing action video description datasets are limited in terms of the number of actions, the semantics of video descriptions, etc. To this end, we collect a large-scale action video descriptions dataset named ActionHub, which covers a total of 1,211 common actions and provides 3.6 million action video descriptions. With the proposed ActionHub dataset, we further propose a novel Cross-modality and Cross-action Modeling (CoCo) framework for ZSAR, which consists of a Dual Cross-modality Alignment module and a Cross-action Invariance Mining module. Specifically, the Dual Cross-modality Alignment module utilizes both action labels and video descriptions from ActionHub to obtain rich class semantic features for feature alignment. The Cross-action Invariance Mining module exploits a cycle-reconstruction process between the class semantic feature spaces of seen actions and unseen actions, aiming to guide the model to learn cross-action invariant representations. Extensive experimental results demonstrate that our CoCo framework significantly outperforms the state-of-the-art on three popular ZSAR benchmarks (i.e., Kinetics-ZSAR, UCF101 and HMDB51) under two different learning protocols in ZSAR. We will release our code, models, and the proposed ActionHub dataset.
Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion
One significant factor we expect the video representation learning to capture, especially in contrast with the image representation learning, is the object motion. However, we found that in the current mainstream video datasets, some action categories are highly related with the scene where the action happens, making the model tend to degrade to a solution where only the scene information is encoded. For example, a trained model may predict a video as playing football simply because it sees the field, neglecting that the subject is dancing as a cheerleader on the field. This is against our original intention towards the video representation learning and may bring scene bias on different dataset that can not be ignored. In order to tackle this problem, we propose to decouple the scene and the motion (DSM) with two simple operations, so that the model attention towards the motion information is better paid. Specifically, we construct a positive clip and a negative clip for each video. Compared to the original video, the positive/negative is motion-untouched/broken but scene-broken/untouched by Spatial Local Disturbance and Temporal Local Disturbance. Our objective is to pull the positive closer while pushing the negative farther to the original clip in the latent space. In this way, the impact of the scene is weakened while the temporal sensitivity of the network is further enhanced. We conduct experiments on two tasks with various backbones and different pre-training datasets, and find that our method surpass the SOTA methods with a remarkable 8.1% and 8.8% improvement towards action recognition task on the UCF101 and HMDB51 datasets respectively using the same backbone.
HOLa: Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation
Zero-shot human-object interaction (HOI) detection remains a challenging task, particularly in generalizing to unseen actions. Existing methods address this challenge by tapping Vision-Language Models (VLMs) to access knowledge beyond the training data. However, they either struggle to distinguish actions involving the same object or demonstrate limited generalization to unseen classes. In this paper, we introduce HOLa (Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation), a novel approach that both enhances generalization to unseen classes and improves action distinction. In training, HOLa decomposes VLM text features for given HOI classes via low-rank factorization, producing class-shared basis features and adaptable weights. These features and weights form a compact HOI representation that preserves shared information across classes, enhancing generalization to unseen classes. Subsequently, we refine action distinction by adapting weights for each HOI class and introducing human-object tokens to enrich visual interaction representations. To further distinguish unseen actions, we guide the weight adaptation with LLM-derived action regularization. Experimental results show that our method sets a new state-of-the-art across zero-shot HOI settings on HICO-DET, achieving an unseen-class mAP of 27.91 in the unseen-verb setting. Our code is available at https://github.com/ChelsieLei/HOLa.
Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition
Video diffusion models have recently made great progress in generation quality, but are still limited by the high memory and computational requirements. This is because current video diffusion models often attempt to process high-dimensional videos directly. To tackle this issue, we propose content-motion latent diffusion model (CMD), a novel efficient extension of pretrained image diffusion models for video generation. Specifically, we propose an autoencoder that succinctly encodes a video as a combination of a content frame (like an image) and a low-dimensional motion latent representation. The former represents the common content, and the latter represents the underlying motion in the video, respectively. We generate the content frame by fine-tuning a pretrained image diffusion model, and we generate the motion latent representation by training a new lightweight diffusion model. A key innovation here is the design of a compact latent space that can directly utilizes a pretrained image diffusion model, which has not been done in previous latent video diffusion models. This leads to considerably better quality generation and reduced computational costs. For instance, CMD can sample a video 7.7times faster than prior approaches by generating a video of 512times1024 resolution and length 16 in 3.1 seconds. Moreover, CMD achieves an FVD score of 212.7 on WebVid-10M, 27.3% better than the previous state-of-the-art of 292.4.
Latent Reasoning in LLMs as a Vocabulary-Space Superposition
Large language models (LLMs) demonstrate strong reasoning abilities with chain-of-thought prompting, but explicit reasoning introduces substantial computational overhead. Recent work on latent reasoning reduces this cost by reasoning in latent space without explicit supervision, but performance drops significantly. Our preliminary experiments suggest that this degradation stems from the unstructured latent space, which makes fitting latent tokens difficult. To address this, we restrict the latent space to the column space of the LLM vocabulary, treating latent reasoning as a superposition over vocabulary probabilities. Once latent reasoning concludes, it collapses into an eigenstate of explicit reasoning to yield the final answer. Based on this idea, we propose Latent-SFT, a two-stage learning framework. In the first stage, we design two specialized attention masks to guide the Latent Token Encoder in generating latent tokens, allowing the LLM to produce the correct answer conditioned on them. In the second stage, the Latent Token Encoder is discarded, and the LLM is directly trained to generate these latent tokens autonomously for latent reasoning, optimized with KL and CE losses. Latent-SFT sets a new state of the art on GSM8k, matching explicit SFT performance while cutting reasoning chains by up to 4 times and outperforming prior latent methods. On Math500 and AIME24, lexical probability-based latent reasoning also clearly surpasses hidden-state-based approaches. Our metrics of effective compression rate and effective global parallelism further show that latent reasoning is both the compression of a single path and the superposition of multiple paths.
Weakly-Supervised Text-driven Contrastive Learning for Facial Behavior Understanding
Contrastive learning has shown promising potential for learning robust representations by utilizing unlabeled data. However, constructing effective positive-negative pairs for contrastive learning on facial behavior datasets remains challenging. This is because such pairs inevitably encode the subject-ID information, and the randomly constructed pairs may push similar facial images away due to the limited number of subjects in facial behavior datasets. To address this issue, we propose to utilize activity descriptions, coarse-grained information provided in some datasets, which can provide high-level semantic information about the image sequences but is often neglected in previous studies. More specifically, we introduce a two-stage Contrastive Learning with Text-Embeded framework for Facial behavior understanding (CLEF). The first stage is a weakly-supervised contrastive learning method that learns representations from positive-negative pairs constructed using coarse-grained activity information. The second stage aims to train the recognition of facial expressions or facial action units by maximizing the similarity between image and the corresponding text label names. The proposed CLEF achieves state-of-the-art performance on three in-the-lab datasets for AU recognition and three in-the-wild datasets for facial expression recognition.
Unleashing the Potential of Multimodal LLMs for Zero-Shot Spatio-Temporal Video Grounding
Spatio-temporal video grounding (STVG) aims at localizing the spatio-temporal tube of a video, as specified by the input text query. In this paper, we utilize multimodal large language models (MLLMs) to explore a zero-shot solution in STVG. We reveal two key insights about MLLMs: (1) MLLMs tend to dynamically assign special tokens, referred to as grounding tokens, for grounding the text query; and (2) MLLMs often suffer from suboptimal grounding due to the inability to fully integrate the cues in the text query (e.g., attributes, actions) for inference. Based on these insights, we propose a MLLM-based zero-shot framework for STVG, which includes novel decomposed spatio-temporal highlighting (DSTH) and temporal-augmented assembling (TAS) strategies to unleash the reasoning ability of MLLMs. The DSTH strategy first decouples the original query into attribute and action sub-queries for inquiring the existence of the target both spatially and temporally. It then uses a novel logit-guided re-attention (LRA) module to learn latent variables as spatial and temporal prompts, by regularizing token predictions for each sub-query. These prompts highlight attribute and action cues, respectively, directing the model's attention to reliable spatial and temporal related visual regions. In addition, as the spatial grounding by the attribute sub-query should be temporally consistent, we introduce the TAS strategy to assemble the predictions using the original video frames and the temporal-augmented frames as inputs to help improve temporal consistency. We evaluate our method on various MLLMs, and show that it outperforms SOTA methods on three common STVG benchmarks. The code will be available at https://github.com/zaiquanyang/LLaVA_Next_STVG.
UI-JEPA: Towards Active Perception of User Intent through Onscreen User Activity
Generating user intent from a sequence of user interface (UI) actions is a core challenge in comprehensive UI understanding. Recent advancements in multimodal large language models (MLLMs) have led to substantial progress in this area, but their demands for extensive model parameters, computing power, and high latency makes them impractical for scenarios requiring lightweight, on-device solutions with low latency or heightened privacy. Additionally, the lack of high-quality datasets has hindered the development of such lightweight models. To address these challenges, we propose UI-JEPA, a novel framework that employs masking strategies to learn abstract UI embeddings from unlabeled data through self-supervised learning, combined with an LLM decoder fine-tuned for user intent prediction. We also introduce two new UI-grounded multimodal datasets, "Intent in the Wild" (IIW) and "Intent in the Tame" (IIT), designed for few-shot and zero-shot UI understanding tasks. IIW consists of 1.7K videos across 219 intent categories, while IIT contains 914 videos across 10 categories. We establish the first baselines for these datasets, showing that representations learned using a JEPA-style objective, combined with an LLM decoder, can achieve user intent predictions that match the performance of state-of-the-art large MLLMs, but with significantly reduced annotation and deployment resources. Measured by intent similarity scores, UI-JEPA outperforms GPT-4 Turbo and Claude 3.5 Sonnet by 10.0% and 7.2% respectively, averaged across two datasets. Notably, UI-JEPA accomplishes the performance with a 50.5x reduction in computational cost and a 6.6x improvement in latency in the IIW dataset. These results underscore the effectiveness of UI-JEPA, highlighting its potential for lightweight, high-performance UI understanding.
Mobius: Text to Seamless Looping Video Generation via Latent Shift
We present Mobius, a novel method to generate seamlessly looping videos from text descriptions directly without any user annotations, thereby creating new visual materials for the multi-media presentation. Our method repurposes the pre-trained video latent diffusion model for generating looping videos from text prompts without any training. During inference, we first construct a latent cycle by connecting the starting and ending noise of the videos. Given that the temporal consistency can be maintained by the context of the video diffusion model, we perform multi-frame latent denoising by gradually shifting the first-frame latent to the end in each step. As a result, the denoising context varies in each step while maintaining consistency throughout the inference process. Moreover, the latent cycle in our method can be of any length. This extends our latent-shifting approach to generate seamless looping videos beyond the scope of the video diffusion model's context. Unlike previous cinemagraphs, the proposed method does not require an image as appearance, which will restrict the motions of the generated results. Instead, our method can produce more dynamic motion and better visual quality. We conduct multiple experiments and comparisons to verify the effectiveness of the proposed method, demonstrating its efficacy in different scenarios. All the code will be made available.
ACT360: An Efficient 360-Degree Action Detection and Summarization Framework for Mission-Critical Training and Debriefing
Effective training and debriefing are critical in high-stakes, mission-critical environments such as disaster response, military simulations, and industrial safety, where precision and minimizing errors are paramount. The traditional post-training analysis relies on manually reviewing 2D videos, a time-consuming process that lacks comprehensive situational awareness. To address these limitations, we introduce ACT360, a system that leverages 360-degree videos and machine learning for automated action detection and structured debriefing. ACT360 integrates 360YOWO, an enhanced You Only Watch Once (YOWO) model with spatial attention and equirectangular-aware convolution (EAC) to mitigate panoramic video distortions. To enable deployment in resource-constrained environments, we apply quantization and model pruning, reducing the model size by 74% while maintaining robust accuracy (mAP drop of only 1.5%, from 0.865 to 0.850) and improving inference speed. We validate our approach on a publicly available dataset of 55 labeled 360-degree videos covering seven key operational actions, recorded across various real-world training sessions and environmental conditions. Additionally, ACT360 integrates 360AIE (Action Insight Explorer), a web-based interface for automatic action detection, retrieval, and textual summarization using large language models (LLMs), significantly enhancing post-incident analysis efficiency. ACT360 serves as a generalized framework for mission-critical debriefing, incorporating EAC, spatial attention, summarization, and model optimization. These innovations apply to any training environment requiring lightweight action detection and structured post-exercise analysis.
What can a cook in Italy teach a mechanic in India? Action Recognition Generalisation Over Scenarios and Locations
We propose and address a new generalisation problem: can a model trained for action recognition successfully classify actions when they are performed within a previously unseen scenario and in a previously unseen location? To answer this question, we introduce the Action Recognition Generalisation Over scenarios and locations dataset (ARGO1M), which contains 1.1M video clips from the large-scale Ego4D dataset, across 10 scenarios and 13 locations. We demonstrate recognition models struggle to generalise over 10 proposed test splits, each of an unseen scenario in an unseen location. We thus propose CIR, a method to represent each video as a Cross-Instance Reconstruction of videos from other domains. Reconstructions are paired with text narrations to guide the learning of a domain generalisable representation. We provide extensive analysis and ablations on ARGO1M that show CIR outperforms prior domain generalisation works on all test splits. Code and data: https://chiaraplizz.github.io/what-can-a-cook/.
Mammo-SAE: Interpreting Breast Cancer Concept Learning with Sparse Autoencoders
Interpretability is critical in high-stakes domains such as medical imaging, where understanding model decisions is essential for clinical adoption. In this work, we introduce Sparse Autoencoder (SAE)-based interpretability to breast imaging by analyzing {Mammo-CLIP}, a vision--language foundation model pretrained on large-scale mammogram image--report pairs. We train a patch-level Mammo-SAE on Mammo-CLIP to identify and probe latent features associated with clinically relevant breast concepts such as mass and suspicious calcification. Our findings reveal that top activated class level latent neurons in the SAE latent space often tend to align with ground truth regions, and also uncover several confounding factors influencing the model's decision-making process. Additionally, we analyze which latent neurons the model relies on during downstream finetuning for improving the breast concept prediction. This study highlights the promise of interpretable SAE latent representations in providing deeper insight into the internal workings of foundation models at every layer for breast imaging. The code will be released at https://krishnakanthnakka.github.io/MammoSAE/
A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders
Sparse Autoencoders (SAEs) have emerged as a promising approach to decompose the activations of Large Language Models (LLMs) into human-interpretable latents. In this paper, we pose two questions. First, to what extent do SAEs extract monosemantic and interpretable latents? Second, to what extent does varying the sparsity or the size of the SAE affect monosemanticity / interpretability? By investigating these questions in the context of a simple first-letter identification task where we have complete access to ground truth labels for all tokens in the vocabulary, we are able to provide more detail than prior investigations. Critically, we identify a problematic form of feature-splitting we call feature absorption where seemingly monosemantic latents fail to fire in cases where they clearly should. Our investigation suggests that varying SAE size or sparsity is insufficient to solve this issue, and that there are deeper conceptual issues in need of resolution.
Turning to a Teacher for Timestamp Supervised Temporal Action Segmentation
Temporal action segmentation in videos has drawn much attention recently. Timestamp supervision is a cost-effective way for this task. To obtain more information to optimize the model, the existing method generated pseudo frame-wise labels iteratively based on the output of a segmentation model and the timestamp annotations. However, this practice may introduce noise and oscillation during the training, and lead to performance degeneration. To address this problem, we propose a new framework for timestamp supervised temporal action segmentation by introducing a teacher model parallel to the segmentation model to help stabilize the process of model optimization. The teacher model can be seen as an ensemble of the segmentation model, which helps to suppress the noise and to improve the stability of pseudo labels. We further introduce a segmentally smoothing loss, which is more focused and cohesive, to enforce the smooth transition of the predicted probabilities within action instances. The experiments on three datasets show that our method outperforms the state-of-the-art method and performs comparably against the fully-supervised methods at a much lower annotation cost.
Adaptive Human Trajectory Prediction via Latent Corridors
Human trajectory prediction is typically posed as a zero-shot generalization problem: a predictor is learnt on a dataset of human motion in training scenes, and then deployed on unseen test scenes. While this paradigm has yielded tremendous progress, it fundamentally assumes that trends in human behavior within the deployment scene are constant over time. As such, current prediction models are unable to adapt to scene-specific transient human behaviors, such as crowds temporarily gathering to see buskers, pedestrians hurrying through the rain and avoiding puddles, or a protest breaking out. We formalize the problem of scene-specific adaptive trajectory prediction and propose a new adaptation approach inspired by prompt tuning called latent corridors. By augmenting the input of any pre-trained human trajectory predictor with learnable image prompts, the predictor can improve in the deployment scene by inferring trends from extremely small amounts of new data (e.g., 2 humans observed for 30 seconds). With less than 0.1% additional model parameters, we see up to 23.9% ADE improvement in MOTSynth simulated data and 16.4% ADE in MOT and Wildtrack real pedestrian data. Qualitatively, we observe that latent corridors imbue predictors with an awareness of scene geometry and scene-specific human behaviors that non-adaptive predictors struggle to capture. The project website can be found at https://neerja.me/atp_latent_corridors/.
Leveraging Multimodal LLM Descriptions of Activity for Explainable Semi-Supervised Video Anomaly Detection
Existing semi-supervised video anomaly detection (VAD) methods often struggle with detecting complex anomalies involving object interactions and generally lack explainability. To overcome these limitations, we propose a novel VAD framework leveraging Multimodal Large Language Models (MLLMs). Unlike previous MLLM-based approaches that make direct anomaly judgments at the frame level, our method focuses on extracting and interpreting object activity and interactions over time. By querying an MLLM with visual inputs of object pairs at different moments, we generate textual descriptions of the activity and interactions from nominal videos. These textual descriptions serve as a high-level representation of the activity and interactions of objects in a video. They are used to detect anomalies during test time by comparing them to textual descriptions found in nominal training videos. Our approach inherently provides explainability and can be combined with many traditional VAD methods to further enhance their interpretability. Extensive experiments on benchmark datasets demonstrate that our method not only detects complex interaction-based anomalies effectively but also achieves state-of-the-art performance on datasets without interaction anomalies.
C2C: Component-to-Composition Learning for Zero-Shot Compositional Action Recognition
Compositional actions consist of dynamic (verbs) and static (objects) concepts. Humans can easily recognize unseen compositions using the learned concepts. For machines, solving such a problem requires a model to recognize unseen actions composed of previously observed verbs and objects, thus requiring so-called compositional generalization ability. To facilitate this research, we propose a novel Zero-Shot Compositional Action Recognition (ZS-CAR) task. For evaluating the task, we construct a new benchmark, Something-composition (Sth-com), based on the widely used Something-Something V2 dataset. We also propose a novel Component-to-Composition (C2C) learning method to solve the new ZS-CAR task. C2C includes an independent component learning module and a composition inference module. Last, we devise an enhanced training strategy to address the challenges of component variations between seen and unseen compositions and to handle the subtle balance between learning seen and unseen actions. The experimental results demonstrate that the proposed framework significantly surpasses the existing compositional generalization methods and sets a new state-of-the-art. The new Sth-com benchmark and code are available at https://github.com/RongchangLi/ZSCAR_C2C.
UniMD: Towards Unifying Moment Retrieval and Temporal Action Detection
Temporal Action Detection (TAD) focuses on detecting pre-defined actions, while Moment Retrieval (MR) aims to identify the events described by open-ended natural language within untrimmed videos. Despite that they focus on different events, we observe they have a significant connection. For instance, most descriptions in MR involve multiple actions from TAD. In this paper, we aim to investigate the potential synergy between TAD and MR. Firstly, we propose a unified architecture, termed Unified Moment Detection (UniMD), for both TAD and MR. It transforms the inputs of the two tasks, namely actions for TAD or events for MR, into a common embedding space, and utilizes two novel query-dependent decoders to generate a uniform output of classification score and temporal segments. Secondly, we explore the efficacy of two task fusion learning approaches, pre-training and co-training, in order to enhance the mutual benefits between TAD and MR. Extensive experiments demonstrate that the proposed task fusion learning scheme enables the two tasks to help each other and outperform the separately trained counterparts. Impressively, UniMD achieves state-of-the-art results on three paired datasets Ego4D, Charades-STA, and ActivityNet. Our code is available at https://github.com/yingsen1/UniMD.
Unsupervised Learning of Neurosymbolic Encoders
We present a framework for the unsupervised learning of neurosymbolic encoders, which are encoders obtained by composing neural networks with symbolic programs from a domain-specific language. Our framework naturally incorporates symbolic expert knowledge into the learning process, which leads to more interpretable and factorized latent representations compared to fully neural encoders. We integrate modern program synthesis techniques with the variational autoencoding (VAE) framework, in order to learn a neurosymbolic encoder in conjunction with a standard decoder. The programmatic descriptions from our encoders can benefit many analysis workflows, such as in behavior modeling where interpreting agent actions and movements is important. We evaluate our method on learning latent representations for real-world trajectory data from animal biology and sports analytics. We show that our approach offers significantly better separation of meaningful categories than standard VAEs and leads to practical gains on downstream analysis tasks, such as for behavior classification.
Interventional Causal Representation Learning
Causal representation learning seeks to extract high-level latent factors from low-level sensory data. Most existing methods rely on observational data and structural assumptions (e.g., conditional independence) to identify the latent factors. However, interventional data is prevalent across applications. Can interventional data facilitate causal representation learning? We explore this question in this paper. The key observation is that interventional data often carries geometric signatures of the latent factors' support (i.e. what values each latent can possibly take). For example, when the latent factors are causally connected, interventions can break the dependency between the intervened latents' support and their ancestors'. Leveraging this fact, we prove that the latent causal factors can be identified up to permutation and scaling given data from perfect do interventions. Moreover, we can achieve block affine identification, namely the estimated latent factors are only entangled with a few other latents if we have access to data from imperfect interventions. These results highlight the unique power of interventional data in causal representation learning; they can enable provable identification of latent factors without any assumptions about their distributions or dependency structure.
Sparse Attention Vectors: Generative Multimodal Model Features Are Discriminative Vision-Language Classifiers
Generative Large Multimodal Models (LMMs) like LLaVA and Qwen-VL excel at a wide variety of vision-language (VL) tasks such as image captioning or visual question answering. Despite strong performance, LMMs are not directly suited for foundational discriminative vision-language tasks (i.e., tasks requiring discrete label predictions) such as image classification and multiple-choice VQA. One key challenge in utilizing LMMs for discriminative tasks is the extraction of useful features from generative models. To overcome this issue, we propose an approach for finding features in the model's latent space to more effectively leverage LMMs for discriminative tasks. Toward this end, we present Sparse Attention Vectors (SAVs) -- a finetuning-free method that leverages sparse attention head activations (fewer than 1\% of the heads) in LMMs as strong features for VL tasks. With only few-shot examples, SAVs demonstrate state-of-the-art performance compared to a variety of few-shot and finetuned baselines on a collection of discriminative tasks. Our experiments also imply that SAVs can scale in performance with additional examples and generalize to similar tasks, establishing SAVs as both effective and robust multimodal feature representations.
Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models
Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding excessive compute demands by training a diffusion model in a compressed lower-dimensional latent space. Here, we apply the LDM paradigm to high-resolution video generation, a particularly resource-intensive task. We first pre-train an LDM on images only; then, we turn the image generator into a video generator by introducing a temporal dimension to the latent space diffusion model and fine-tuning on encoded image sequences, i.e., videos. Similarly, we temporally align diffusion model upsamplers, turning them into temporally consistent video super resolution models. We focus on two relevant real-world applications: Simulation of in-the-wild driving data and creative content creation with text-to-video modeling. In particular, we validate our Video LDM on real driving videos of resolution 512 x 1024, achieving state-of-the-art performance. Furthermore, our approach can easily leverage off-the-shelf pre-trained image LDMs, as we only need to train a temporal alignment model in that case. Doing so, we turn the publicly available, state-of-the-art text-to-image LDM Stable Diffusion into an efficient and expressive text-to-video model with resolution up to 1280 x 2048. We show that the temporal layers trained in this way generalize to different fine-tuned text-to-image LDMs. Utilizing this property, we show the first results for personalized text-to-video generation, opening exciting directions for future content creation. Project page: https://research.nvidia.com/labs/toronto-ai/VideoLDM/
MOOSE: Pay Attention to Temporal Dynamics for Video Understanding via Optical Flows
Many motion-centric video analysis tasks, such as atomic actions, detecting atypical motor behavior in individuals with autism, or analyzing articulatory motion in real-time MRI of human speech, require efficient and interpretable temporal modeling. Capturing temporal dynamics is a central challenge in video analysis, often requiring significant computational resources and fine-grained annotations that are not widely available. This paper presents MOOSE (Motion Flow Over Spatial Space), a novel temporally-centric video encoder explicitly integrating optical flow with spatial embeddings to model temporal information efficiently, inspired by human perception of motion. Unlike prior models, MOOSE takes advantage of rich, widely available pre-trained visual and optical flow encoders instead of training video models from scratch. This significantly reduces computational complexity while enhancing temporal interpretability. Our primary contributions includes (1) proposing a computationally efficient temporally-centric architecture for video understanding (2) demonstrating enhanced interpretability in modeling temporal dynamics; and (3) achieving state-of-the-art performance on diverse benchmarks, including clinical, medical, and standard action recognition datasets, confirming the broad applicability and effectiveness of our approach.
Obfuscated Activations Bypass LLM Latent-Space Defenses
Recent latent-space monitoring techniques have shown promise as defenses against LLM attacks. These defenses act as scanners that seek to detect harmful activations before they lead to undesirable actions. This prompts the question: Can models execute harmful behavior via inconspicuous latent states? Here, we study such obfuscated activations. We show that state-of-the-art latent-space defenses -- including sparse autoencoders, representation probing, and latent OOD detection -- are all vulnerable to obfuscated activations. For example, against probes trained to classify harmfulness, our attacks can often reduce recall from 100% to 0% while retaining a 90% jailbreaking rate. However, obfuscation has limits: we find that on a complex task (writing SQL code), obfuscation reduces model performance. Together, our results demonstrate that neural activations are highly malleable: we can reshape activation patterns in a variety of ways, often while preserving a network's behavior. This poses a fundamental challenge to latent-space defenses.
Discovering Failure Modes of Text-guided Diffusion Models via Adversarial Search
Text-guided diffusion models (TDMs) are widely applied but can fail unexpectedly. Common failures include: (i) natural-looking text prompts generating images with the wrong content, or (ii) different random samples of the latent variables that generate vastly different, and even unrelated, outputs despite being conditioned on the same text prompt. In this work, we aim to study and understand the failure modes of TDMs in more detail. To achieve this, we propose SAGE, the first adversarial search method on TDMs that systematically explores the discrete prompt space and the high-dimensional latent space, to automatically discover undesirable behaviors and failure cases in image generation. We use image classifiers as surrogate loss functions during searching, and employ human inspections to validate the identified failures. For the first time, our method enables efficient exploration of both the discrete and intricate human language space and the challenging latent space, overcoming the gradient vanishing problem. Then, we demonstrate the effectiveness of SAGE on five widely used generative models and reveal four typical failure modes: (1) We find a variety of natural text prompts that generate images failing to capture the semantics of input texts. We further discuss the underlying causes and potential solutions based on the results. (2) We find regions in the latent space that lead to distorted images independent of the text prompt, suggesting that parts of the latent space are not well-structured. (3) We also find latent samples that result in natural-looking images unrelated to the text prompt, implying a possible misalignment between the latent and prompt spaces. (4) By appending a single adversarial token embedding to any input prompts, we can generate a variety of specified target objects. Project page: https://sage-diffusion.github.io/
Actor-agnostic Multi-label Action Recognition with Multi-modal Query
Existing action recognition methods are typically actor-specific due to the intrinsic topological and apparent differences among the actors. This requires actor-specific pose estimation (e.g., humans vs. animals), leading to cumbersome model design complexity and high maintenance costs. Moreover, they often focus on learning the visual modality alone and single-label classification whilst neglecting other available information sources (e.g., class name text) and the concurrent occurrence of multiple actions. To overcome these limitations, we propose a new approach called 'actor-agnostic multi-modal multi-label action recognition,' which offers a unified solution for various types of actors, including humans and animals. We further formulate a novel Multi-modal Semantic Query Network (MSQNet) model in a transformer-based object detection framework (e.g., DETR), characterized by leveraging visual and textual modalities to represent the action classes better. The elimination of actor-specific model designs is a key advantage, as it removes the need for actor pose estimation altogether. Extensive experiments on five publicly available benchmarks show that our MSQNet consistently outperforms the prior arts of actor-specific alternatives on human and animal single- and multi-label action recognition tasks by up to 50%. Code is made available at https://github.com/mondalanindya/MSQNet.
Masked Autoencoders Are Effective Tokenizers for Diffusion Models
Recent advances in latent diffusion models have demonstrated their effectiveness for high-resolution image synthesis. However, the properties of the latent space from tokenizer for better learning and generation of diffusion models remain under-explored. Theoretically and empirically, we find that improved generation quality is closely tied to the latent distributions with better structure, such as the ones with fewer Gaussian Mixture modes and more discriminative features. Motivated by these insights, we propose MAETok, an autoencoder (AE) leveraging mask modeling to learn semantically rich latent space while maintaining reconstruction fidelity. Extensive experiments validate our analysis, demonstrating that the variational form of autoencoders is not necessary, and a discriminative latent space from AE alone enables state-of-the-art performance on ImageNet generation using only 128 tokens. MAETok achieves significant practical improvements, enabling a gFID of 1.69 with 76x faster training and 31x higher inference throughput for 512x512 generation. Our findings show that the structure of the latent space, rather than variational constraints, is crucial for effective diffusion models. Code and trained models are released.
AdaFuse: Adaptive Temporal Fusion Network for Efficient Action Recognition
Temporal modelling is the key for efficient video action recognition. While understanding temporal information can improve recognition accuracy for dynamic actions, removing temporal redundancy and reusing past features can significantly save computation leading to efficient action recognition. In this paper, we introduce an adaptive temporal fusion network, called AdaFuse, that dynamically fuses channels from current and past feature maps for strong temporal modelling. Specifically, the necessary information from the historical convolution feature maps is fused with current pruned feature maps with the goal of improving both recognition accuracy and efficiency. In addition, we use a skipping operation to further reduce the computation cost of action recognition. Extensive experiments on Something V1 & V2, Jester and Mini-Kinetics show that our approach can achieve about 40% computation savings with comparable accuracy to state-of-the-art methods. The project page can be found at https://mengyuest.github.io/AdaFuse/
Efficient Video Action Detection with Token Dropout and Context Refinement
Streaming video clips with large-scale video tokens impede vision transformers (ViTs) for efficient recognition, especially in video action detection where sufficient spatiotemporal representations are required for precise actor identification. In this work, we propose an end-to-end framework for efficient video action detection (EVAD) based on vanilla ViTs. Our EVAD consists of two specialized designs for video action detection. First, we propose a spatiotemporal token dropout from a keyframe-centric perspective. In a video clip, we maintain all tokens from its keyframe, preserve tokens relevant to actor motions from other frames, and drop out the remaining tokens in this clip. Second, we refine scene context by leveraging remaining tokens for better recognizing actor identities. The region of interest (RoI) in our action detector is expanded into temporal domain. The captured spatiotemporal actor identity representations are refined via scene context in a decoder with the attention mechanism. These two designs make our EVAD efficient while maintaining accuracy, which is validated on three benchmark datasets (i.e., AVA, UCF101-24, JHMDB). Compared to the vanilla ViT backbone, our EVAD reduces the overall GFLOPs by 43% and improves real-time inference speed by 40% with no performance degradation. Moreover, even at similar computational costs, our EVAD can improve the performance by 1.1 mAP with higher resolution inputs. Code is available at https://github.com/MCG-NJU/EVAD.
AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions
This paper introduces a video dataset of spatio-temporally localized Atomic Visual Actions (AVA). The AVA dataset densely annotates 80 atomic visual actions in 430 15-minute video clips, where actions are localized in space and time, resulting in 1.58M action labels with multiple labels per person occurring frequently. The key characteristics of our dataset are: (1) the definition of atomic visual actions, rather than composite actions; (2) precise spatio-temporal annotations with possibly multiple annotations for each person; (3) exhaustive annotation of these atomic actions over 15-minute video clips; (4) people temporally linked across consecutive segments; and (5) using movies to gather a varied set of action representations. This departs from existing datasets for spatio-temporal action recognition, which typically provide sparse annotations for composite actions in short video clips. We will release the dataset publicly. AVA, with its realistic scene and action complexity, exposes the intrinsic difficulty of action recognition. To benchmark this, we present a novel approach for action localization that builds upon the current state-of-the-art methods, and demonstrates better performance on JHMDB and UCF101-24 categories. While setting a new state of the art on existing datasets, the overall results on AVA are low at 15.6% mAP, underscoring the need for developing new approaches for video understanding.
PSUMNet: Unified Modality Part Streams are All You Need for Efficient Pose-based Action Recognition
Pose-based action recognition is predominantly tackled by approaches which treat the input skeleton in a monolithic fashion, i.e. joints in the pose tree are processed as a whole. However, such approaches ignore the fact that action categories are often characterized by localized action dynamics involving only small subsets of part joint groups involving hands (e.g. `Thumbs up') or legs (e.g. `Kicking'). Although part-grouping based approaches exist, each part group is not considered within the global pose frame, causing such methods to fall short. Further, conventional approaches employ independent modality streams (e.g. joint, bone, joint velocity, bone velocity) and train their network multiple times on these streams, which massively increases the number of training parameters. To address these issues, we introduce PSUMNet, a novel approach for scalable and efficient pose-based action recognition. At the representation level, we propose a global frame based part stream approach as opposed to conventional modality based streams. Within each part stream, the associated data from multiple modalities is unified and consumed by the processing pipeline. Experimentally, PSUMNet achieves state of the art performance on the widely used NTURGB+D 60/120 dataset and dense joint skeleton dataset NTU 60-X/120-X. PSUMNet is highly efficient and outperforms competing methods which use 100%-400% more parameters. PSUMNet also generalizes to the SHREC hand gesture dataset with competitive performance. Overall, PSUMNet's scalability, performance and efficiency makes it an attractive choice for action recognition and for deployment on compute-restricted embedded and edge devices. Code and pretrained models can be accessed at https://github.com/skelemoa/psumnet
Differentiable Neural Input Search for Recommender Systems
Latent factor models are the driving forces of the state-of-the-art recommender systems, with an important insight of vectorizing raw input features into dense embeddings. The dimensions of different feature embeddings are often set to a same value empirically, which limits the predictive performance of latent factor models. Existing works have proposed heuristic or reinforcement learning-based methods to search for mixed feature embedding dimensions. For efficiency concern, these methods typically choose embedding dimensions from a restricted set of candidate dimensions. However, this restriction will hurt the flexibility of dimension selection, leading to suboptimal performance of search results. In this paper, we propose Differentiable Neural Input Search (DNIS), a method that searches for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization. The key idea is to introduce a soft selection layer that controls the significance of each embedding dimension, and optimize this layer according to model's validation performance. DNIS is model-agnostic and thus can be seamlessly incorporated with existing latent factor models for recommendation. We conduct experiments with various architectures of latent factor models on three public real-world datasets for rating prediction, Click-Through-Rate (CTR) prediction, and top-k item recommendation. The results demonstrate that our method achieves the best predictive performance compared with existing neural input search approaches with fewer embedding parameters and less time cost.
Unified Video Action Model
A unified video and action model holds significant promise for robotics, where videos provide rich scene information for action prediction, and actions provide dynamics information for video prediction. However, effectively combining video generation and action prediction remains challenging, and current video generation-based methods struggle to match the performance of direct policy learning in action accuracy and inference speed. To bridge this gap, we introduce the Unified Video Action model (UVA), which jointly optimizes video and action predictions to achieve both high accuracy and efficient action inference. The key lies in learning a joint video-action latent representation and decoupling video-action decoding. The joint latent representation bridges the visual and action domains, effectively modeling the relationship between video and action sequences. Meanwhile, the decoupled decoding, powered by two lightweight diffusion heads, enables high-speed action inference by bypassing video generation during inference. Such a unified framework further enables versatile functionality through masked input training. By selectively masking actions or videos, a single model can tackle diverse tasks beyond policy learning, such as forward and inverse dynamics modeling and video generation. Via an extensive set of experiments, we demonstrate that UVA can serve as a general-purpose solution for a wide range of robotics tasks, such as policy learning, forward/inverse dynamics and video observation prediction, without compromising performance compared to methods tailored for specific applications. Results are best viewed on https://unified-video-action-model.github.io/.
Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data
Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this paper, we aim to better assess the capabilities of current video-text models and understand their limitations. We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD), and a new Feint6K dataset. To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning. Analyses show that previous video-text foundation models can be easily fooled by counterfactually augmented data and are far behind human-level performance. In order to narrow the gap between video-text models and human performance on RCAD, we identify a key limitation of current contrastive approaches on video-text data and introduce LLM-teacher, a more effective approach to learn action semantics by leveraging knowledge obtained from a pretrained large language model. Experiments and analyses show that our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models. Our Feint6K dataset and project page is available at https://feint6k.github.io.
Action Sensitivity Learning for Temporal Action Localization
Temporal action localization (TAL), which involves recognizing and locating action instances, is a challenging task in video understanding. Most existing approaches directly predict action classes and regress offsets to boundaries, while overlooking the discrepant importance of each frame. In this paper, we propose an Action Sensitivity Learning framework (ASL) to tackle this task, which aims to assess the value of each frame and then leverage the generated action sensitivity to recalibrate the training procedure. We first introduce a lightweight Action Sensitivity Evaluator to learn the action sensitivity at the class level and instance level, respectively. The outputs of the two branches are combined to reweight the gradient of the two sub-tasks. Moreover, based on the action sensitivity of each frame, we design an Action Sensitive Contrastive Loss to enhance features, where the action-aware frames are sampled as positive pairs to push away the action-irrelevant frames. The extensive studies on various action localization benchmarks (i.e., MultiThumos, Charades, Ego4D-Moment Queries v1.0, Epic-Kitchens 100, Thumos14 and ActivityNet1.3) show that ASL surpasses the state-of-the-art in terms of average-mAP under multiple types of scenarios, e.g., single-labeled, densely-labeled and egocentric.
Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding
Computer vision has a great potential to help our daily lives by searching for lost keys, watering flowers or reminding us to take a pill. To succeed with such tasks, computer vision methods need to be trained from real and diverse examples of our daily dynamic scenes. While most of such scenes are not particularly exciting, they typically do not appear on YouTube, in movies or TV broadcasts. So how do we collect sufficiently many diverse but boring samples representing our lives? We propose a novel Hollywood in Homes approach to collect such data. Instead of shooting videos in the lab, we ensure diversity by distributing and crowdsourcing the whole process of video creation from script writing to video recording and annotation. Following this procedure we collect a new dataset, Charades, with hundreds of people recording videos in their own homes, acting out casual everyday activities. The dataset is composed of 9,848 annotated videos with an average length of 30 seconds, showing activities of 267 people from three continents. Each video is annotated by multiple free-text descriptions, action labels, action intervals and classes of interacted objects. In total, Charades provides 27,847 video descriptions, 66,500 temporally localized intervals for 157 action classes and 41,104 labels for 46 object classes. Using this rich data, we evaluate and provide baseline results for several tasks including action recognition and automatic description generation. We believe that the realism, diversity, and casual nature of this dataset will present unique challenges and new opportunities for computer vision community.
Palm: Predicting Actions through Language Models @ Ego4D Long-Term Action Anticipation Challenge 2023
We present Palm, a solution to the Long-Term Action Anticipation (LTA) task utilizing vision-language and large language models. Given an input video with annotated action periods, the LTA task aims to predict possible future actions. We hypothesize that an optimal solution should capture the interdependency between past and future actions, and be able to infer future actions based on the structure and dependency encoded in the past actions. Large language models have demonstrated remarkable commonsense-based reasoning ability. Inspired by that, Palm chains an image captioning model and a large language model. It predicts future actions based on frame descriptions and action labels extracted from the input videos. Our method outperforms other participants in the EGO4D LTA challenge and achieves the best performance in terms of action prediction. Our code is available at https://github.com/DanDoge/Palm
CDFSL-V: Cross-Domain Few-Shot Learning for Videos
Few-shot video action recognition is an effective approach to recognizing new categories with only a few labeled examples, thereby reducing the challenges associated with collecting and annotating large-scale video datasets. Existing methods in video action recognition rely on large labeled datasets from the same domain. However, this setup is not realistic as novel categories may come from different data domains that may have different spatial and temporal characteristics. This dissimilarity between the source and target domains can pose a significant challenge, rendering traditional few-shot action recognition techniques ineffective. To address this issue, in this work, we propose a novel cross-domain few-shot video action recognition method that leverages self-supervised learning and curriculum learning to balance the information from the source and target domains. To be particular, our method employs a masked autoencoder-based self-supervised training objective to learn from both source and target data in a self-supervised manner. Then a progressive curriculum balances learning the discriminative information from the source dataset with the generic information learned from the target domain. Initially, our curriculum utilizes supervised learning to learn class discriminative features from the source data. As the training progresses, we transition to learning target-domain-specific features. We propose a progressive curriculum to encourage the emergence of rich features in the target domain based on class discriminative supervised features in the source domain. %a schedule that helps with this transition. We evaluate our method on several challenging benchmark datasets and demonstrate that our approach outperforms existing cross-domain few-shot learning techniques. Our code is available at https://github.com/Sarinda251/CDFSL-V{https://github.com/Sarinda251/CDFSL-V}
DeepWalk: Online Learning of Social Representations
We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.
Mitigating Object and Action Hallucinations in Multimodal LLMs via Self-Augmented Contrastive Alignment
Recent advancement in multimodal LLMs (MLLMs) has demonstrated their remarkable capability to generate descriptive captions for input videos. However, these models suffer from factual inaccuracies in the generated descriptions, causing severe hallucination issues. While prior works have explored alleviating hallucinations for static images, jointly mitigating visual object and temporal action hallucinations for dynamic videos remains a challenging and unsolved task. To tackle this challenge, we propose a Self-Augmented Contrastive Alignment (SANTA) framework for enabling object and action faithfulness by exempting the spurious correlations and enforcing the emphasis on visual facts. SANTA employs a hallucinative self-augmentation scheme to identify the potential hallucinations that lie in the MLLM and transform the original captions to the contrasted negatives. Furthermore, we develop a tracklet-phrase contrastive alignment to match the regional objects and relation-guided actions with their corresponding visual and temporal phrases. Extensive experiments demonstrate that SANTA outperforms existing methods in alleviating object and action hallucinations, yielding superior performance on the hallucination examination benchmarks.
Assembly101: A Large-Scale Multi-View Video Dataset for Understanding Procedural Activities
Assembly101 is a new procedural activity dataset featuring 4321 videos of people assembling and disassembling 101 "take-apart" toy vehicles. Participants work without fixed instructions, and the sequences feature rich and natural variations in action ordering, mistakes, and corrections. Assembly101 is the first multi-view action dataset, with simultaneous static (8) and egocentric (4) recordings. Sequences are annotated with more than 100K coarse and 1M fine-grained action segments, and 18M 3D hand poses. We benchmark on three action understanding tasks: recognition, anticipation and temporal segmentation. Additionally, we propose a novel task of detecting mistakes. The unique recording format and rich set of annotations allow us to investigate generalization to new toys, cross-view transfer, long-tailed distributions, and pose vs. appearance. We envision that Assembly101 will serve as a new challenge to investigate various activity understanding problems.
Script-centric behavior understanding for assisted autism spectrum disorder diagnosis
Observing and analyzing children's social behaviors is crucial for the early diagnosis of Autism Spectrum Disorders (ASD). This work focuses on automatically detecting ASD using computer vision techniques and large language models (LLMs). Existing methods typically rely on supervised learning. However, the scarcity of ASD diagnostic datasets and the lack of interpretability in diagnostic results significantly limits its clinical application. To address these challenges, we introduce a novel unsupervised approach based on script-centric behavior understanding. Our pipeline converts video content into scripts that describe the behavior of characters, leveraging the generalizability of large language models to detect ASD in a zero-shot or few-shot manner. Specifically, we propose a scripts transcription module for multimodal behavior data textualization and a domain prompts module to bridge LLMs. Our method achieves an accuracy of 92.00\% in diagnosing ASD in children with an average age of 24 months, surpassing the performance of supervised learning methods by 3.58\% absolutely. Extensive experiments confirm the effectiveness of our approach and suggest its potential for advancing ASD research through LLMs.
Scalable Language Models with Posterior Inference of Latent Thought Vectors
We propose a novel family of language models, Latent-Thought Language Models (LTMs), which incorporate explicit latent thought vectors that follow an explicit prior model in latent space. These latent thought vectors guide the autoregressive generation of ground tokens through a Transformer decoder. Training employs a dual-rate optimization process within the classical variational Bayes framework: fast learning of local variational parameters for the posterior distribution of latent vectors, and slow learning of global decoder parameters. Empirical studies reveal that LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space. Higher sample efficiency can be achieved by increasing training compute per token, with further gains possible by trading model size for more inference steps. Designed based on these scaling properties, LTMs demonstrate superior sample and parameter efficiency compared to conventional autoregressive models and discrete diffusion models. They significantly outperform these counterparts in validation perplexity and zero-shot language modeling. Additionally, LTMs exhibit emergent few-shot in-context reasoning capabilities that scale with model and latent size, and achieve competitive performance in conditional and unconditional text generation.
Semi-supervised Active Learning for Video Action Detection
In this work, we focus on label efficient learning for video action detection. We develop a novel semi-supervised active learning approach which utilizes both labeled as well as unlabeled data along with informative sample selection for action detection. Video action detection requires spatio-temporal localization along with classification, which poses several challenges for both active learning informative sample selection as well as semi-supervised learning pseudo label generation. First, we propose NoiseAug, a simple augmentation strategy which effectively selects informative samples for video action detection. Next, we propose fft-attention, a novel technique based on high-pass filtering which enables effective utilization of pseudo label for SSL in video action detection by emphasizing on relevant activity region within a video. We evaluate the proposed approach on three different benchmark datasets, UCF-101-24, JHMDB-21, and Youtube-VOS. First, we demonstrate its effectiveness on video action detection where the proposed approach outperforms prior works in semi-supervised and weakly-supervised learning along with several baseline approaches in both UCF101-24 and JHMDB-21. Next, we also show its effectiveness on Youtube-VOS for video object segmentation demonstrating its generalization capability for other dense prediction tasks in videos. The code and models is publicly available at: https://github.com/AKASH2907/semi-sup-active-learning.
Language as the Medium: Multimodal Video Classification through text only
Despite an exciting new wave of multimodal machine learning models, current approaches still struggle to interpret the complex contextual relationships between the different modalities present in videos. Going beyond existing methods that emphasize simple activities or objects, we propose a new model-agnostic approach for generating detailed textual descriptions that captures multimodal video information. Our method leverages the extensive knowledge learnt by large language models, such as GPT-3.5 or Llama2, to reason about textual descriptions of the visual and aural modalities, obtained from BLIP-2, Whisper and ImageBind. Without needing additional finetuning of video-text models or datasets, we demonstrate that available LLMs have the ability to use these multimodal textual descriptions as proxies for ``sight'' or ``hearing'' and perform zero-shot multimodal classification of videos in-context. Our evaluations on popular action recognition benchmarks, such as UCF-101 or Kinetics, show these context-rich descriptions can be successfully used in video understanding tasks. This method points towards a promising new research direction in multimodal classification, demonstrating how an interplay between textual, visual and auditory machine learning models can enable more holistic video understanding.
TALL: Temporal Activity Localization via Language Query
This paper focuses on temporal localization of actions in untrimmed videos. Existing methods typically train classifiers for a pre-defined list of actions and apply them in a sliding window fashion. However, activities in the wild consist of a wide combination of actors, actions and objects; it is difficult to design a proper activity list that meets users' needs. We propose to localize activities by natural language queries. Temporal Activity Localization via Language (TALL) is challenging as it requires: (1) suitable design of text and video representations to allow cross-modal matching of actions and language queries; (2) ability to locate actions accurately given features from sliding windows of limited granularity. We propose a novel Cross-modal Temporal Regression Localizer (CTRL) to jointly model text query and video clips, output alignment scores and action boundary regression results for candidate clips. For evaluation, we adopt TaCoS dataset, and build a new dataset for this task on top of Charades by adding sentence temporal annotations, called Charades-STA. We also build complex sentence queries in Charades-STA for test. Experimental results show that CTRL outperforms previous methods significantly on both datasets.
ARD-VAE: A Statistical Formulation to Find the Relevant Latent Dimensions of Variational Autoencoders
The variational autoencoder (VAE) is a popular, deep, latent-variable model (DLVM) due to its simple yet effective formulation for modeling the data distribution. Moreover, optimizing the VAE objective function is more manageable than other DLVMs. The bottleneck dimension of the VAE is a crucial design choice, and it has strong ramifications for the model's performance, such as finding the hidden explanatory factors of a dataset using the representations learned by the VAE. However, the size of the latent dimension of the VAE is often treated as a hyperparameter estimated empirically through trial and error. To this end, we propose a statistical formulation to discover the relevant latent factors required for modeling a dataset. In this work, we use a hierarchical prior in the latent space that estimates the variance of the latent axes using the encoded data, which identifies the relevant latent dimensions. For this, we replace the fixed prior in the VAE objective function with a hierarchical prior, keeping the remainder of the formulation unchanged. We call the proposed method the automatic relevancy detection in the variational autoencoder (ARD-VAE). We demonstrate the efficacy of the ARD-VAE on multiple benchmark datasets in finding the relevant latent dimensions and their effect on different evaluation metrics, such as FID score and disentanglement analysis.
Align-Then-stEer: Adapting the Vision-Language Action Models through Unified Latent Guidance
Vision-Language-Action (VLA) models pre-trained on large, diverse datasets show remarkable potential for general-purpose robotic manipulation. However, a primary bottleneck remains in adapting these models to downstream tasks, especially when the robot's embodiment or the task itself differs from the pre-training data. This discrepancy leads to a significant mismatch in action distributions, demanding extensive data and compute for effective fine-tuning. To address this challenge, we introduce Align-Then-stEer (\texttt{ATE)}, a novel, data-efficient, and plug-and-play adaptation framework. ATE first aligns disparate action spaces by constructing a unified latent space, where a variational autoencoder constrained by reverse KL divergence embeds adaptation actions into modes of the pre-training action latent distribution. Subsequently, it steers the diffusion- or flow-based VLA's generation process during fine-tuning via a guidance mechanism that pushes the model's output distribution towards the target domain. We conduct extensive experiments on cross-embodiment and cross-task manipulation in both simulation and real world. Compared to direct fine-tuning of representative VLAs, our method improves the average multi-task success rate by up to 9.8\% in simulation and achieves a striking 32\% success rate gain in a real-world cross-embodiment setting. Our work presents a general and lightweight solution that greatly enhances the practicality of deploying VLA models to new robotic platforms and tasks.
latent-GLAT: Glancing at Latent Variables for Parallel Text Generation
Recently, parallel text generation has received widespread attention due to its success in generation efficiency. Although many advanced techniques are proposed to improve its generation quality, they still need the help of an autoregressive model for training to overcome the one-to-many multi-modal phenomenon in the dataset, limiting their applications. In this paper, we propose latent-GLAT, which employs the discrete latent variables to capture word categorical information and invoke an advanced curriculum learning technique, alleviating the multi-modality problem. Experiment results show that our method outperforms strong baselines without the help of an autoregressive model, which further broadens the application scenarios of the parallel decoding paradigm.
MAGR: Manifold-Aligned Graph Regularization for Continual Action Quality Assessment
Action Quality Assessment (AQA) evaluates diverse skills but models struggle with non-stationary data. We propose Continual AQA (CAQA) to refine models using sparse new data. Feature replay preserves memory without storing raw inputs. However, the misalignment between static old features and the dynamically changing feature manifold causes severe catastrophic forgetting. To address this novel problem, we propose Manifold-Aligned Graph Regularization (MAGR), which first aligns deviated old features to the current feature manifold, ensuring representation consistency. It then constructs a graph jointly arranging old and new features aligned with quality scores. Experiments show MAGR outperforms recent strong baselines with up to 6.56%, 5.66%, 15.64%, and 9.05% correlation gains on the MTL-AQA, FineDiving, UNLV-Dive, and JDM-MSA split datasets, respectively. This validates MAGR for continual assessment challenges arising from non-stationary skill variations.
