Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAnimatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling
Modeling animatable human avatars from RGB videos is a long-standing and challenging problem. Recent works usually adopt MLP-based neural radiance fields (NeRF) to represent 3D humans, but it remains difficult for pure MLPs to regress pose-dependent garment details. To this end, we introduce Animatable Gaussians, a new avatar representation that leverages powerful 2D CNNs and 3D Gaussian splatting to create high-fidelity avatars. To associate 3D Gaussians with the animatable avatar, we learn a parametric template from the input videos, and then parameterize the template on two front \& back canonical Gaussian maps where each pixel represents a 3D Gaussian. The learned template is adaptive to the wearing garments for modeling looser clothes like dresses. Such template-guided 2D parameterization enables us to employ a powerful StyleGAN-based CNN to learn the pose-dependent Gaussian maps for modeling detailed dynamic appearances. Furthermore, we introduce a pose projection strategy for better generalization given novel poses. Overall, our method can create lifelike avatars with dynamic, realistic and generalized appearances. Experiments show that our method outperforms other state-of-the-art approaches. Code: https://github.com/lizhe00/AnimatableGaussians
Make-A-Character: High Quality Text-to-3D Character Generation within Minutes
There is a growing demand for customized and expressive 3D characters with the emergence of AI agents and Metaverse, but creating 3D characters using traditional computer graphics tools is a complex and time-consuming task. To address these challenges, we propose a user-friendly framework named Make-A-Character (Mach) to create lifelike 3D avatars from text descriptions. The framework leverages the power of large language and vision models for textual intention understanding and intermediate image generation, followed by a series of human-oriented visual perception and 3D generation modules. Our system offers an intuitive approach for users to craft controllable, realistic, fully-realized 3D characters that meet their expectations within 2 minutes, while also enabling easy integration with existing CG pipeline for dynamic expressiveness. For more information, please visit the project page at https://human3daigc.github.io/MACH/.
TaoAvatar: Real-Time Lifelike Full-Body Talking Avatars for Augmented Reality via 3D Gaussian Splatting
Realistic 3D full-body talking avatars hold great potential in AR, with applications ranging from e-commerce live streaming to holographic communication. Despite advances in 3D Gaussian Splatting (3DGS) for lifelike avatar creation, existing methods struggle with fine-grained control of facial expressions and body movements in full-body talking tasks. Additionally, they often lack sufficient details and cannot run in real-time on mobile devices. We present TaoAvatar, a high-fidelity, lightweight, 3DGS-based full-body talking avatar driven by various signals. Our approach starts by creating a personalized clothed human parametric template that binds Gaussians to represent appearances. We then pre-train a StyleUnet-based network to handle complex pose-dependent non-rigid deformation, which can capture high-frequency appearance details but is too resource-intensive for mobile devices. To overcome this, we "bake" the non-rigid deformations into a lightweight MLP-based network using a distillation technique and develop blend shapes to compensate for details. Extensive experiments show that TaoAvatar achieves state-of-the-art rendering quality while running in real-time across various devices, maintaining 90 FPS on high-definition stereo devices such as the Apple Vision Pro.
DEGAS: Detailed Expressions on Full-Body Gaussian Avatars
Although neural rendering has made significant advances in creating lifelike, animatable full-body and head avatars, incorporating detailed expressions into full-body avatars remains largely unexplored. We present DEGAS, the first 3D Gaussian Splatting (3DGS)-based modeling method for full-body avatars with rich facial expressions. Trained on multiview videos of a given subject, our method learns a conditional variational autoencoder that takes both the body motion and facial expression as driving signals to generate Gaussian maps in the UV layout. To drive the facial expressions, instead of the commonly used 3D Morphable Models (3DMMs) in 3D head avatars, we propose to adopt the expression latent space trained solely on 2D portrait images, bridging the gap between 2D talking faces and 3D avatars. Leveraging the rendering capability of 3DGS and the rich expressiveness of the expression latent space, the learned avatars can be reenacted to reproduce photorealistic rendering images with subtle and accurate facial expressions. Experiments on an existing dataset and our newly proposed dataset of full-body talking avatars demonstrate the efficacy of our method. We also propose an audio-driven extension of our method with the help of 2D talking faces, opening new possibilities for interactive AI agents.
Zero-1-to-A: Zero-Shot One Image to Animatable Head Avatars Using Video Diffusion
Animatable head avatar generation typically requires extensive data for training. To reduce the data requirements, a natural solution is to leverage existing data-free static avatar generation methods, such as pre-trained diffusion models with score distillation sampling (SDS), which align avatars with pseudo ground-truth outputs from the diffusion model. However, directly distilling 4D avatars from video diffusion often leads to over-smooth results due to spatial and temporal inconsistencies in the generated video. To address this issue, we propose Zero-1-to-A, a robust method that synthesizes a spatial and temporal consistency dataset for 4D avatar reconstruction using the video diffusion model. Specifically, Zero-1-to-A iteratively constructs video datasets and optimizes animatable avatars in a progressive manner, ensuring that avatar quality increases smoothly and consistently throughout the learning process. This progressive learning involves two stages: (1) Spatial Consistency Learning fixes expressions and learns from front-to-side views, and (2) Temporal Consistency Learning fixes views and learns from relaxed to exaggerated expressions, generating 4D avatars in a simple-to-complex manner. Extensive experiments demonstrate that Zero-1-to-A improves fidelity, animation quality, and rendering speed compared to existing diffusion-based methods, providing a solution for lifelike avatar creation. Code is publicly available at: https://github.com/ZhenglinZhou/Zero-1-to-A.
TADA! Text to Animatable Digital Avatars
We introduce TADA, a simple-yet-effective approach that takes textual descriptions and produces expressive 3D avatars with high-quality geometry and lifelike textures, that can be animated and rendered with traditional graphics pipelines. Existing text-based character generation methods are limited in terms of geometry and texture quality, and cannot be realistically animated due to inconsistent alignment between the geometry and the texture, particularly in the face region. To overcome these limitations, TADA leverages the synergy of a 2D diffusion model and an animatable parametric body model. Specifically, we derive an optimizable high-resolution body model from SMPL-X with 3D displacements and a texture map, and use hierarchical rendering with score distillation sampling (SDS) to create high-quality, detailed, holistic 3D avatars from text. To ensure alignment between the geometry and texture, we render normals and RGB images of the generated character and exploit their latent embeddings in the SDS training process. We further introduce various expression parameters to deform the generated character during training, ensuring that the semantics of our generated character remain consistent with the original SMPL-X model, resulting in an animatable character. Comprehensive evaluations demonstrate that TADA significantly surpasses existing approaches on both qualitative and quantitative measures. TADA enables creation of large-scale digital character assets that are ready for animation and rendering, while also being easily editable through natural language. The code will be public for research purposes.
AvatarBooth: High-Quality and Customizable 3D Human Avatar Generation
We introduce AvatarBooth, a novel method for generating high-quality 3D avatars using text prompts or specific images. Unlike previous approaches that can only synthesize avatars based on simple text descriptions, our method enables the creation of personalized avatars from casually captured face or body images, while still supporting text-based model generation and editing. Our key contribution is the precise avatar generation control by using dual fine-tuned diffusion models separately for the human face and body. This enables us to capture intricate details of facial appearance, clothing, and accessories, resulting in highly realistic avatar generations. Furthermore, we introduce pose-consistent constraint to the optimization process to enhance the multi-view consistency of synthesized head images from the diffusion model and thus eliminate interference from uncontrolled human poses. In addition, we present a multi-resolution rendering strategy that facilitates coarse-to-fine supervision of 3D avatar generation, thereby enhancing the performance of the proposed system. The resulting avatar model can be further edited using additional text descriptions and driven by motion sequences. Experiments show that AvatarBooth outperforms previous text-to-3D methods in terms of rendering and geometric quality from either text prompts or specific images. Please check our project website at https://zeng-yifei.github.io/avatarbooth_page/.
PEGASUS: Personalized Generative 3D Avatars with Composable Attributes
We present PEGASUS, a method for constructing a personalized generative 3D face avatar from monocular video sources. Our generative 3D avatar enables disentangled controls to selectively alter the facial attributes (e.g., hair or nose) while preserving the identity. Our approach consists of two stages: synthetic database generation and constructing a personalized generative avatar. We generate a synthetic video collection of the target identity with varying facial attributes, where the videos are synthesized by borrowing the attributes from monocular videos of diverse identities. Then, we build a person-specific generative 3D avatar that can modify its attributes continuously while preserving its identity. Through extensive experiments, we demonstrate that our method of generating a synthetic database and creating a 3D generative avatar is the most effective in preserving identity while achieving high realism. Subsequently, we introduce a zero-shot approach to achieve the same goal of generative modeling more efficiently by leveraging a previously constructed personalized generative model.
GenCA: A Text-conditioned Generative Model for Realistic and Drivable Codec Avatars
Photo-realistic and controllable 3D avatars are crucial for various applications such as virtual and mixed reality (VR/MR), telepresence, gaming, and film production. Traditional methods for avatar creation often involve time-consuming scanning and reconstruction processes for each avatar, which limits their scalability. Furthermore, these methods do not offer the flexibility to sample new identities or modify existing ones. On the other hand, by learning a strong prior from data, generative models provide a promising alternative to traditional reconstruction methods, easing the time constraints for both data capture and processing. Additionally, generative methods enable downstream applications beyond reconstruction, such as editing and stylization. Nonetheless, the research on generative 3D avatars is still in its infancy, and therefore current methods still have limitations such as creating static avatars, lacking photo-realism, having incomplete facial details, or having limited drivability. To address this, we propose a text-conditioned generative model that can generate photo-realistic facial avatars of diverse identities, with more complete details like hair, eyes and mouth interior, and which can be driven through a powerful non-parametric latent expression space. Specifically, we integrate the generative and editing capabilities of latent diffusion models with a strong prior model for avatar expression driving. Our model can generate and control high-fidelity avatars, even those out-of-distribution. We also highlight its potential for downstream applications, including avatar editing and single-shot avatar reconstruction.
PuzzleAvatar: Assembling 3D Avatars from Personal Albums
Generating personalized 3D avatars is crucial for AR/VR. However, recent text-to-3D methods that generate avatars for celebrities or fictional characters, struggle with everyday people. Methods for faithful reconstruction typically require full-body images in controlled settings. What if a user could just upload their personal "OOTD" (Outfit Of The Day) photo collection and get a faithful avatar in return? The challenge is that such casual photo collections contain diverse poses, challenging viewpoints, cropped views, and occlusion (albeit with a consistent outfit, accessories and hairstyle). We address this novel "Album2Human" task by developing PuzzleAvatar, a novel model that generates a faithful 3D avatar (in a canonical pose) from a personal OOTD album, while bypassing the challenging estimation of body and camera pose. To this end, we fine-tune a foundational vision-language model (VLM) on such photos, encoding the appearance, identity, garments, hairstyles, and accessories of a person into (separate) learned tokens and instilling these cues into the VLM. In effect, we exploit the learned tokens as "puzzle pieces" from which we assemble a faithful, personalized 3D avatar. Importantly, we can customize avatars by simply inter-changing tokens. As a benchmark for this new task, we collect a new dataset, called PuzzleIOI, with 41 subjects in a total of nearly 1K OOTD configurations, in challenging partial photos with paired ground-truth 3D bodies. Evaluation shows that PuzzleAvatar not only has high reconstruction accuracy, outperforming TeCH and MVDreamBooth, but also a unique scalability to album photos, and strong robustness. Our model and data will be public.
Motion Avatar: Generate Human and Animal Avatars with Arbitrary Motion
In recent years, there has been significant interest in creating 3D avatars and motions, driven by their diverse applications in areas like film-making, video games, AR/VR, and human-robot interaction. However, current efforts primarily concentrate on either generating the 3D avatar mesh alone or producing motion sequences, with integrating these two aspects proving to be a persistent challenge. Additionally, while avatar and motion generation predominantly target humans, extending these techniques to animals remains a significant challenge due to inadequate training data and methods. To bridge these gaps, our paper presents three key contributions. Firstly, we proposed a novel agent-based approach named Motion Avatar, which allows for the automatic generation of high-quality customizable human and animal avatars with motions through text queries. The method significantly advanced the progress in dynamic 3D character generation. Secondly, we introduced a LLM planner that coordinates both motion and avatar generation, which transforms a discriminative planning into a customizable Q&A fashion. Lastly, we presented an animal motion dataset named Zoo-300K, comprising approximately 300,000 text-motion pairs across 65 animal categories and its building pipeline ZooGen, which serves as a valuable resource for the community. See project website https://steve-zeyu-zhang.github.io/MotionAvatar/
NECA: Neural Customizable Human Avatar
Human avatar has become a novel type of 3D asset with various applications. Ideally, a human avatar should be fully customizable to accommodate different settings and environments. In this work, we introduce NECA, an approach capable of learning versatile human representation from monocular or sparse-view videos, enabling granular customization across aspects such as pose, shadow, shape, lighting and texture. The core of our approach is to represent humans in complementary dual spaces and predict disentangled neural fields of geometry, albedo, shadow, as well as an external lighting, from which we are able to derive realistic rendering with high-frequency details via volumetric rendering. Extensive experiments demonstrate the advantage of our method over the state-of-the-art methods in photorealistic rendering, as well as various editing tasks such as novel pose synthesis and relighting. The code is available at https://github.com/iSEE-Laboratory/NECA.
Digital Life Project: Autonomous 3D Characters with Social Intelligence
In this work, we present Digital Life Project, a framework utilizing language as the universal medium to build autonomous 3D characters, who are capable of engaging in social interactions and expressing with articulated body motions, thereby simulating life in a digital environment. Our framework comprises two primary components: 1) SocioMind: a meticulously crafted digital brain that models personalities with systematic few-shot exemplars, incorporates a reflection process based on psychology principles, and emulates autonomy by initiating dialogue topics; 2) MoMat-MoGen: a text-driven motion synthesis paradigm for controlling the character's digital body. It integrates motion matching, a proven industry technique to ensure motion quality, with cutting-edge advancements in motion generation for diversity. Extensive experiments demonstrate that each module achieves state-of-the-art performance in its respective domain. Collectively, they enable virtual characters to initiate and sustain dialogues autonomously, while evolving their socio-psychological states. Concurrently, these characters can perform contextually relevant bodily movements. Additionally, a motion captioning module further allows the virtual character to recognize and appropriately respond to human players' actions. Homepage: https://digital-life-project.com/
TEDRA: Text-based Editing of Dynamic and Photoreal Actors
Over the past years, significant progress has been made in creating photorealistic and drivable 3D avatars solely from videos of real humans. However, a core remaining challenge is the fine-grained and user-friendly editing of clothing styles by means of textual descriptions. To this end, we present TEDRA, the first method allowing text-based edits of an avatar, which maintains the avatar's high fidelity, space-time coherency, as well as dynamics, and enables skeletal pose and view control. We begin by training a model to create a controllable and high-fidelity digital replica of the real actor. Next, we personalize a pretrained generative diffusion model by fine-tuning it on various frames of the real character captured from different camera angles, ensuring the digital representation faithfully captures the dynamics and movements of the real person. This two-stage process lays the foundation for our approach to dynamic human avatar editing. Utilizing this personalized diffusion model, we modify the dynamic avatar based on a provided text prompt using our Personalized Normal Aligned Score Distillation Sampling (PNA-SDS) within a model-based guidance framework. Additionally, we propose a time step annealing strategy to ensure high-quality edits. Our results demonstrate a clear improvement over prior work in functionality and visual quality.
Physics-based Motion Retargeting from Sparse Inputs
Avatars are important to create interactive and immersive experiences in virtual worlds. One challenge in animating these characters to mimic a user's motion is that commercial AR/VR products consist only of a headset and controllers, providing very limited sensor data of the user's pose. Another challenge is that an avatar might have a different skeleton structure than a human and the mapping between them is unclear. In this work we address both of these challenges. We introduce a method to retarget motions in real-time from sparse human sensor data to characters of various morphologies. Our method uses reinforcement learning to train a policy to control characters in a physics simulator. We only require human motion capture data for training, without relying on artist-generated animations for each avatar. This allows us to use large motion capture datasets to train general policies that can track unseen users from real and sparse data in real-time. We demonstrate the feasibility of our approach on three characters with different skeleton structure: a dinosaur, a mouse-like creature and a human. We show that the avatar poses often match the user surprisingly well, despite having no sensor information of the lower body available. We discuss and ablate the important components in our framework, specifically the kinematic retargeting step, the imitation, contact and action reward as well as our asymmetric actor-critic observations. We further explore the robustness of our method in a variety of settings including unbalancing, dancing and sports motions.
Text-Guided Generation and Editing of Compositional 3D Avatars
Our goal is to create a realistic 3D facial avatar with hair and accessories using only a text description. While this challenge has attracted significant recent interest, existing methods either lack realism, produce unrealistic shapes, or do not support editing, such as modifications to the hairstyle. We argue that existing methods are limited because they employ a monolithic modeling approach, using a single representation for the head, face, hair, and accessories. Our observation is that the hair and face, for example, have very different structural qualities that benefit from different representations. Building on this insight, we generate avatars with a compositional model, in which the head, face, and upper body are represented with traditional 3D meshes, and the hair, clothing, and accessories with neural radiance fields (NeRF). The model-based mesh representation provides a strong geometric prior for the face region, improving realism while enabling editing of the person's appearance. By using NeRFs to represent the remaining components, our method is able to model and synthesize parts with complex geometry and appearance, such as curly hair and fluffy scarves. Our novel system synthesizes these high-quality compositional avatars from text descriptions. The experimental results demonstrate that our method, Text-guided generation and Editing of Compositional Avatars (TECA), produces avatars that are more realistic than those of recent methods while being editable because of their compositional nature. For example, our TECA enables the seamless transfer of compositional features like hairstyles, scarves, and other accessories between avatars. This capability supports applications such as virtual try-on.
AgentAvatar: Disentangling Planning, Driving and Rendering for Photorealistic Avatar Agents
In this study, our goal is to create interactive avatar agents that can autonomously plan and animate nuanced facial movements realistically, from both visual and behavioral perspectives. Given high-level inputs about the environment and agent profile, our framework harnesses LLMs to produce a series of detailed text descriptions of the avatar agents' facial motions. These descriptions are then processed by our task-agnostic driving engine into motion token sequences, which are subsequently converted into continuous motion embeddings that are further consumed by our standalone neural-based renderer to generate the final photorealistic avatar animations. These streamlined processes allow our framework to adapt to a variety of non-verbal avatar interactions, both monadic and dyadic. Our extensive study, which includes experiments on both newly compiled and existing datasets featuring two types of agents -- one capable of monadic interaction with the environment, and the other designed for dyadic conversation -- validates the effectiveness and versatility of our approach. To our knowledge, we advanced a leap step by combining LLMs and neural rendering for generalized non-verbal prediction and photo-realistic rendering of avatar agents.
SmartAvatar: Text- and Image-Guided Human Avatar Generation with VLM AI Agents
SmartAvatar is a vision-language-agent-driven framework for generating fully rigged, animation-ready 3D human avatars from a single photo or textual prompt. While diffusion-based methods have made progress in general 3D object generation, they continue to struggle with precise control over human identity, body shape, and animation readiness. In contrast, SmartAvatar leverages the commonsense reasoning capabilities of large vision-language models (VLMs) in combination with off-the-shelf parametric human generators to deliver high-quality, customizable avatars. A key innovation is an autonomous verification loop, where the agent renders draft avatars, evaluates facial similarity, anatomical plausibility, and prompt alignment, and iteratively adjusts generation parameters for convergence. This interactive, AI-guided refinement process promotes fine-grained control over both facial and body features, enabling users to iteratively refine their avatars via natural-language conversations. Unlike diffusion models that rely on static pre-trained datasets and offer limited flexibility, SmartAvatar brings users into the modeling loop and ensures continuous improvement through an LLM-driven procedural generation and verification system. The generated avatars are fully rigged and support pose manipulation with consistent identity and appearance, making them suitable for downstream animation and interactive applications. Quantitative benchmarks and user studies demonstrate that SmartAvatar outperforms recent text- and image-driven avatar generation systems in terms of reconstructed mesh quality, identity fidelity, attribute accuracy, and animation readiness, making it a versatile tool for realistic, customizable avatar creation on consumer-grade hardware.
Interactive Rendering of Relightable and Animatable Gaussian Avatars
Creating relightable and animatable avatars from multi-view or monocular videos is a challenging task for digital human creation and virtual reality applications. Previous methods rely on neural radiance fields or ray tracing, resulting in slow training and rendering processes. By utilizing Gaussian Splatting, we propose a simple and efficient method to decouple body materials and lighting from sparse-view or monocular avatar videos, so that the avatar can be rendered simultaneously under novel viewpoints, poses, and lightings at interactive frame rates (6.9 fps). Specifically, we first obtain the canonical body mesh using a signed distance function and assign attributes to each mesh vertex. The Gaussians in the canonical space then interpolate from nearby body mesh vertices to obtain the attributes. We subsequently deform the Gaussians to the posed space using forward skinning, and combine the learnable environment light with the Gaussian attributes for shading computation. To achieve fast shadow modeling, we rasterize the posed body mesh from dense viewpoints to obtain the visibility. Our approach is not only simple but also fast enough to allow interactive rendering of avatar animation under environmental light changes. Experiments demonstrate that, compared to previous works, our method can render higher quality results at a faster speed on both synthetic and real datasets.
3D Gaussian Parametric Head Model
Creating high-fidelity 3D human head avatars is crucial for applications in VR/AR, telepresence, digital human interfaces, and film production. Recent advances have leveraged morphable face models to generate animated head avatars from easily accessible data, representing varying identities and expressions within a low-dimensional parametric space. However, existing methods often struggle with modeling complex appearance details, e.g., hairstyles and accessories, and suffer from low rendering quality and efficiency. This paper introduces a novel approach, 3D Gaussian Parametric Head Model, which employs 3D Gaussians to accurately represent the complexities of the human head, allowing precise control over both identity and expression. Additionally, it enables seamless face portrait interpolation and the reconstruction of detailed head avatars from a single image. Unlike previous methods, the Gaussian model can handle intricate details, enabling realistic representations of varying appearances and complex expressions. Furthermore, this paper presents a well-designed training framework to ensure smooth convergence, providing a guarantee for learning the rich content. Our method achieves high-quality, photo-realistic rendering with real-time efficiency, making it a valuable contribution to the field of parametric head models.
NPGA: Neural Parametric Gaussian Avatars
The creation of high-fidelity, digital versions of human heads is an important stepping stone in the process of further integrating virtual components into our everyday lives. Constructing such avatars is a challenging research problem, due to a high demand for photo-realism and real-time rendering performance. In this work, we propose Neural Parametric Gaussian Avatars (NPGA), a data-driven approach to create high-fidelity, controllable avatars from multi-view video recordings. We build our method around 3D Gaussian Splatting for its highly efficient rendering and to inherit the topological flexibility of point clouds. In contrast to previous work, we condition our avatars' dynamics on the rich expression space of neural parametric head models (NPHM), instead of mesh-based 3DMMs. To this end, we distill the backward deformation field of our underlying NPHM into forward deformations which are compatible with rasterization-based rendering. All remaining fine-scale, expression-dependent details are learned from the multi-view videos. To increase the representational capacity of our avatars, we augment the canonical Gaussian point cloud using per-primitive latent features which govern its dynamic behavior. To regularize this increased dynamic expressivity, we propose Laplacian terms on the latent features and predicted dynamics. We evaluate our method on the public NeRSemble dataset, demonstrating that NPGA significantly outperforms the previous state-of-the-art avatars on the self-reenactment task by 2.6 PSNR. Furthermore, we demonstrate accurate animation capabilities from real-world monocular videos.
One Shot, One Talk: Whole-body Talking Avatar from a Single Image
Building realistic and animatable avatars still requires minutes of multi-view or monocular self-rotating videos, and most methods lack precise control over gestures and expressions. To push this boundary, we address the challenge of constructing a whole-body talking avatar from a single image. We propose a novel pipeline that tackles two critical issues: 1) complex dynamic modeling and 2) generalization to novel gestures and expressions. To achieve seamless generalization, we leverage recent pose-guided image-to-video diffusion models to generate imperfect video frames as pseudo-labels. To overcome the dynamic modeling challenge posed by inconsistent and noisy pseudo-videos, we introduce a tightly coupled 3DGS-mesh hybrid avatar representation and apply several key regularizations to mitigate inconsistencies caused by imperfect labels. Extensive experiments on diverse subjects demonstrate that our method enables the creation of a photorealistic, precisely animatable, and expressive whole-body talking avatar from just a single image.
CAP4D: Creating Animatable 4D Portrait Avatars with Morphable Multi-View Diffusion Models
Reconstructing photorealistic and dynamic portrait avatars from images is essential to many applications including advertising, visual effects, and virtual reality. Depending on the application, avatar reconstruction involves different capture setups and constraints - for example, visual effects studios use camera arrays to capture hundreds of reference images, while content creators may seek to animate a single portrait image downloaded from the internet. As such, there is a large and heterogeneous ecosystem of methods for avatar reconstruction. Techniques based on multi-view stereo or neural rendering achieve the highest quality results, but require hundreds of reference images. Recent generative models produce convincing avatars from a single reference image, but visual fidelity yet lags behind multi-view techniques. Here, we present CAP4D: an approach that uses a morphable multi-view diffusion model to reconstruct photoreal 4D (dynamic 3D) portrait avatars from any number of reference images (i.e., one to 100) and animate and render them in real time. Our approach demonstrates state-of-the-art performance for single-, few-, and multi-image 4D portrait avatar reconstruction, and takes steps to bridge the gap in visual fidelity between single-image and multi-view reconstruction techniques.
AvatarBrush: Monocular Reconstruction of Gaussian Avatars with Intuitive Local Editing
The efficient reconstruction of high-quality and intuitively editable human avatars presents a pressing challenge in the field of computer vision. Recent advancements, such as 3DGS, have demonstrated impressive reconstruction efficiency and rapid rendering speeds. However, intuitive local editing of these representations remains a significant challenge. In this work, we propose AvatarBrush, a framework that reconstructs fully animatable and locally editable avatars using only a monocular video input. We propose a three-layer model to represent the avatar and, inspired by mesh morphing techniques, design a framework to generate the Gaussian model from local information of the parametric body model. Compared to previous methods that require scanned meshes or multi-view captures as input, our approach reduces costs and enhances editing capabilities such as body shape adjustment, local texture modification, and geometry transfer. Our experimental results demonstrate superior quality across two datasets and emphasize the enhanced, user-friendly, and localized editing capabilities of our method.
FRESA:Feedforward Reconstruction of Personalized Skinned Avatars from Few Images
We present a novel method for reconstructing personalized 3D human avatars with realistic animation from only a few images. Due to the large variations in body shapes, poses, and cloth types, existing methods mostly require hours of per-subject optimization during inference, which limits their practical applications. In contrast, we learn a universal prior from over a thousand clothed humans to achieve instant feedforward generation and zero-shot generalization. Specifically, instead of rigging the avatar with shared skinning weights, we jointly infer personalized avatar shape, skinning weights, and pose-dependent deformations, which effectively improves overall geometric fidelity and reduces deformation artifacts. Moreover, to normalize pose variations and resolve coupled ambiguity between canonical shapes and skinning weights, we design a 3D canonicalization process to produce pixel-aligned initial conditions, which helps to reconstruct fine-grained geometric details. We then propose a multi-frame feature aggregation to robustly reduce artifacts introduced in canonicalization and fuse a plausible avatar preserving person-specific identities. Finally, we train the model in an end-to-end framework on a large-scale capture dataset, which contains diverse human subjects paired with high-quality 3D scans. Extensive experiments show that our method generates more authentic reconstruction and animation than state-of-the-arts, and can be directly generalized to inputs from casually taken phone photos. Project page and code is available at https://github.com/rongakowang/FRESA.
iHuman: Instant Animatable Digital Humans From Monocular Videos
Personalized 3D avatars require an animatable representation of digital humans. Doing so instantly from monocular videos offers scalability to broad class of users and wide-scale applications. In this paper, we present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos. Our method utilizes the efficiency of Gaussian splatting to model both 3D geometry and appearance. However, we observed that naively optimizing Gaussian splats results in inaccurate geometry, thereby leading to poor animations. This work achieves and illustrates the need of accurate 3D mesh-type modelling of the human body for animatable digitization through Gaussian splats. This is achieved by developing a novel pipeline that benefits from three key aspects: (a) implicit modelling of surface's displacements and the color's spherical harmonics; (b) binding of 3D Gaussians to the respective triangular faces of the body template; (c) a novel technique to render normals followed by their auxiliary supervision. Our exhaustive experiments on three different benchmark datasets demonstrates the state-of-the-art results of our method, in limited time settings. In fact, our method is faster by an order of magnitude (in terms of training time) than its closest competitor. At the same time, we achieve superior rendering and 3D reconstruction performance under the change of poses.
DreamHuman: Animatable 3D Avatars from Text
We present DreamHuman, a method to generate realistic animatable 3D human avatar models solely from textual descriptions. Recent text-to-3D methods have made considerable strides in generation, but are still lacking in important aspects. Control and often spatial resolution remain limited, existing methods produce fixed rather than animated 3D human models, and anthropometric consistency for complex structures like people remains a challenge. DreamHuman connects large text-to-image synthesis models, neural radiance fields, and statistical human body models in a novel modeling and optimization framework. This makes it possible to generate dynamic 3D human avatars with high-quality textures and learned, instance-specific, surface deformations. We demonstrate that our method is capable to generate a wide variety of animatable, realistic 3D human models from text. Our 3D models have diverse appearance, clothing, skin tones and body shapes, and significantly outperform both generic text-to-3D approaches and previous text-based 3D avatar generators in visual fidelity. For more results and animations please check our website at https://dream-human.github.io.
SEEAvatar: Photorealistic Text-to-3D Avatar Generation with Constrained Geometry and Appearance
Powered by large-scale text-to-image generation models, text-to-3D avatar generation has made promising progress. However, most methods fail to produce photorealistic results, limited by imprecise geometry and low-quality appearance. Towards more practical avatar generation, we present SEEAvatar, a method for generating photorealistic 3D avatars from text with SElf-Evolving constraints for decoupled geometry and appearance. For geometry, we propose to constrain the optimized avatar in a decent global shape with a template avatar. The template avatar is initialized with human prior and can be updated by the optimized avatar periodically as an evolving template, which enables more flexible shape generation. Besides, the geometry is also constrained by the static human prior in local parts like face and hands to maintain the delicate structures. For appearance generation, we use diffusion model enhanced by prompt engineering to guide a physically based rendering pipeline to generate realistic textures. The lightness constraint is applied on the albedo texture to suppress incorrect lighting effect. Experiments show that our method outperforms previous methods on both global and local geometry and appearance quality by a large margin. Since our method can produce high-quality meshes and textures, such assets can be directly applied in classic graphics pipeline for realistic rendering under any lighting condition. Project page at: https://seeavatar3d.github.io.
MagicMirror: Fast and High-Quality Avatar Generation with a Constrained Search Space
We introduce a novel framework for 3D human avatar generation and personalization, leveraging text prompts to enhance user engagement and customization. Central to our approach are key innovations aimed at overcoming the challenges in photo-realistic avatar synthesis. Firstly, we utilize a conditional Neural Radiance Fields (NeRF) model, trained on a large-scale unannotated multi-view dataset, to create a versatile initial solution space that accelerates and diversifies avatar generation. Secondly, we develop a geometric prior, leveraging the capabilities of Text-to-Image Diffusion Models, to ensure superior view invariance and enable direct optimization of avatar geometry. These foundational ideas are complemented by our optimization pipeline built on Variational Score Distillation (VSD), which mitigates texture loss and over-saturation issues. As supported by our extensive experiments, these strategies collectively enable the creation of custom avatars with unparalleled visual quality and better adherence to input text prompts. You can find more results and videos in our website: https://syntec-research.github.io/MagicMirror
SwiftAvatar: Efficient Auto-Creation of Parameterized Stylized Character on Arbitrary Avatar Engines
The creation of a parameterized stylized character involves careful selection of numerous parameters, also known as the "avatar vectors" that can be interpreted by the avatar engine. Existing unsupervised avatar vector estimation methods that auto-create avatars for users, however, often fail to work because of the domain gap between realistic faces and stylized avatar images. To this end, we propose SwiftAvatar, a novel avatar auto-creation framework that is evidently superior to previous works. SwiftAvatar introduces dual-domain generators to create pairs of realistic faces and avatar images using shared latent codes. The latent codes can then be bridged with the avatar vectors as pairs, by performing GAN inversion on the avatar images rendered from the engine using avatar vectors. Through this way, we are able to synthesize paired data in high-quality as many as possible, consisting of avatar vectors and their corresponding realistic faces. We also propose semantic augmentation to improve the diversity of synthesis. Finally, a light-weight avatar vector estimator is trained on the synthetic pairs to implement efficient auto-creation. Our experiments demonstrate the effectiveness and efficiency of SwiftAvatar on two different avatar engines. The superiority and advantageous flexibility of SwiftAvatar are also verified in both subjective and objective evaluations.
GAIA: Zero-shot Talking Avatar Generation
Zero-shot talking avatar generation aims at synthesizing natural talking videos from speech and a single portrait image. Previous methods have relied on domain-specific heuristics such as warping-based motion representation and 3D Morphable Models, which limit the naturalness and diversity of the generated avatars. In this work, we introduce GAIA (Generative AI for Avatar), which eliminates the domain priors in talking avatar generation. In light of the observation that the speech only drives the motion of the avatar while the appearance of the avatar and the background typically remain the same throughout the entire video, we divide our approach into two stages: 1) disentangling each frame into motion and appearance representations; 2) generating motion sequences conditioned on the speech and reference portrait image. We collect a large-scale high-quality talking avatar dataset and train the model on it with different scales (up to 2B parameters). Experimental results verify the superiority, scalability, and flexibility of GAIA as 1) the resulting model beats previous baseline models in terms of naturalness, diversity, lip-sync quality, and visual quality; 2) the framework is scalable since larger models yield better results; 3) it is general and enables different applications like controllable talking avatar generation and text-instructed avatar generation.
DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance
Emerging Metaverse applications demand accessible, accurate, and easy-to-use tools for 3D digital human creations in order to depict different cultures and societies as if in the physical world. Recent large-scale vision-language advances pave the way to for novices to conveniently customize 3D content. However, the generated CG-friendly assets still cannot represent the desired facial traits for human characteristics. In this paper, we present DreamFace, a progressive scheme to generate personalized 3D faces under text guidance. It enables layman users to naturally customize 3D facial assets that are compatible with CG pipelines, with desired shapes, textures, and fine-grained animation capabilities. From a text input to describe the facial traits, we first introduce a coarse-to-fine scheme to generate the neutral facial geometry with a unified topology. We employ a selection strategy in the CLIP embedding space, and subsequently optimize both the details displacements and normals using Score Distillation Sampling from generic Latent Diffusion Model. Then, for neutral appearance generation, we introduce a dual-path mechanism, which combines the generic LDM with a novel texture LDM to ensure both the diversity and textural specification in the UV space. We also employ a two-stage optimization to perform SDS in both the latent and image spaces to significantly provides compact priors for fine-grained synthesis. Our generated neutral assets naturally support blendshapes-based facial animations. We further improve the animation ability with personalized deformation characteristics by learning the universal expression prior using the cross-identity hypernetwork. Notably, DreamFace can generate of realistic 3D facial assets with physically-based rendering quality and rich animation ability from video footage, even for fashion icons or exotic characters in cartoons and fiction movies.
Deformable 3D Gaussian Splatting for Animatable Human Avatars
Recent advances in neural radiance fields enable novel view synthesis of photo-realistic images in dynamic settings, which can be applied to scenarios with human animation. Commonly used implicit backbones to establish accurate models, however, require many input views and additional annotations such as human masks, UV maps and depth maps. In this work, we propose ParDy-Human (Parameterized Dynamic Human Avatar), a fully explicit approach to construct a digital avatar from as little as a single monocular sequence. ParDy-Human introduces parameter-driven dynamics into 3D Gaussian Splatting where 3D Gaussians are deformed by a human pose model to animate the avatar. Our method is composed of two parts: A first module that deforms canonical 3D Gaussians according to SMPL vertices and a consecutive module that further takes their designed joint encodings and predicts per Gaussian deformations to deal with dynamics beyond SMPL vertex deformations. Images are then synthesized by a rasterizer. ParDy-Human constitutes an explicit model for realistic dynamic human avatars which requires significantly fewer training views and images. Our avatars learning is free of additional annotations such as masks and can be trained with variable backgrounds while inferring full-resolution images efficiently even on consumer hardware. We provide experimental evidence to show that ParDy-Human outperforms state-of-the-art methods on ZJU-MoCap and THUman4.0 datasets both quantitatively and visually.
Learning Personalized High Quality Volumetric Head Avatars from Monocular RGB Videos
We propose a method to learn a high-quality implicit 3D head avatar from a monocular RGB video captured in the wild. The learnt avatar is driven by a parametric face model to achieve user-controlled facial expressions and head poses. Our hybrid pipeline combines the geometry prior and dynamic tracking of a 3DMM with a neural radiance field to achieve fine-grained control and photorealism. To reduce over-smoothing and improve out-of-model expressions synthesis, we propose to predict local features anchored on the 3DMM geometry. These learnt features are driven by 3DMM deformation and interpolated in 3D space to yield the volumetric radiance at a designated query point. We further show that using a Convolutional Neural Network in the UV space is critical in incorporating spatial context and producing representative local features. Extensive experiments show that we are able to reconstruct high-quality avatars, with more accurate expression-dependent details, good generalization to out-of-training expressions, and quantitatively superior renderings compared to other state-of-the-art approaches.
WildAvatar: Web-scale In-the-wild Video Dataset for 3D Avatar Creation
Existing human datasets for avatar creation are typically limited to laboratory environments, wherein high-quality annotations (e.g., SMPL estimation from 3D scans or multi-view images) can be ideally provided. However, their annotating requirements are impractical for real-world images or videos, posing challenges toward real-world applications on current avatar creation methods. To this end, we propose the WildAvatar dataset, a web-scale in-the-wild human avatar creation dataset extracted from YouTube, with 10,000+ different human subjects and scenes. WildAvatar is at least 10times richer than previous datasets for 3D human avatar creation. We evaluate several state-of-the-art avatar creation methods on our dataset, highlighting the unexplored challenges in real-world applications on avatar creation. We also demonstrate the potential for generalizability of avatar creation methods, when provided with data at scale. We publicly release our data source links and annotations, to push forward 3D human avatar creation and other related fields for real-world applications.
Single-Shot Implicit Morphable Faces with Consistent Texture Parameterization
There is a growing demand for the accessible creation of high-quality 3D avatars that are animatable and customizable. Although 3D morphable models provide intuitive control for editing and animation, and robustness for single-view face reconstruction, they cannot easily capture geometric and appearance details. Methods based on neural implicit representations, such as signed distance functions (SDF) or neural radiance fields, approach photo-realism, but are difficult to animate and do not generalize well to unseen data. To tackle this problem, we propose a novel method for constructing implicit 3D morphable face models that are both generalizable and intuitive for editing. Trained from a collection of high-quality 3D scans, our face model is parameterized by geometry, expression, and texture latent codes with a learned SDF and explicit UV texture parameterization. Once trained, we can reconstruct an avatar from a single in-the-wild image by leveraging the learned prior to project the image into the latent space of our model. Our implicit morphable face models can be used to render an avatar from novel views, animate facial expressions by modifying expression codes, and edit textures by directly painting on the learned UV-texture maps. We demonstrate quantitatively and qualitatively that our method improves upon photo-realism, geometry, and expression accuracy compared to state-of-the-art methods.
InfiniHuman: Infinite 3D Human Creation with Precise Control
Generating realistic and controllable 3D human avatars is a long-standing challenge, particularly when covering broad attribute ranges such as ethnicity, age, clothing styles, and detailed body shapes. Capturing and annotating large-scale human datasets for training generative models is prohibitively expensive and limited in scale and diversity. The central question we address in this paper is: Can existing foundation models be distilled to generate theoretically unbounded, richly annotated 3D human data? We introduce InfiniHuman, a framework that synergistically distills these models to produce richly annotated human data at minimal cost and with theoretically unlimited scalability. We propose InfiniHumanData, a fully automatic pipeline that leverages vision-language and image generation models to create a large-scale multi-modal dataset. User study shows our automatically generated identities are undistinguishable from scan renderings. InfiniHumanData contains 111K identities spanning unprecedented diversity. Each identity is annotated with multi-granularity text descriptions, multi-view RGB images, detailed clothing images, and SMPL body-shape parameters. Building on this dataset, we propose InfiniHumanGen, a diffusion-based generative pipeline conditioned on text, body shape, and clothing assets. InfiniHumanGen enables fast, realistic, and precisely controllable avatar generation. Extensive experiments demonstrate significant improvements over state-of-the-art methods in visual quality, generation speed, and controllability. Our approach enables high-quality avatar generation with fine-grained control at effectively unbounded scale through a practical and affordable solution. We will publicly release the automatic data generation pipeline, the comprehensive InfiniHumanData dataset, and the InfiniHumanGen models at https://yuxuan-xue.com/infini-human.
Relightable and Animatable Neural Avatars from Videos
Lightweight creation of 3D digital avatars is a highly desirable but challenging task. With only sparse videos of a person under unknown illumination, we propose a method to create relightable and animatable neural avatars, which can be used to synthesize photorealistic images of humans under novel viewpoints, body poses, and lighting. The key challenge here is to disentangle the geometry, material of the clothed body, and lighting, which becomes more difficult due to the complex geometry and shadow changes caused by body motions. To solve this ill-posed problem, we propose novel techniques to better model the geometry and shadow changes. For geometry change modeling, we propose an invertible deformation field, which helps to solve the inverse skinning problem and leads to better geometry quality. To model the spatial and temporal varying shading cues, we propose a pose-aware part-wise light visibility network to estimate light occlusion. Extensive experiments on synthetic and real datasets show that our approach reconstructs high-quality geometry and generates realistic shadows under different body poses. Code and data are available at https://wenbin-lin.github.io/RelightableAvatar-page/.
Dream3DAvatar: Text-Controlled 3D Avatar Reconstruction from a Single Image
With the rapid advancement of 3D representation techniques and generative models, substantial progress has been made in reconstructing full-body 3D avatars from a single image. However, this task remains fundamentally ill-posedness due to the limited information available from monocular input, making it difficult to control the geometry and texture of occluded regions during generation. To address these challenges, we redesign the reconstruction pipeline and propose Dream3DAvatar, an efficient and text-controllable two-stage framework for 3D avatar generation. In the first stage, we develop a lightweight, adapter-enhanced multi-view generation model. Specifically, we introduce the Pose-Adapter to inject SMPL-X renderings and skeletal information into SDXL, enforcing geometric and pose consistency across views. To preserve facial identity, we incorporate ID-Adapter-G, which injects high-resolution facial features into the generation process. Additionally, we leverage BLIP2 to generate high-quality textual descriptions of the multi-view images, enhancing text-driven controllability in occluded regions. In the second stage, we design a feedforward Transformer model equipped with a multi-view feature fusion module to reconstruct high-fidelity 3D Gaussian Splat representations (3DGS) from the generated images. Furthermore, we introduce ID-Adapter-R, which utilizes a gating mechanism to effectively fuse facial features into the reconstruction process, improving high-frequency detail recovery. Extensive experiments demonstrate that our method can generate realistic, animation-ready 3D avatars without any post-processing and consistently outperforms existing baselines across multiple evaluation metrics.
Live Avatar: Streaming Real-time Audio-Driven Avatar Generation with Infinite Length
Existing diffusion-based video generation methods are fundamentally constrained by sequential computation and long-horizon inconsistency, limiting their practical adoption in real-time, streaming audio-driven avatar synthesis. We present Live Avatar, an algorithm-system co-designed framework that enables efficient, high-fidelity, and infinite-length avatar generation using a 14-billion-parameter diffusion model. Our approach introduces Timestep-forcing Pipeline Parallelism (TPP), a distributed inference paradigm that pipelines denoising steps across multiple GPUs, effectively breaking the autoregressive bottleneck and ensuring stable, low-latency real-time streaming. To further enhance temporal consistency and mitigate identity drift and color artifacts, we propose the Rolling Sink Frame Mechanism (RSFM), which maintains sequence fidelity by dynamically recalibrating appearance using a cached reference image. Additionally, we leverage Self-Forcing Distribution Matching Distillation to facilitate causal, streamable adaptation of large-scale models without sacrificing visual quality. Live Avatar demonstrates state-of-the-art performance, reaching 20 FPS end-to-end generation on 5 H800 GPUs, and, to the best of our knowledge, is the first to achieve practical, real-time, high-fidelity avatar generation at this scale. Our work establishes a new paradigm for deploying advanced diffusion models in industrial long-form video synthesis applications.
AvatarVerse: High-quality & Stable 3D Avatar Creation from Text and Pose
Creating expressive, diverse and high-quality 3D avatars from highly customized text descriptions and pose guidance is a challenging task, due to the intricacy of modeling and texturing in 3D that ensure details and various styles (realistic, fictional, etc). We present AvatarVerse, a stable pipeline for generating expressive high-quality 3D avatars from nothing but text descriptions and pose guidance. In specific, we introduce a 2D diffusion model conditioned on DensePose signal to establish 3D pose control of avatars through 2D images, which enhances view consistency from partially observed scenarios. It addresses the infamous Janus Problem and significantly stablizes the generation process. Moreover, we propose a progressive high-resolution 3D synthesis strategy, which obtains substantial improvement over the quality of the created 3D avatars. To this end, the proposed AvatarVerse pipeline achieves zero-shot 3D modeling of 3D avatars that are not only more expressive, but also in higher quality and fidelity than previous works. Rigorous qualitative evaluations and user studies showcase AvatarVerse's superiority in synthesizing high-fidelity 3D avatars, leading to a new standard in high-quality and stable 3D avatar creation. Our project page is: https://avatarverse3d.github.io
GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians
We introduce GaussianAvatars, a new method to create photorealistic head avatars that are fully controllable in terms of expression, pose, and viewpoint. The core idea is a dynamic 3D representation based on 3D Gaussian splats that are rigged to a parametric morphable face model. This combination facilitates photorealistic rendering while allowing for precise animation control via the underlying parametric model, e.g., through expression transfer from a driving sequence or by manually changing the morphable model parameters. We parameterize each splat by a local coordinate frame of a triangle and optimize for explicit displacement offset to obtain a more accurate geometric representation. During avatar reconstruction, we jointly optimize for the morphable model parameters and Gaussian splat parameters in an end-to-end fashion. We demonstrate the animation capabilities of our photorealistic avatar in several challenging scenarios. For instance, we show reenactments from a driving video, where our method outperforms existing works by a significant margin.
Barbie: Text to Barbie-Style 3D Avatars
Recent advances in text-guided 3D avatar generation have made substantial progress by distilling knowledge from diffusion models. Despite the plausible generated appearance, existing methods cannot achieve fine-grained disentanglement or high-fidelity modeling between inner body and outfit. In this paper, we propose Barbie, a novel framework for generating 3D avatars that can be dressed in diverse and high-quality Barbie-like garments and accessories. Instead of relying on a holistic model, Barbie achieves fine-grained disentanglement on avatars by semantic-aligned separated models for human body and outfits. These disentangled 3D representations are then optimized by different expert models to guarantee the domain-specific fidelity. To balance geometry diversity and reasonableness, we propose a series of losses for template-preserving and human-prior evolving. The final avatar is enhanced by unified texture refinement for superior texture consistency. Extensive experiments demonstrate that Barbie outperforms existing methods in both dressed human and outfit generation, supporting flexible apparel combination and animation. The code will be released for research purposes. Our project page is: https://xiaokunsun.github.io/Barbie.github.io/.
Realistic One-shot Mesh-based Head Avatars
We present a system for realistic one-shot mesh-based human head avatars creation, ROME for short. Using a single photograph, our model estimates a person-specific head mesh and the associated neural texture, which encodes both local photometric and geometric details. The resulting avatars are rigged and can be rendered using a neural network, which is trained alongside the mesh and texture estimators on a dataset of in-the-wild videos. In the experiments, we observe that our system performs competitively both in terms of head geometry recovery and the quality of renders, especially for the cross-person reenactment. See results https://samsunglabs.github.io/rome/
AvatarCraft: Transforming Text into Neural Human Avatars with Parameterized Shape and Pose Control
Neural implicit fields are powerful for representing 3D scenes and generating high-quality novel views, but it remains challenging to use such implicit representations for creating a 3D human avatar with a specific identity and artistic style that can be easily animated. Our proposed method, AvatarCraft, addresses this challenge by using diffusion models to guide the learning of geometry and texture for a neural avatar based on a single text prompt. We carefully design the optimization framework of neural implicit fields, including a coarse-to-fine multi-bounding box training strategy, shape regularization, and diffusion-based constraints, to produce high-quality geometry and texture. Additionally, we make the human avatar animatable by deforming the neural implicit field with an explicit warping field that maps the target human mesh to a template human mesh, both represented using parametric human models. This simplifies animation and reshaping of the generated avatar by controlling pose and shape parameters. Extensive experiments on various text descriptions show that AvatarCraft is effective and robust in creating human avatars and rendering novel views, poses, and shapes. Our project page is: https://avatar-craft.github.io/.
Efficient 3D Implicit Head Avatar with Mesh-anchored Hash Table Blendshapes
3D head avatars built with neural implicit volumetric representations have achieved unprecedented levels of photorealism. However, the computational cost of these methods remains a significant barrier to their widespread adoption, particularly in real-time applications such as virtual reality and teleconferencing. While attempts have been made to develop fast neural rendering approaches for static scenes, these methods cannot be simply employed to support realistic facial expressions, such as in the case of a dynamic facial performance. To address these challenges, we propose a novel fast 3D neural implicit head avatar model that achieves real-time rendering while maintaining fine-grained controllability and high rendering quality. Our key idea lies in the introduction of local hash table blendshapes, which are learned and attached to the vertices of an underlying face parametric model. These per-vertex hash-tables are linearly merged with weights predicted via a CNN, resulting in expression dependent embeddings. Our novel representation enables efficient density and color predictions using a lightweight MLP, which is further accelerated by a hierarchical nearest neighbor search method. Extensive experiments show that our approach runs in real-time while achieving comparable rendering quality to state-of-the-arts and decent results on challenging expressions.
Kling-Avatar: Grounding Multimodal Instructions for Cascaded Long-Duration Avatar Animation Synthesis
Recent advances in audio-driven avatar video generation have significantly enhanced audio-visual realism. However, existing methods treat instruction conditioning merely as low-level tracking driven by acoustic or visual cues, without modeling the communicative purpose conveyed by the instructions. This limitation compromises their narrative coherence and character expressiveness. To bridge this gap, we introduce Kling-Avatar, a novel cascaded framework that unifies multimodal instruction understanding with photorealistic portrait generation. Our approach adopts a two-stage pipeline. In the first stage, we design a multimodal large language model (MLLM) director that produces a blueprint video conditioned on diverse instruction signals, thereby governing high-level semantics such as character motion and emotions. In the second stage, guided by blueprint keyframes, we generate multiple sub-clips in parallel using a first-last frame strategy. This global-to-local framework preserves fine-grained details while faithfully encoding the high-level intent behind multimodal instructions. Our parallel architecture also enables fast and stable generation of long-duration videos, making it suitable for real-world applications such as digital human livestreaming and vlogging. To comprehensively evaluate our method, we construct a benchmark of 375 curated samples covering diverse instructions and challenging scenarios. Extensive experiments demonstrate that Kling-Avatar is capable of generating vivid, fluent, long-duration videos at up to 1080p and 48 fps, achieving superior performance in lip synchronization accuracy, emotion and dynamic expressiveness, instruction controllability, identity preservation, and cross-domain generalization. These results establish Kling-Avatar as a new benchmark for semantically grounded, high-fidelity audio-driven avatar synthesis.
HeadStudio: Text to Animatable Head Avatars with 3D Gaussian Splatting
Creating digital avatars from textual prompts has long been a desirable yet challenging task. Despite the promising outcomes obtained through 2D diffusion priors in recent works, current methods face challenges in achieving high-quality and animated avatars effectively. In this paper, we present HeadStudio, a novel framework that utilizes 3D Gaussian splatting to generate realistic and animated avatars from text prompts. Our method drives 3D Gaussians semantically to create a flexible and achievable appearance through the intermediate FLAME representation. Specifically, we incorporate the FLAME into both 3D representation and score distillation: 1) FLAME-based 3D Gaussian splatting, driving 3D Gaussian points by rigging each point to a FLAME mesh. 2) FLAME-based score distillation sampling, utilizing FLAME-based fine-grained control signal to guide score distillation from the text prompt. Extensive experiments demonstrate the efficacy of HeadStudio in generating animatable avatars from textual prompts, exhibiting visually appealing appearances. The avatars are capable of rendering high-quality real-time (geq 40 fps) novel views at a resolution of 1024. They can be smoothly controlled by real-world speech and video. We hope that HeadStudio can advance digital avatar creation and that the present method can widely be applied across various domains.
ICON: Implicit Clothed humans Obtained from Normals
Current methods for learning realistic and animatable 3D clothed avatars need either posed 3D scans or 2D images with carefully controlled user poses. In contrast, our goal is to learn an avatar from only 2D images of people in unconstrained poses. Given a set of images, our method estimates a detailed 3D surface from each image and then combines these into an animatable avatar. Implicit functions are well suited to the first task, as they can capture details like hair and clothes. Current methods, however, are not robust to varied human poses and often produce 3D surfaces with broken or disembodied limbs, missing details, or non-human shapes. The problem is that these methods use global feature encoders that are sensitive to global pose. To address this, we propose ICON ("Implicit Clothed humans Obtained from Normals"), which, instead, uses local features. ICON has two main modules, both of which exploit the SMPL(-X) body model. First, ICON infers detailed clothed-human normals (front/back) conditioned on the SMPL(-X) normals. Second, a visibility-aware implicit surface regressor produces an iso-surface of a human occupancy field. Importantly, at inference time, a feedback loop alternates between refining the SMPL(-X) mesh using the inferred clothed normals and then refining the normals. Given multiple reconstructed frames of a subject in varied poses, we use SCANimate to produce an animatable avatar from them. Evaluation on the AGORA and CAPE datasets shows that ICON outperforms the state of the art in reconstruction, even with heavily limited training data. Additionally, it is much more robust to out-of-distribution samples, e.g., in-the-wild poses/images and out-of-frame cropping. ICON takes a step towards robust 3D clothed human reconstruction from in-the-wild images. This enables creating avatars directly from video with personalized and natural pose-dependent cloth deformation.
PERSE: Personalized 3D Generative Avatars from A Single Portrait
We present PERSE, a method for building an animatable personalized generative avatar from a reference portrait. Our avatar model enables facial attribute editing in a continuous and disentangled latent space to control each facial attribute, while preserving the individual's identity. To achieve this, our method begins by synthesizing large-scale synthetic 2D video datasets, where each video contains consistent changes in the facial expression and viewpoint, combined with a variation in a specific facial attribute from the original input. We propose a novel pipeline to produce high-quality, photorealistic 2D videos with facial attribute editing. Leveraging this synthetic attribute dataset, we present a personalized avatar creation method based on the 3D Gaussian Splatting, learning a continuous and disentangled latent space for intuitive facial attribute manipulation. To enforce smooth transitions in this latent space, we introduce a latent space regularization technique by using interpolated 2D faces as supervision. Compared to previous approaches, we demonstrate that PERSE generates high-quality avatars with interpolated attributes while preserving identity of reference person.
Text2Avatar: Text to 3D Human Avatar Generation with Codebook-Driven Body Controllable Attribute
Generating 3D human models directly from text helps reduce the cost and time of character modeling. However, achieving multi-attribute controllable and realistic 3D human avatar generation is still challenging due to feature coupling and the scarcity of realistic 3D human avatar datasets. To address these issues, we propose Text2Avatar, which can generate realistic-style 3D avatars based on the coupled text prompts. Text2Avatar leverages a discrete codebook as an intermediate feature to establish a connection between text and avatars, enabling the disentanglement of features. Furthermore, to alleviate the scarcity of realistic style 3D human avatar data, we utilize a pre-trained unconditional 3D human avatar generation model to obtain a large amount of 3D avatar pseudo data, which allows Text2Avatar to achieve realistic style generation. Experimental results demonstrate that our method can generate realistic 3D avatars from coupled textual data, which is challenging for other existing methods in this field.
Instant Volumetric Head Avatars
We present Instant Volumetric Head Avatars (INSTA), a novel approach for reconstructing photo-realistic digital avatars instantaneously. INSTA models a dynamic neural radiance field based on neural graphics primitives embedded around a parametric face model. Our pipeline is trained on a single monocular RGB portrait video that observes the subject under different expressions and views. While state-of-the-art methods take up to several days to train an avatar, our method can reconstruct a digital avatar in less than 10 minutes on modern GPU hardware, which is orders of magnitude faster than previous solutions. In addition, it allows for the interactive rendering of novel poses and expressions. By leveraging the geometry prior of the underlying parametric face model, we demonstrate that INSTA extrapolates to unseen poses. In quantitative and qualitative studies on various subjects, INSTA outperforms state-of-the-art methods regarding rendering quality and training time.
STG-Avatar: Animatable Human Avatars via Spacetime Gaussian
Realistic animatable human avatars from monocular videos are crucial for advancing human-robot interaction and enhancing immersive virtual experiences. While recent research on 3DGS-based human avatars has made progress, it still struggles with accurately representing detailed features of non-rigid objects (e.g., clothing deformations) and dynamic regions (e.g., rapidly moving limbs). To address these challenges, we present STG-Avatar, a 3DGS-based framework for high-fidelity animatable human avatar reconstruction. Specifically, our framework introduces a rigid-nonrigid coupled deformation framework that synergistically integrates Spacetime Gaussians (STG) with linear blend skinning (LBS). In this hybrid design, LBS enables real-time skeletal control by driving global pose transformations, while STG complements it through spacetime adaptive optimization of 3D Gaussians. Furthermore, we employ optical flow to identify high-dynamic regions and guide the adaptive densification of 3D Gaussians in these regions. Experimental results demonstrate that our method consistently outperforms state-of-the-art baselines in both reconstruction quality and operational efficiency, achieving superior quantitative metrics while retaining real-time rendering capabilities. Our code is available at https://github.com/jiangguangan/STG-Avatar
GGAvatar: Geometric Adjustment of Gaussian Head Avatar
We propose GGAvatar, a novel 3D avatar representation designed to robustly model dynamic head avatars with complex identities and deformations. GGAvatar employs a coarse-to-fine structure, featuring two core modules: Neutral Gaussian Initialization Module and Geometry Morph Adjuster. Neutral Gaussian Initialization Module pairs Gaussian primitives with deformable triangular meshes, employing an adaptive density control strategy to model the geometric structure of the target subject with neutral expressions. Geometry Morph Adjuster introduces deformation bases for each Gaussian in global space, creating fine-grained low-dimensional representations of deformation behaviors to address the Linear Blend Skinning formula's limitations effectively. Extensive experiments show that GGAvatar can produce high-fidelity renderings, outperforming state-of-the-art methods in visual quality and quantitative metrics.
GIGA: Generalizable Sparse Image-driven Gaussian Humans
Driving a high-quality and photorealistic full-body virtual human from a few RGB cameras is a challenging problem that has become increasingly relevant with emerging virtual reality technologies. A promising solution to democratize such technology would be a generalizable method that takes sparse multi-view images of any person and then generates photoreal free-view renderings of them. However, the state-of-the-art approaches are not scalable to very large datasets and, thus, lack diversity and photorealism. To address this problem, we propose GIGA, a novel, generalizable full-body model for rendering photoreal humans in free viewpoint, driven by a single-view or sparse multi-view video. Notably, GIGA can scale training to a few thousand subjects while maintaining high photorealism and synthesizing dynamic appearance. At the core, we introduce a MultiHeadUNet architecture, which takes an approximate RGB texture accumulated from a single or multiple sparse views and predicts 3D Gaussian primitives represented as 2D texels on top of a human body mesh. At test time, our method performs novel view synthesis of a virtual 3D Gaussian-based human from 1 to 4 input views and a tracked body template for unseen identities. Our method excels over prior works by a significant margin in terms of identity generalization capability and photorealism.
MoGA: 3D Generative Avatar Prior for Monocular Gaussian Avatar Reconstruction
We present MoGA, a novel method to reconstruct high-fidelity 3D Gaussian avatars from a single-view image. The main challenge lies in inferring unseen appearance and geometric details while ensuring 3D consistency and realism. Most previous methods rely on 2D diffusion models to synthesize unseen views; however, these generated views are sparse and inconsistent, resulting in unrealistic 3D artifacts and blurred appearance. To address these limitations, we leverage a generative avatar model, that can generate diverse 3D avatars by sampling deformed Gaussians from a learned prior distribution. Due to limited 3D training data, such a 3D model alone cannot capture all image details of unseen identities. Consequently, we integrate it as a prior, ensuring 3D consistency by projecting input images into its latent space and enforcing additional 3D appearance and geometric constraints. Our novel approach formulates Gaussian avatar creation as model inversion by fitting the generative avatar to synthetic views from 2D diffusion models. The generative avatar provides an initialization for model fitting, enforces 3D regularization, and helps in refining pose. Experiments show that our method surpasses state-of-the-art techniques and generalizes well to real-world scenarios. Our Gaussian avatars are also inherently animatable. For code, see https://zj-dong.github.io/MoGA/.
From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations
We present a framework for generating full-bodied photorealistic avatars that gesture according to the conversational dynamics of a dyadic interaction. Given speech audio, we output multiple possibilities of gestural motion for an individual, including face, body, and hands. The key behind our method is in combining the benefits of sample diversity from vector quantization with the high-frequency details obtained through diffusion to generate more dynamic, expressive motion. We visualize the generated motion using highly photorealistic avatars that can express crucial nuances in gestures (e.g. sneers and smirks). To facilitate this line of research, we introduce a first-of-its-kind multi-view conversational dataset that allows for photorealistic reconstruction. Experiments show our model generates appropriate and diverse gestures, outperforming both diffusion- and VQ-only methods. Furthermore, our perceptual evaluation highlights the importance of photorealism (vs. meshes) in accurately assessing subtle motion details in conversational gestures. Code and dataset available online.
Vid2Avatar-Pro: Authentic Avatar from Videos in the Wild via Universal Prior
We present Vid2Avatar-Pro, a method to create photorealistic and animatable 3D human avatars from monocular in-the-wild videos. Building a high-quality avatar that supports animation with diverse poses from a monocular video is challenging because the observation of pose diversity and view points is inherently limited. The lack of pose variations typically leads to poor generalization to novel poses, and avatars can easily overfit to limited input view points, producing artifacts and distortions from other views. In this work, we address these limitations by leveraging a universal prior model (UPM) learned from a large corpus of multi-view clothed human performance capture data. We build our representation on top of expressive 3D Gaussians with canonical front and back maps shared across identities. Once the UPM is learned to accurately reproduce the large-scale multi-view human images, we fine-tune the model with an in-the-wild video via inverse rendering to obtain a personalized photorealistic human avatar that can be faithfully animated to novel human motions and rendered from novel views. The experiments show that our approach based on the learned universal prior sets a new state-of-the-art in monocular avatar reconstruction by substantially outperforming existing approaches relying only on heuristic regularization or a shape prior of minimally clothed bodies (e.g., SMPL) on publicly available datasets.
HeadGAP: Few-shot 3D Head Avatar via Generalizable Gaussian Priors
In this paper, we present a novel 3D head avatar creation approach capable of generalizing from few-shot in-the-wild data with high-fidelity and animatable robustness. Given the underconstrained nature of this problem, incorporating prior knowledge is essential. Therefore, we propose a framework comprising prior learning and avatar creation phases. The prior learning phase leverages 3D head priors derived from a large-scale multi-view dynamic dataset, and the avatar creation phase applies these priors for few-shot personalization. Our approach effectively captures these priors by utilizing a Gaussian Splatting-based auto-decoder network with part-based dynamic modeling. Our method employs identity-shared encoding with personalized latent codes for individual identities to learn the attributes of Gaussian primitives. During the avatar creation phase, we achieve fast head avatar personalization by leveraging inversion and fine-tuning strategies. Extensive experiments demonstrate that our model effectively exploits head priors and successfully generalizes them to few-shot personalization, achieving photo-realistic rendering quality, multi-view consistency, and stable animation.
Avat3r: Large Animatable Gaussian Reconstruction Model for High-fidelity 3D Head Avatars
Traditionally, creating photo-realistic 3D head avatars requires a studio-level multi-view capture setup and expensive optimization during test-time, limiting the use of digital human doubles to the VFX industry or offline renderings. To address this shortcoming, we present Avat3r, which regresses a high-quality and animatable 3D head avatar from just a few input images, vastly reducing compute requirements during inference. More specifically, we make Large Reconstruction Models animatable and learn a powerful prior over 3D human heads from a large multi-view video dataset. For better 3D head reconstructions, we employ position maps from DUSt3R and generalized feature maps from the human foundation model Sapiens. To animate the 3D head, our key discovery is that simple cross-attention to an expression code is already sufficient. Finally, we increase robustness by feeding input images with different expressions to our model during training, enabling the reconstruction of 3D head avatars from inconsistent inputs, e.g., an imperfect phone capture with accidental movement, or frames from a monocular video. We compare Avat3r with current state-of-the-art methods for few-input and single-input scenarios, and find that our method has a competitive advantage in both tasks. Finally, we demonstrate the wide applicability of our proposed model, creating 3D head avatars from images of different sources, smartphone captures, single images, and even out-of-domain inputs like antique busts. Project website: https://tobias-kirschstein.github.io/avat3r/
AvatarMakeup: Realistic Makeup Transfer for 3D Animatable Head Avatars
Similar to facial beautification in real life, 3D virtual avatars require personalized customization to enhance their visual appeal, yet this area remains insufficiently explored. Although current 3D Gaussian editing methods can be adapted for facial makeup purposes, these methods fail to meet the fundamental requirements for achieving realistic makeup effects: 1) ensuring a consistent appearance during drivable expressions, 2) preserving the identity throughout the makeup process, and 3) enabling precise control over fine details. To address these, we propose a specialized 3D makeup method named AvatarMakeup, leveraging a pretrained diffusion model to transfer makeup patterns from a single reference photo of any individual. We adopt a coarse-to-fine idea to first maintain the consistent appearance and identity, and then to refine the details. In particular, the diffusion model is employed to generate makeup images as supervision. Due to the uncertainties in diffusion process, the generated images are inconsistent across different viewpoints and expressions. Therefore, we propose a Coherent Duplication method to coarsely apply makeup to the target while ensuring consistency across dynamic and multiview effects. Coherent Duplication optimizes a global UV map by recoding the averaged facial attributes among the generated makeup images. By querying the global UV map, it easily synthesizes coherent makeup guidance from arbitrary views and expressions to optimize the target avatar. Given the coarse makeup avatar, we further enhance the makeup by incorporating a Refinement Module into the diffusion model to achieve high makeup quality. Experiments demonstrate that AvatarMakeup achieves state-of-the-art makeup transfer quality and consistency throughout animation.
DINAR: Diffusion Inpainting of Neural Textures for One-Shot Human Avatars
We present DINAR, an approach for creating realistic rigged fullbody avatars from single RGB images. Similarly to previous works, our method uses neural textures combined with the SMPL-X body model to achieve photo-realistic quality of avatars while keeping them easy to animate and fast to infer. To restore the texture, we use a latent diffusion model and show how such model can be trained in the neural texture space. The use of the diffusion model allows us to realistically reconstruct large unseen regions such as the back of a person given the frontal view. The models in our pipeline are trained using 2D images and videos only. In the experiments, our approach achieves state-of-the-art rendering quality and good generalization to new poses and viewpoints. In particular, the approach improves state-of-the-art on the SnapshotPeople public benchmark.
Instant 3D Human Avatar Generation using Image Diffusion Models
We present AvatarPopUp, a method for fast, high quality 3D human avatar generation from different input modalities, such as images and text prompts and with control over the generated pose and shape. The common theme is the use of diffusion-based image generation networks that are specialized for each particular task, followed by a 3D lifting network. We purposefully decouple the generation from the 3D modeling which allow us to leverage powerful image synthesis priors, trained on billions of text-image pairs. We fine-tune latent diffusion networks with additional image conditioning to solve tasks such as image generation and back-view prediction, and to support qualitatively different multiple 3D hypotheses. Our partial fine-tuning approach allows to adapt the networks for each task without inducing catastrophic forgetting. In our experiments, we demonstrate that our method produces accurate, high-quality 3D avatars with diverse appearance that respect the multimodal text, image, and body control signals. Our approach can produce a 3D model in as few as 2 seconds, a four orders of magnitude speedup w.r.t. the vast majority of existing methods, most of which solve only a subset of our tasks, and with fewer controls, thus enabling applications that require the controlled 3D generation of human avatars at scale. The project website can be found at https://www.nikoskolot.com/avatarpopup/.
3D Gaussian Blendshapes for Head Avatar Animation
We introduce 3D Gaussian blendshapes for modeling photorealistic head avatars. Taking a monocular video as input, we learn a base head model of neutral expression, along with a group of expression blendshapes, each of which corresponds to a basis expression in classical parametric face models. Both the neutral model and expression blendshapes are represented as 3D Gaussians, which contain a few properties to depict the avatar appearance. The avatar model of an arbitrary expression can be effectively generated by combining the neutral model and expression blendshapes through linear blending of Gaussians with the expression coefficients. High-fidelity head avatar animations can be synthesized in real time using Gaussian splatting. Compared to state-of-the-art methods, our Gaussian blendshape representation better captures high-frequency details exhibited in input video, and achieves superior rendering performance.
TextToon: Real-Time Text Toonify Head Avatar from Single Video
We propose TextToon, a method to generate a drivable toonified avatar. Given a short monocular video sequence and a written instruction about the avatar style, our model can generate a high-fidelity toonified avatar that can be driven in real-time by another video with arbitrary identities. Existing related works heavily rely on multi-view modeling to recover geometry via texture embeddings, presented in a static manner, leading to control limitations. The multi-view video input also makes it difficult to deploy these models in real-world applications. To address these issues, we adopt a conditional embedding Tri-plane to learn realistic and stylized facial representations in a Gaussian deformation field. Additionally, we expand the stylization capabilities of 3D Gaussian Splatting by introducing an adaptive pixel-translation neural network and leveraging patch-aware contrastive learning to achieve high-quality images. To push our work into consumer applications, we develop a real-time system that can operate at 48 FPS on a GPU machine and 15-18 FPS on a mobile machine. Extensive experiments demonstrate the efficacy of our approach in generating textual avatars over existing methods in terms of quality and real-time animation. Please refer to our project page for more details: https://songluchuan.github.io/TextToon/.
One2Avatar: Generative Implicit Head Avatar For Few-shot User Adaptation
Traditional methods for constructing high-quality, personalized head avatars from monocular videos demand extensive face captures and training time, posing a significant challenge for scalability. This paper introduces a novel approach to create high quality head avatar utilizing only a single or a few images per user. We learn a generative model for 3D animatable photo-realistic head avatar from a multi-view dataset of expressions from 2407 subjects, and leverage it as a prior for creating personalized avatar from few-shot images. Different from previous 3D-aware face generative models, our prior is built with a 3DMM-anchored neural radiance field backbone, which we show to be more effective for avatar creation through auto-decoding based on few-shot inputs. We also handle unstable 3DMM fitting by jointly optimizing the 3DMM fitting and camera calibration that leads to better few-shot adaptation. Our method demonstrates compelling results and outperforms existing state-of-the-art methods for few-shot avatar adaptation, paving the way for more efficient and personalized avatar creation.
Make-A-Character 2: Animatable 3D Character Generation From a Single Image
This report introduces Make-A-Character 2, an advanced system for generating high-quality 3D characters from single portrait photographs, ideal for game development and digital human applications. Make-A-Character 2 builds upon its predecessor by incorporating several significant improvements for image-based head generation. We utilize the IC-Light method to correct non-ideal illumination in input photos and apply neural network-based color correction to harmonize skin tones between the photos and game engine renders. We also employ the Hierarchical Representation Network to capture high-frequency facial structures and conduct adaptive skeleton calibration for accurate and expressive facial animations. The entire image-to-3D-character generation process takes less than 2 minutes. Furthermore, we leverage transformer architecture to generate co-speech facial and gesture actions, enabling real-time conversation with the generated character. These technologies have been integrated into our conversational AI avatar products.
HRM^2Avatar: High-Fidelity Real-Time Mobile Avatars from Monocular Phone Scans
We present HRM^2Avatar, a framework for creating high-fidelity avatars from monocular phone scans, which can be rendered and animated in real time on mobile devices. Monocular capture with smartphones provides a low-cost alternative to studio-grade multi-camera rigs, making avatar digitization accessible to non-expert users. Reconstructing high-fidelity avatars from single-view video sequences poses challenges due to limited visual and geometric data. To address these limitations, at the data level, our method leverages two types of data captured with smartphones: static pose sequences for texture reconstruction and dynamic motion sequences for learning pose-dependent deformations and lighting changes. At the representation level, we employ a lightweight yet expressive representation to reconstruct high-fidelity digital humans from sparse monocular data. We extract garment meshes from monocular data to model clothing deformations effectively, and attach illumination-aware Gaussians to the mesh surface, enabling high-fidelity rendering and capturing pose-dependent lighting. This representation efficiently learns high-resolution and dynamic information from monocular data, enabling the creation of detailed avatars. At the rendering level, real-time performance is critical for animating high-fidelity avatars in AR/VR, social gaming, and on-device creation. Our GPU-driven rendering pipeline delivers 120 FPS on mobile devices and 90 FPS on standalone VR devices at 2K resolution, over 2.7times faster than representative mobile-engine baselines. Experiments show that HRM^2Avatar delivers superior visual realism and real-time interactivity, outperforming state-of-the-art monocular methods.
Bridging the Gap: Studio-like Avatar Creation from a Monocular Phone Capture
Creating photorealistic avatars for individuals traditionally involves extensive capture sessions with complex and expensive studio devices like the LightStage system. While recent strides in neural representations have enabled the generation of photorealistic and animatable 3D avatars from quick phone scans, they have the capture-time lighting baked-in, lack facial details and have missing regions in areas such as the back of the ears. Thus, they lag in quality compared to studio-captured avatars. In this paper, we propose a method that bridges this gap by generating studio-like illuminated texture maps from short, monocular phone captures. We do this by parameterizing the phone texture maps using the W^+ space of a StyleGAN2, enabling near-perfect reconstruction. Then, we finetune a StyleGAN2 by sampling in the W^+ parameterized space using a very small set of studio-captured textures as an adversarial training signal. To further enhance the realism and accuracy of facial details, we super-resolve the output of the StyleGAN2 using carefully designed diffusion model that is guided by image gradients of the phone-captured texture map. Once trained, our method excels at producing studio-like facial texture maps from casual monocular smartphone videos. Demonstrating its capabilities, we showcase the generation of photorealistic, uniformly lit, complete avatars from monocular phone captures. http://shahrukhathar.github.io/2024/07/22/Bridging.html{The project page can be found here.}
AvatarStudio: High-fidelity and Animatable 3D Avatar Creation from Text
We study the problem of creating high-fidelity and animatable 3D avatars from only textual descriptions. Existing text-to-avatar methods are either limited to static avatars which cannot be animated or struggle to generate animatable avatars with promising quality and precise pose control. To address these limitations, we propose AvatarStudio, a coarse-to-fine generative model that generates explicit textured 3D meshes for animatable human avatars. Specifically, AvatarStudio begins with a low-resolution NeRF-based representation for coarse generation, followed by incorporating SMPL-guided articulation into the explicit mesh representation to support avatar animation and high resolution rendering. To ensure view consistency and pose controllability of the resulting avatars, we introduce a 2D diffusion model conditioned on DensePose for Score Distillation Sampling supervision. By effectively leveraging the synergy between the articulated mesh representation and the DensePose-conditional diffusion model, AvatarStudio can create high-quality avatars from text that are ready for animation, significantly outperforming previous methods. Moreover, it is competent for many applications, e.g., multimodal avatar animations and style-guided avatar creation. For more results, please refer to our project page: http://jeff95.me/projects/avatarstudio.html
IDOL: Instant Photorealistic 3D Human Creation from a Single Image
Creating a high-fidelity, animatable 3D full-body avatar from a single image is a challenging task due to the diverse appearance and poses of humans and the limited availability of high-quality training data. To achieve fast and high-quality human reconstruction, this work rethinks the task from the perspectives of dataset, model, and representation. First, we introduce a large-scale HUman-centric GEnerated dataset, HuGe100K, consisting of 100K diverse, photorealistic sets of human images. Each set contains 24-view frames in specific human poses, generated using a pose-controllable image-to-multi-view model. Next, leveraging the diversity in views, poses, and appearances within HuGe100K, we develop a scalable feed-forward transformer model to predict a 3D human Gaussian representation in a uniform space from a given human image. This model is trained to disentangle human pose, body shape, clothing geometry, and texture. The estimated Gaussians can be animated without post-processing. We conduct comprehensive experiments to validate the effectiveness of the proposed dataset and method. Our model demonstrates the ability to efficiently reconstruct photorealistic humans at 1K resolution from a single input image using a single GPU instantly. Additionally, it seamlessly supports various applications, as well as shape and texture editing tasks.
AdaHuman: Animatable Detailed 3D Human Generation with Compositional Multiview Diffusion
Existing methods for image-to-3D avatar generation struggle to produce highly detailed, animation-ready avatars suitable for real-world applications. We introduce AdaHuman, a novel framework that generates high-fidelity animatable 3D avatars from a single in-the-wild image. AdaHuman incorporates two key innovations: (1) A pose-conditioned 3D joint diffusion model that synthesizes consistent multi-view images in arbitrary poses alongside corresponding 3D Gaussian Splats (3DGS) reconstruction at each diffusion step; (2) A compositional 3DGS refinement module that enhances the details of local body parts through image-to-image refinement and seamlessly integrates them using a novel crop-aware camera ray map, producing a cohesive detailed 3D avatar. These components allow AdaHuman to generate highly realistic standardized A-pose avatars with minimal self-occlusion, enabling rigging and animation with any input motion. Extensive evaluation on public benchmarks and in-the-wild images demonstrates that AdaHuman significantly outperforms state-of-the-art methods in both avatar reconstruction and reposing. Code and models will be publicly available for research purposes.
DreamWaltz: Make a Scene with Complex 3D Animatable Avatars
We present DreamWaltz, a novel framework for generating and animating complex 3D avatars given text guidance and parametric human body prior. While recent methods have shown encouraging results for text-to-3D generation of common objects, creating high-quality and animatable 3D avatars remains challenging. To create high-quality 3D avatars, DreamWaltz proposes 3D-consistent occlusion-aware Score Distillation Sampling (SDS) to optimize implicit neural representations with canonical poses. It provides view-aligned supervision via 3D-aware skeleton conditioning which enables complex avatar generation without artifacts and multiple faces. For animation, our method learns an animatable 3D avatar representation from abundant image priors of diffusion model conditioned on various poses, which could animate complex non-rigged avatars given arbitrary poses without retraining. Extensive evaluations demonstrate that DreamWaltz is an effective and robust approach for creating 3D avatars that can take on complex shapes and appearances as well as novel poses for animation. The proposed framework further enables the creation of complex scenes with diverse compositions, including avatar-avatar, avatar-object and avatar-scene interactions. See https://dreamwaltz3d.github.io/ for more vivid 3D avatar and animation results.
AniTalker: Animate Vivid and Diverse Talking Faces through Identity-Decoupled Facial Motion Encoding
The paper introduces AniTalker, an innovative framework designed to generate lifelike talking faces from a single portrait. Unlike existing models that primarily focus on verbal cues such as lip synchronization and fail to capture the complex dynamics of facial expressions and nonverbal cues, AniTalker employs a universal motion representation. This innovative representation effectively captures a wide range of facial dynamics, including subtle expressions and head movements. AniTalker enhances motion depiction through two self-supervised learning strategies: the first involves reconstructing target video frames from source frames within the same identity to learn subtle motion representations, and the second develops an identity encoder using metric learning while actively minimizing mutual information between the identity and motion encoders. This approach ensures that the motion representation is dynamic and devoid of identity-specific details, significantly reducing the need for labeled data. Additionally, the integration of a diffusion model with a variance adapter allows for the generation of diverse and controllable facial animations. This method not only demonstrates AniTalker's capability to create detailed and realistic facial movements but also underscores its potential in crafting dynamic avatars for real-world applications. Synthetic results can be viewed at https://github.com/X-LANCE/AniTalker.
AvatarReX: Real-time Expressive Full-body Avatars
We present AvatarReX, a new method for learning NeRF-based full-body avatars from video data. The learnt avatar not only provides expressive control of the body, hands and the face together, but also supports real-time animation and rendering. To this end, we propose a compositional avatar representation, where the body, hands and the face are separately modeled in a way that the structural prior from parametric mesh templates is properly utilized without compromising representation flexibility. Furthermore, we disentangle the geometry and appearance for each part. With these technical designs, we propose a dedicated deferred rendering pipeline, which can be executed in real-time framerate to synthesize high-quality free-view images. The disentanglement of geometry and appearance also allows us to design a two-pass training strategy that combines volume rendering and surface rendering for network training. In this way, patch-level supervision can be applied to force the network to learn sharp appearance details on the basis of geometry estimation. Overall, our method enables automatic construction of expressive full-body avatars with real-time rendering capability, and can generate photo-realistic images with dynamic details for novel body motions and facial expressions.
Relightable Gaussian Codec Avatars
The fidelity of relighting is bounded by both geometry and appearance representations. For geometry, both mesh and volumetric approaches have difficulty modeling intricate structures like 3D hair geometry. For appearance, existing relighting models are limited in fidelity and often too slow to render in real-time with high-resolution continuous environments. In this work, we present Relightable Gaussian Codec Avatars, a method to build high-fidelity relightable head avatars that can be animated to generate novel expressions. Our geometry model based on 3D Gaussians can capture 3D-consistent sub-millimeter details such as hair strands and pores on dynamic face sequences. To support diverse materials of human heads such as the eyes, skin, and hair in a unified manner, we present a novel relightable appearance model based on learnable radiance transfer. Together with global illumination-aware spherical harmonics for the diffuse components, we achieve real-time relighting with spatially all-frequency reflections using spherical Gaussians. This appearance model can be efficiently relit under both point light and continuous illumination. We further improve the fidelity of eye reflections and enable explicit gaze control by introducing relightable explicit eye models. Our method outperforms existing approaches without compromising real-time performance. We also demonstrate real-time relighting of avatars on a tethered consumer VR headset, showcasing the efficiency and fidelity of our avatars.
ARCH: Animatable Reconstruction of Clothed Humans
In this paper, we propose ARCH (Animatable Reconstruction of Clothed Humans), a novel end-to-end framework for accurate reconstruction of animation-ready 3D clothed humans from a monocular image. Existing approaches to digitize 3D humans struggle to handle pose variations and recover details. Also, they do not produce models that are animation ready. In contrast, ARCH is a learned pose-aware model that produces detailed 3D rigged full-body human avatars from a single unconstrained RGB image. A Semantic Space and a Semantic Deformation Field are created using a parametric 3D body estimator. They allow the transformation of 2D/3D clothed humans into a canonical space, reducing ambiguities in geometry caused by pose variations and occlusions in training data. Detailed surface geometry and appearance are learned using an implicit function representation with spatial local features. Furthermore, we propose additional per-pixel supervision on the 3D reconstruction using opacity-aware differentiable rendering. Our experiments indicate that ARCH increases the fidelity of the reconstructed humans. We obtain more than 50% lower reconstruction errors for standard metrics compared to state-of-the-art methods on public datasets. We also show numerous qualitative examples of animated, high-quality reconstructed avatars unseen in the literature so far.
DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via Diffusion Models
We present DreamAvatar, a text-and-shape guided framework for generating high-quality 3D human avatars with controllable poses. While encouraging results have been reported by recent methods on text-guided 3D common object generation, generating high-quality human avatars remains an open challenge due to the complexity of the human body's shape, pose, and appearance. We propose DreamAvatar to tackle this challenge, which utilizes a trainable NeRF for predicting density and color for 3D points and pretrained text-to-image diffusion models for providing 2D self-supervision. Specifically, we leverage the SMPL model to provide shape and pose guidance for the generation. We introduce a dual-observation-space design that involves the joint optimization of a canonical space and a posed space that are related by a learnable deformation field. This facilitates the generation of more complete textures and geometry faithful to the target pose. We also jointly optimize the losses computed from the full body and from the zoomed-in 3D head to alleviate the common multi-face ''Janus'' problem and improve facial details in the generated avatars. Extensive evaluations demonstrate that DreamAvatar significantly outperforms existing methods, establishing a new state-of-the-art for text-and-shape guided 3D human avatar generation.
En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D Synthetic Data
We present En3D, an enhanced generative scheme for sculpting high-quality 3D human avatars. Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalanced viewing angles and imprecise pose priors, our approach aims to develop a zero-shot 3D generative scheme capable of producing visually realistic, geometrically accurate and content-wise diverse 3D humans without relying on pre-existing 3D or 2D assets. To address this challenge, we introduce a meticulously crafted workflow that implements accurate physical modeling to learn the enhanced 3D generative model from synthetic 2D data. During inference, we integrate optimization modules to bridge the gap between realistic appearances and coarse 3D shapes. Specifically, En3D comprises three modules: a 3D generator that accurately models generalizable 3D humans with realistic appearance from synthesized balanced, diverse, and structured human images; a geometry sculptor that enhances shape quality using multi-view normal constraints for intricate human anatomy; and a texturing module that disentangles explicit texture maps with fidelity and editability, leveraging semantical UV partitioning and a differentiable rasterizer. Experimental results show that our approach significantly outperforms prior works in terms of image quality, geometry accuracy and content diversity. We also showcase the applicability of our generated avatars for animation and editing, as well as the scalability of our approach for content-style free adaptation.
Disentangled Clothed Avatar Generation from Text Descriptions
In this paper, we introduced a novel text-to-avatar generation method that separately generates the human body and the clothes and allows high-quality animation on the generated avatar. While recent advancements in text-to-avatar generation have yielded diverse human avatars from text prompts, these methods typically combine all elements-clothes, hair, and body-into a single 3D representation. Such an entangled approach poses challenges for downstream tasks like editing or animation. To overcome these limitations, we propose a novel disentangled 3D avatar representation named Sequentially Offset-SMPL (SO-SMPL), building upon the SMPL model. SO-SMPL represents the human body and clothes with two separate meshes, but associates them with offsets to ensure the physical alignment between the body and the clothes. Then, we design an Score Distillation Sampling(SDS)-based distillation framework to generate the proposed SO-SMPL representation from text prompts. In comparison with existing text-to-avatar methods, our approach not only achieves higher exture and geometry quality and better semantic alignment with text prompts, but also significantly improves the visual quality of character animation, virtual try-on, and avatar editing. Our project page is at https://shanemankiw.github.io/SO-SMPL/.
DELIFFAS: Deformable Light Fields for Fast Avatar Synthesis
Generating controllable and photorealistic digital human avatars is a long-standing and important problem in Vision and Graphics. Recent methods have shown great progress in terms of either photorealism or inference speed while the combination of the two desired properties still remains unsolved. To this end, we propose a novel method, called DELIFFAS, which parameterizes the appearance of the human as a surface light field that is attached to a controllable and deforming human mesh model. At the core, we represent the light field around the human with a deformable two-surface parameterization, which enables fast and accurate inference of the human appearance. This allows perceptual supervision on the full image compared to previous approaches that could only supervise individual pixels or small patches due to their slow runtime. Our carefully designed human representation and supervision strategy leads to state-of-the-art synthesis results and inference time. The video results and code are available at https://vcai.mpi-inf.mpg.de/projects/DELIFFAS.
Low-Rank Head Avatar Personalization with Registers
We introduce a novel method for low-rank personalization of a generic model for head avatar generation. Prior work proposes generic models that achieve high-quality face animation by leveraging large-scale datasets of multiple identities. However, such generic models usually fail to synthesize unique identity-specific details, since they learn a general domain prior. To adapt to specific subjects, we find that it is still challenging to capture high-frequency facial details via popular solutions like low-rank adaptation (LoRA). This motivates us to propose a specific architecture, a Register Module, that enhances the performance of LoRA, while requiring only a small number of parameters to adapt to an unseen identity. Our module is applied to intermediate features of a pre-trained model, storing and re-purposing information in a learnable 3D feature space. To demonstrate the efficacy of our personalization method, we collect a dataset of talking videos of individuals with distinctive facial details, such as wrinkles and tattoos. Our approach faithfully captures unseen faces, outperforming existing methods quantitatively and qualitatively. We will release the code, models, and dataset to the public.
OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation
Existing video avatar models can produce fluid human animations, yet they struggle to move beyond mere physical likeness to capture a character's authentic essence. Their motions typically synchronize with low-level cues like audio rhythm, lacking a deeper semantic understanding of emotion, intent, or context. To bridge this gap, we propose a framework designed to generate character animations that are not only physically plausible but also semantically coherent and expressive. Our model, OmniHuman-1.5, is built upon two key technical contributions. First, we leverage Multimodal Large Language Models to synthesize a structured textual representation of conditions that provides high-level semantic guidance. This guidance steers our motion generator beyond simplistic rhythmic synchronization, enabling the production of actions that are contextually and emotionally resonant. Second, to ensure the effective fusion of these multimodal inputs and mitigate inter-modality conflicts, we introduce a specialized Multimodal DiT architecture with a novel Pseudo Last Frame design. The synergy of these components allows our model to accurately interpret the joint semantics of audio, images, and text, thereby generating motions that are deeply coherent with the character, scene, and linguistic content. Extensive experiments demonstrate that our model achieves leading performance across a comprehensive set of metrics, including lip-sync accuracy, video quality, motion naturalness and semantic consistency with textual prompts. Furthermore, our approach shows remarkable extensibility to complex scenarios, such as those involving multi-person and non-human subjects. Homepage: https://omnihuman-lab.github.io/v1_5/
Relightable Full-Body Gaussian Codec Avatars
We propose Relightable Full-Body Gaussian Codec Avatars, a new approach for modeling relightable full-body avatars with fine-grained details including face and hands. The unique challenge for relighting full-body avatars lies in the large deformations caused by body articulation and the resulting impact on appearance caused by light transport. Changes in body pose can dramatically change the orientation of body surfaces with respect to lights, resulting in both local appearance changes due to changes in local light transport functions, as well as non-local changes due to occlusion between body parts. To address this, we decompose the light transport into local and non-local effects. Local appearance changes are modeled using learnable zonal harmonics for diffuse radiance transfer. Unlike spherical harmonics, zonal harmonics are highly efficient to rotate under articulation. This allows us to learn diffuse radiance transfer in a local coordinate frame, which disentangles the local radiance transfer from the articulation of the body. To account for non-local appearance changes, we introduce a shadow network that predicts shadows given precomputed incoming irradiance on a base mesh. This facilitates the learning of non-local shadowing between the body parts. Finally, we use a deferred shading approach to model specular radiance transfer and better capture reflections and highlights such as eye glints. We demonstrate that our approach successfully models both the local and non-local light transport required for relightable full-body avatars, with a superior generalization ability under novel illumination conditions and unseen poses.
RANA: Relightable Articulated Neural Avatars
We propose RANA, a relightable and articulated neural avatar for the photorealistic synthesis of humans under arbitrary viewpoints, body poses, and lighting. We only require a short video clip of the person to create the avatar and assume no knowledge about the lighting environment. We present a novel framework to model humans while disentangling their geometry, texture, and also lighting environment from monocular RGB videos. To simplify this otherwise ill-posed task we first estimate the coarse geometry and texture of the person via SMPL+D model fitting and then learn an articulated neural representation for photorealistic image generation. RANA first generates the normal and albedo maps of the person in any given target body pose and then uses spherical harmonics lighting to generate the shaded image in the target lighting environment. We also propose to pretrain RANA using synthetic images and demonstrate that it leads to better disentanglement between geometry and texture while also improving robustness to novel body poses. Finally, we also present a new photorealistic synthetic dataset, Relighting Humans, to quantitatively evaluate the performance of the proposed approach.
AniGS: Animatable Gaussian Avatar from a Single Image with Inconsistent Gaussian Reconstruction
Generating animatable human avatars from a single image is essential for various digital human modeling applications. Existing 3D reconstruction methods often struggle to capture fine details in animatable models, while generative approaches for controllable animation, though avoiding explicit 3D modeling, suffer from viewpoint inconsistencies in extreme poses and computational inefficiencies. In this paper, we address these challenges by leveraging the power of generative models to produce detailed multi-view canonical pose images, which help resolve ambiguities in animatable human reconstruction. We then propose a robust method for 3D reconstruction of inconsistent images, enabling real-time rendering during inference. Specifically, we adapt a transformer-based video generation model to generate multi-view canonical pose images and normal maps, pretraining on a large-scale video dataset to improve generalization. To handle view inconsistencies, we recast the reconstruction problem as a 4D task and introduce an efficient 3D modeling approach using 4D Gaussian Splatting. Experiments demonstrate that our method achieves photorealistic, real-time animation of 3D human avatars from in-the-wild images, showcasing its effectiveness and generalization capability.
LAM: Large Avatar Model for One-shot Animatable Gaussian Head
We present LAM, an innovative Large Avatar Model for animatable Gaussian head reconstruction from a single image. Unlike previous methods that require extensive training on captured video sequences or rely on auxiliary neural networks for animation and rendering during inference, our approach generates Gaussian heads that are immediately animatable and renderable. Specifically, LAM creates an animatable Gaussian head in a single forward pass, enabling reenactment and rendering without additional networks or post-processing steps. This capability allows for seamless integration into existing rendering pipelines, ensuring real-time animation and rendering across a wide range of platforms, including mobile phones. The centerpiece of our framework is the canonical Gaussian attributes generator, which utilizes FLAME canonical points as queries. These points interact with multi-scale image features through a Transformer to accurately predict Gaussian attributes in the canonical space. The reconstructed canonical Gaussian avatar can then be animated utilizing standard linear blend skinning (LBS) with corrective blendshapes as the FLAME model did and rendered in real-time on various platforms. Our experimental results demonstrate that LAM outperforms state-of-the-art methods on existing benchmarks.
PSAvatar: A Point-based Morphable Shape Model for Real-Time Head Avatar Animation with 3D Gaussian Splatting
Despite much progress, achieving real-time high-fidelity head avatar animation is still difficult and existing methods have to trade-off between speed and quality. 3DMM based methods often fail to model non-facial structures such as eyeglasses and hairstyles, while neural implicit models suffer from deformation inflexibility and rendering inefficiency. Although 3D Gaussian has been demonstrated to possess promising capability for geometry representation and radiance field reconstruction, applying 3D Gaussian in head avatar creation remains a major challenge since it is difficult for 3D Gaussian to model the head shape variations caused by changing poses and expressions. In this paper, we introduce PSAvatar, a novel framework for animatable head avatar creation that utilizes discrete geometric primitive to create a parametric morphable shape model and employs 3D Gaussian for fine detail representation and high fidelity rendering. The parametric morphable shape model is a Point-based Morphable Shape Model (PMSM) which uses points instead of meshes for 3D representation to achieve enhanced representation flexibility. The PMSM first converts the FLAME mesh to points by sampling on the surfaces as well as off the meshes to enable the reconstruction of not only surface-like structures but also complex geometries such as eyeglasses and hairstyles. By aligning these points with the head shape in an analysis-by-synthesis manner, the PMSM makes it possible to utilize 3D Gaussian for fine detail representation and appearance modeling, thus enabling the creation of high-fidelity avatars. We show that PSAvatar can reconstruct high-fidelity head avatars of a variety of subjects and the avatars can be animated in real-time (ge 25 fps at a resolution of 512 times 512 ).
CHASE: 3D-Consistent Human Avatars with Sparse Inputs via Gaussian Splatting and Contrastive Learning
Recent advancements in human avatar synthesis have utilized radiance fields to reconstruct photo-realistic animatable human avatars. However, both NeRFs-based and 3DGS-based methods struggle with maintaining 3D consistency and exhibit suboptimal detail reconstruction, especially with sparse inputs. To address this challenge, we propose CHASE, which introduces supervision from intrinsic 3D consistency across poses and 3D geometry contrastive learning, achieving performance comparable with sparse inputs to that with full inputs. Following previous work, we first integrate a skeleton-driven rigid deformation and a non-rigid cloth dynamics deformation to coordinate the movements of individual Gaussians during animation, reconstructing basic avatar with coarse 3D consistency. To improve 3D consistency under sparse inputs, we design Dynamic Avatar Adjustment(DAA) to adjust deformed Gaussians based on a selected similar pose/image from the dataset. Minimizing the difference between the image rendered by adjusted Gaussians and the image with the similar pose serves as an additional form of supervision for avatar. Furthermore, we propose a 3D geometry contrastive learning strategy to maintain the 3D global consistency of generated avatars. Though CHASE is designed for sparse inputs, it surprisingly outperforms current SOTA methods in both full and sparse settings on the ZJU-MoCap and H36M datasets, demonstrating that our CHASE successfully maintains avatar's 3D consistency, hence improving rendering quality.
GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians
We present GaussianAvatar, an efficient approach to creating realistic human avatars with dynamic 3D appearances from a single video. We start by introducing animatable 3D Gaussians to explicitly represent humans in various poses and clothing styles. Such an explicit and animatable representation can fuse 3D appearances more efficiently and consistently from 2D observations. Our representation is further augmented with dynamic properties to support pose-dependent appearance modeling, where a dynamic appearance network along with an optimizable feature tensor is designed to learn the motion-to-appearance mapping. Moreover, by leveraging the differentiable motion condition, our method enables a joint optimization of motions and appearances during avatar modeling, which helps to tackle the long-standing issue of inaccurate motion estimation in monocular settings. The efficacy of GaussianAvatar is validated on both the public dataset and our collected dataset, demonstrating its superior performances in terms of appearance quality and rendering efficiency.
URAvatar: Universal Relightable Gaussian Codec Avatars
We present a new approach to creating photorealistic and relightable head avatars from a phone scan with unknown illumination. The reconstructed avatars can be animated and relit in real time with the global illumination of diverse environments. Unlike existing approaches that estimate parametric reflectance parameters via inverse rendering, our approach directly models learnable radiance transfer that incorporates global light transport in an efficient manner for real-time rendering. However, learning such a complex light transport that can generalize across identities is non-trivial. A phone scan in a single environment lacks sufficient information to infer how the head would appear in general environments. To address this, we build a universal relightable avatar model represented by 3D Gaussians. We train on hundreds of high-quality multi-view human scans with controllable point lights. High-resolution geometric guidance further enhances the reconstruction accuracy and generalization. Once trained, we finetune the pretrained model on a phone scan using inverse rendering to obtain a personalized relightable avatar. Our experiments establish the efficacy of our design, outperforming existing approaches while retaining real-time rendering capability.
Human Gaussian Splatting: Real-time Rendering of Animatable Avatars
This work addresses the problem of real-time rendering of photorealistic human body avatars learned from multi-view videos. While the classical approaches to model and render virtual humans generally use a textured mesh, recent research has developed neural body representations that achieve impressive visual quality. However, these models are difficult to render in real-time and their quality degrades when the character is animated with body poses different than the training observations. We propose an animatable human model based on 3D Gaussian Splatting, that has recently emerged as a very efficient alternative to neural radiance fields. The body is represented by a set of gaussian primitives in a canonical space which is deformed with a coarse to fine approach that combines forward skinning and local non-rigid refinement. We describe how to learn our Human Gaussian Splatting (HuGS) model in an end-to-end fashion from multi-view observations, and evaluate it against the state-of-the-art approaches for novel pose synthesis of clothed body. Our method achieves 1.5 dB PSNR improvement over the state-of-the-art on THuman4 dataset while being able to render in real-time (80 fps for 512x512 resolution).
NSF: Neural Surface Fields for Human Modeling from Monocular Depth
Obtaining personalized 3D animatable avatars from a monocular camera has several real world applications in gaming, virtual try-on, animation, and VR/XR, etc. However, it is very challenging to model dynamic and fine-grained clothing deformations from such sparse data. Existing methods for modeling 3D humans from depth data have limitations in terms of computational efficiency, mesh coherency, and flexibility in resolution and topology. For instance, reconstructing shapes using implicit functions and extracting explicit meshes per frame is computationally expensive and cannot ensure coherent meshes across frames. Moreover, predicting per-vertex deformations on a pre-designed human template with a discrete surface lacks flexibility in resolution and topology. To overcome these limitations, we propose a novel method `\keyfeature: Neural Surface Fields' for modeling 3D clothed humans from monocular depth. NSF defines a neural field solely on the base surface which models a continuous and flexible displacement field. NSF can be adapted to the base surface with different resolution and topology without retraining at inference time. Compared to existing approaches, our method eliminates the expensive per-frame surface extraction while maintaining mesh coherency, and is capable of reconstructing meshes with arbitrary resolution without retraining. To foster research in this direction, we release our code in project page at: https://yuxuan-xue.com/nsf.
GPAvatar: Generalizable and Precise Head Avatar from Image(s)
Head avatar reconstruction, crucial for applications in virtual reality, online meetings, gaming, and film industries, has garnered substantial attention within the computer vision community. The fundamental objective of this field is to faithfully recreate the head avatar and precisely control expressions and postures. Existing methods, categorized into 2D-based warping, mesh-based, and neural rendering approaches, present challenges in maintaining multi-view consistency, incorporating non-facial information, and generalizing to new identities. In this paper, we propose a framework named GPAvatar that reconstructs 3D head avatars from one or several images in a single forward pass. The key idea of this work is to introduce a dynamic point-based expression field driven by a point cloud to precisely and effectively capture expressions. Furthermore, we use a Multi Tri-planes Attention (MTA) fusion module in the tri-planes canonical field to leverage information from multiple input images. The proposed method achieves faithful identity reconstruction, precise expression control, and multi-view consistency, demonstrating promising results for free-viewpoint rendering and novel view synthesis.
MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics
While there has been significant progress in the field of 3D avatar creation from visual observations, modeling physically plausible dynamics of humans with loose garments remains a challenging problem. Although a few existing works address this problem by leveraging physical simulation, they suffer from limited accuracy or robustness to novel animation inputs. In this work, we present MPMAvatar, a framework for creating 3D human avatars from multi-view videos that supports highly realistic, robust animation, as well as photorealistic rendering from free viewpoints. For accurate and robust dynamics modeling, our key idea is to use a Material Point Method-based simulator, which we carefully tailor to model garments with complex deformations and contact with the underlying body by incorporating an anisotropic constitutive model and a novel collision handling algorithm. We combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic animations. In our experiments, we demonstrate that MPMAvatar significantly outperforms the existing state-of-the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3) robustness and efficiency. Additionally, we present a novel application in which our avatar generalizes to unseen interactions in a zero-shot manner-which was not achievable with previous learning-based methods due to their limited simulation generalizability. Our project page is at: https://KAISTChangmin.github.io/MPMAvatar/
2DGS-Avatar: Animatable High-fidelity Clothed Avatar via 2D Gaussian Splatting
Real-time rendering of high-fidelity and animatable avatars from monocular videos remains a challenging problem in computer vision and graphics. Over the past few years, the Neural Radiance Field (NeRF) has made significant progress in rendering quality but behaves poorly in run-time performance due to the low efficiency of volumetric rendering. Recently, methods based on 3D Gaussian Splatting (3DGS) have shown great potential in fast training and real-time rendering. However, they still suffer from artifacts caused by inaccurate geometry. To address these problems, we propose 2DGS-Avatar, a novel approach based on 2D Gaussian Splatting (2DGS) for modeling animatable clothed avatars with high-fidelity and fast training performance. Given monocular RGB videos as input, our method generates an avatar that can be driven by poses and rendered in real-time. Compared to 3DGS-based methods, our 2DGS-Avatar retains the advantages of fast training and rendering while also capturing detailed, dynamic, and photo-realistic appearances. We conduct abundant experiments on popular datasets such as AvatarRex and THuman4.0, demonstrating impressive performance in both qualitative and quantitative metrics.
D-IF: Uncertainty-aware Human Digitization via Implicit Distribution Field
Realistic virtual humans play a crucial role in numerous industries, such as metaverse, intelligent healthcare, and self-driving simulation. But creating them on a large scale with high levels of realism remains a challenge. The utilization of deep implicit function sparks a new era of image-based 3D clothed human reconstruction, enabling pixel-aligned shape recovery with fine details. Subsequently, the vast majority of works locate the surface by regressing the deterministic implicit value for each point. However, should all points be treated equally regardless of their proximity to the surface? In this paper, we propose replacing the implicit value with an adaptive uncertainty distribution, to differentiate between points based on their distance to the surface. This simple ``value to distribution'' transition yields significant improvements on nearly all the baselines. Furthermore, qualitative results demonstrate that the models trained using our uncertainty distribution loss, can capture more intricate wrinkles, and realistic limbs. Code and models are available for research purposes at https://github.com/psyai-net/D-IF_release.
Generalizable and Animatable Gaussian Head Avatar
In this paper, we propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction. Existing methods rely on neural radiance fields, leading to heavy rendering consumption and low reenactment speeds. To address these limitations, we generate the parameters of 3D Gaussians from a single image in a single forward pass. The key innovation of our work is the proposed dual-lifting method, which produces high-fidelity 3D Gaussians that capture identity and facial details. Additionally, we leverage global image features and the 3D morphable model to construct 3D Gaussians for controlling expressions. After training, our model can reconstruct unseen identities without specific optimizations and perform reenactment rendering at real-time speeds. Experiments show that our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy. We believe our method can establish new benchmarks for future research and advance applications of digital avatars. Code and demos are available https://github.com/xg-chu/GAGAvatar.
EAI-Avatar: Emotion-Aware Interactive Talking Head Generation
Generative models have advanced rapidly, enabling impressive talking head generation that brings AI to life. However, most existing methods focus solely on one-way portrait animation. Even the few that support bidirectional conversational interactions lack precise emotion-adaptive capabilities, significantly limiting their practical applicability. In this paper, we propose EAI-Avatar, a novel emotion-aware talking head generation framework for dyadic interactions. Leveraging the dialogue generation capability of large language models (LLMs, e.g., GPT-4), our method produces temporally consistent virtual avatars with rich emotional variations that seamlessly transition between speaking and listening states. Specifically, we design a Transformer-based head mask generator that learns temporally consistent motion features in a latent mask space, capable of generating arbitrary-length, temporally consistent mask sequences to constrain head motions. Furthermore, we introduce an interactive talking tree structure to represent dialogue state transitions, where each tree node contains information such as child/parent/sibling nodes and the current character's emotional state. By performing reverse-level traversal, we extract rich historical emotional cues from the current node to guide expression synthesis. Extensive experiments demonstrate the superior performance and effectiveness of our method.
Drivable 3D Gaussian Avatars
We present Drivable 3D Gaussian Avatars (D3GA), the first 3D controllable model for human bodies rendered with Gaussian splats. Current photorealistic drivable avatars require either accurate 3D registrations during training, dense input images during testing, or both. The ones based on neural radiance fields also tend to be prohibitively slow for telepresence applications. This work uses the recently presented 3D Gaussian Splatting (3DGS) technique to render realistic humans at real-time framerates, using dense calibrated multi-view videos as input. To deform those primitives, we depart from the commonly used point deformation method of linear blend skinning (LBS) and use a classic volumetric deformation method: cage deformations. Given their smaller size, we drive these deformations with joint angles and keypoints, which are more suitable for communication applications. Our experiments on nine subjects with varied body shapes, clothes, and motions obtain higher-quality results than state-of-the-art methods when using the same training and test data.
HunyuanVideo-Avatar: High-Fidelity Audio-Driven Human Animation for Multiple Characters
Recent years have witnessed significant progress in audio-driven human animation. However, critical challenges remain in (i) generating highly dynamic videos while preserving character consistency, (ii) achieving precise emotion alignment between characters and audio, and (iii) enabling multi-character audio-driven animation. To address these challenges, we propose HunyuanVideo-Avatar, a multimodal diffusion transformer (MM-DiT)-based model capable of simultaneously generating dynamic, emotion-controllable, and multi-character dialogue videos. Concretely, HunyuanVideo-Avatar introduces three key innovations: (i) A character image injection module is designed to replace the conventional addition-based character conditioning scheme, eliminating the inherent condition mismatch between training and inference. This ensures the dynamic motion and strong character consistency; (ii) An Audio Emotion Module (AEM) is introduced to extract and transfer the emotional cues from an emotion reference image to the target generated video, enabling fine-grained and accurate emotion style control; (iii) A Face-Aware Audio Adapter (FAA) is proposed to isolate the audio-driven character with latent-level face mask, enabling independent audio injection via cross-attention for multi-character scenarios. These innovations empower HunyuanVideo-Avatar to surpass state-of-the-art methods on benchmark datasets and a newly proposed wild dataset, generating realistic avatars in dynamic, immersive scenarios.
Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation
Recent advances in generative diffusion models have enabled the previously unfeasible capability of generating 3D assets from a single input image or a text prompt. In this work, we aim to enhance the quality and functionality of these models for the task of creating controllable, photorealistic human avatars. We achieve this by integrating a 3D morphable model into the state-of-the-art multiview-consistent diffusion approach. We demonstrate that accurate conditioning of a generative pipeline on the articulated 3D model enhances the baseline model performance on the task of novel view synthesis from a single image. More importantly, this integration facilitates a seamless and accurate incorporation of facial expression and body pose control into the generation process. To the best of our knowledge, our proposed framework is the first diffusion model to enable the creation of fully 3D-consistent, animatable, and photorealistic human avatars from a single image of an unseen subject; extensive quantitative and qualitative evaluations demonstrate the advantages of our approach over existing state-of-the-art avatar creation models on both novel view and novel expression synthesis tasks.
Learning Disentangled Avatars with Hybrid 3D Representations
Tremendous efforts have been made to learn animatable and photorealistic human avatars. Towards this end, both explicit and implicit 3D representations are heavily studied for a holistic modeling and capture of the whole human (e.g., body, clothing, face and hair), but neither representation is an optimal choice in terms of representation efficacy since different parts of the human avatar have different modeling desiderata. For example, meshes are generally not suitable for modeling clothing and hair. Motivated by this, we present Disentangled Avatars~(DELTA), which models humans with hybrid explicit-implicit 3D representations. DELTA takes a monocular RGB video as input, and produces a human avatar with separate body and clothing/hair layers. Specifically, we demonstrate two important applications for DELTA. For the first one, we consider the disentanglement of the human body and clothing and in the second, we disentangle the face and hair. To do so, DELTA represents the body or face with an explicit mesh-based parametric 3D model and the clothing or hair with an implicit neural radiance field. To make this possible, we design an end-to-end differentiable renderer that integrates meshes into volumetric rendering, enabling DELTA to learn directly from monocular videos without any 3D supervision. Finally, we show that how these two applications can be easily combined to model full-body avatars, such that the hair, face, body and clothing can be fully disentangled yet jointly rendered. Such a disentanglement enables hair and clothing transfer to arbitrary body shapes. We empirically validate the effectiveness of DELTA's disentanglement by demonstrating its promising performance on disentangled reconstruction, virtual clothing try-on and hairstyle transfer. To facilitate future research, we also release an open-sourced pipeline for the study of hybrid human avatar modeling.
HeadSculpt: Crafting 3D Head Avatars with Text
Recently, text-guided 3D generative methods have made remarkable advancements in producing high-quality textures and geometry, capitalizing on the proliferation of large vision-language and image diffusion models. However, existing methods still struggle to create high-fidelity 3D head avatars in two aspects: (1) They rely mostly on a pre-trained text-to-image diffusion model whilst missing the necessary 3D awareness and head priors. This makes them prone to inconsistency and geometric distortions in the generated avatars. (2) They fall short in fine-grained editing. This is primarily due to the inherited limitations from the pre-trained 2D image diffusion models, which become more pronounced when it comes to 3D head avatars. In this work, we address these challenges by introducing a versatile coarse-to-fine pipeline dubbed HeadSculpt for crafting (i.e., generating and editing) 3D head avatars from textual prompts. Specifically, we first equip the diffusion model with 3D awareness by leveraging landmark-based control and a learned textual embedding representing the back view appearance of heads, enabling 3D-consistent head avatar generations. We further propose a novel identity-aware editing score distillation strategy to optimize a textured mesh with a high-resolution differentiable rendering technique. This enables identity preservation while following the editing instruction. We showcase HeadSculpt's superior fidelity and editing capabilities through comprehensive experiments and comparisons with existing methods.
MonoHuman: Animatable Human Neural Field from Monocular Video
Animating virtual avatars with free-view control is crucial for various applications like virtual reality and digital entertainment. Previous studies have attempted to utilize the representation power of the neural radiance field (NeRF) to reconstruct the human body from monocular videos. Recent works propose to graft a deformation network into the NeRF to further model the dynamics of the human neural field for animating vivid human motions. However, such pipelines either rely on pose-dependent representations or fall short of motion coherency due to frame-independent optimization, making it difficult to generalize to unseen pose sequences realistically. In this paper, we propose a novel framework MonoHuman, which robustly renders view-consistent and high-fidelity avatars under arbitrary novel poses. Our key insight is to model the deformation field with bi-directional constraints and explicitly leverage the off-the-peg keyframe information to reason the feature correlations for coherent results. Specifically, we first propose a Shared Bidirectional Deformation module, which creates a pose-independent generalizable deformation field by disentangling backward and forward deformation correspondences into shared skeletal motion weight and separate non-rigid motions. Then, we devise a Forward Correspondence Search module, which queries the correspondence feature of keyframes to guide the rendering network. The rendered results are thus multi-view consistent with high fidelity, even under challenging novel pose settings. Extensive experiments demonstrate the superiority of our proposed MonoHuman over state-of-the-art methods.
DevilSight: Augmenting Monocular Human Avatar Reconstruction through a Virtual Perspective
We present a novel framework to reconstruct human avatars from monocular videos. Recent approaches have struggled either to capture the fine-grained dynamic details from the input or to generate plausible details at novel viewpoints, which mainly stem from the limited representational capacity of the avatar model and insufficient observational data. To overcome these challenges, we propose to leverage the advanced video generative model, Human4DiT, to generate the human motions from alternative perspective as an additional supervision signal. This approach not only enriches the details in previously unseen regions but also effectively regularizes the avatar representation to mitigate artifacts. Furthermore, we introduce two complementary strategies to enhance video generation: To ensure consistent reproduction of human motion, we inject the physical identity into the model through video fine-tuning. For higher-resolution outputs with finer details, a patch-based denoising algorithm is employed. Experimental results demonstrate that our method outperforms recent state-of-the-art approaches and validate the effectiveness of our proposed strategies.
CVTHead: One-shot Controllable Head Avatar with Vertex-feature Transformer
Reconstructing personalized animatable head avatars has significant implications in the fields of AR/VR. Existing methods for achieving explicit face control of 3D Morphable Models (3DMM) typically rely on multi-view images or videos of a single subject, making the reconstruction process complex. Additionally, the traditional rendering pipeline is time-consuming, limiting real-time animation possibilities. In this paper, we introduce CVTHead, a novel approach that generates controllable neural head avatars from a single reference image using point-based neural rendering. CVTHead considers the sparse vertices of mesh as the point set and employs the proposed Vertex-feature Transformer to learn local feature descriptors for each vertex. This enables the modeling of long-range dependencies among all the vertices. Experimental results on the VoxCeleb dataset demonstrate that CVTHead achieves comparable performance to state-of-the-art graphics-based methods. Moreover, it enables efficient rendering of novel human heads with various expressions, head poses, and camera views. These attributes can be explicitly controlled using the coefficients of 3DMMs, facilitating versatile and realistic animation in real-time scenarios.
Avatar Fingerprinting for Authorized Use of Synthetic Talking-Head Videos
Modern generators render talking-head videos with impressive levels of photorealism, ushering in new user experiences such as videoconferencing under constrained bandwidth budgets. Their safe adoption, however, requires a mechanism to verify if the rendered video is trustworthy. For instance, for videoconferencing we must identify cases in which a synthetic video portrait uses the appearance of an individual without their consent. We term this task avatar fingerprinting. We propose to tackle it by leveraging facial motion signatures unique to each person. Specifically, we learn an embedding in which the motion signatures of one identity are grouped together, and pushed away from those of other identities, regardless of the appearance in the synthetic video. Avatar fingerprinting algorithms will be critical as talking head generators become more ubiquitous, and yet no large scale datasets exist for this new task. Therefore, we contribute a large dataset of people delivering scripted and improvised short monologues, accompanied by synthetic videos in which we render videos of one person using the facial appearance of another. Project page: https://research.nvidia.com/labs/nxp/avatar-fingerprinting/.
PAV: Personalized Head Avatar from Unstructured Video Collection
We propose PAV, Personalized Head Avatar for the synthesis of human faces under arbitrary viewpoints and facial expressions. PAV introduces a method that learns a dynamic deformable neural radiance field (NeRF), in particular from a collection of monocular talking face videos of the same character under various appearance and shape changes. Unlike existing head NeRF methods that are limited to modeling such input videos on a per-appearance basis, our method allows for learning multi-appearance NeRFs, introducing appearance embedding for each input video via learnable latent neural features attached to the underlying geometry. Furthermore, the proposed appearance-conditioned density formulation facilitates the shape variation of the character, such as facial hair and soft tissues, in the radiance field prediction. To the best of our knowledge, our approach is the first dynamic deformable NeRF framework to model appearance and shape variations in a single unified network for multi-appearances of the same subject. We demonstrate experimentally that PAV outperforms the baseline method in terms of visual rendering quality in our quantitative and qualitative studies on various subjects.
Ada-TTA: Towards Adaptive High-Quality Text-to-Talking Avatar Synthesis
We are interested in a novel task, namely low-resource text-to-talking avatar. Given only a few-minute-long talking person video with the audio track as the training data and arbitrary texts as the driving input, we aim to synthesize high-quality talking portrait videos corresponding to the input text. This task has broad application prospects in the digital human industry but has not been technically achieved yet due to two challenges: (1) It is challenging to mimic the timbre from out-of-domain audio for a traditional multi-speaker Text-to-Speech system. (2) It is hard to render high-fidelity and lip-synchronized talking avatars with limited training data. In this paper, we introduce Adaptive Text-to-Talking Avatar (Ada-TTA), which (1) designs a generic zero-shot multi-speaker TTS model that well disentangles the text content, timbre, and prosody; and (2) embraces recent advances in neural rendering to achieve realistic audio-driven talking face video generation. With these designs, our method overcomes the aforementioned two challenges and achieves to generate identity-preserving speech and realistic talking person video. Experiments demonstrate that our method could synthesize realistic, identity-preserving, and audio-visual synchronized talking avatar videos.
FATE: Full-head Gaussian Avatar with Textural Editing from Monocular Video
Reconstructing high-fidelity, animatable 3D head avatars from effortlessly captured monocular videos is a pivotal yet formidable challenge. Although significant progress has been made in rendering performance and manipulation capabilities, notable challenges remain, including incomplete reconstruction and inefficient Gaussian representation. To address these challenges, we introduce FATE, a novel method for reconstructing an editable full-head avatar from a single monocular video. FATE integrates a sampling-based densification strategy to ensure optimal positional distribution of points, improving rendering efficiency. A neural baking technique is introduced to convert discrete Gaussian representations into continuous attribute maps, facilitating intuitive appearance editing. Furthermore, we propose a universal completion framework to recover non-frontal appearance, culminating in a 360^circ-renderable 3D head avatar. FATE outperforms previous approaches in both qualitative and quantitative evaluations, achieving state-of-the-art performance. To the best of our knowledge, FATE is the first animatable and 360^circ full-head monocular reconstruction method for a 3D head avatar. The code will be publicly released upon publication.
Surfel-based Gaussian Inverse Rendering for Fast and Relightable Dynamic Human Reconstruction from Monocular Video
Efficient and accurate reconstruction of a relightable, dynamic clothed human avatar from a monocular video is crucial for the entertainment industry. This paper introduces the Surfel-based Gaussian Inverse Avatar (SGIA) method, which introduces efficient training and rendering for relightable dynamic human reconstruction. SGIA advances previous Gaussian Avatar methods by comprehensively modeling Physically-Based Rendering (PBR) properties for clothed human avatars, allowing for the manipulation of avatars into novel poses under diverse lighting conditions. Specifically, our approach integrates pre-integration and image-based lighting for fast light calculations that surpass the performance of existing implicit-based techniques. To address challenges related to material lighting disentanglement and accurate geometry reconstruction, we propose an innovative occlusion approximation strategy and a progressive training approach. Extensive experiments demonstrate that SGIA not only achieves highly accurate physical properties but also significantly enhances the realistic relighting of dynamic human avatars, providing a substantial speed advantage. We exhibit more results in our project page: https://GS-IA.github.io.
FantasyTalking: Realistic Talking Portrait Generation via Coherent Motion Synthesis
Creating a realistic animatable avatar from a single static portrait remains challenging. Existing approaches often struggle to capture subtle facial expressions, the associated global body movements, and the dynamic background. To address these limitations, we propose a novel framework that leverages a pretrained video diffusion transformer model to generate high-fidelity, coherent talking portraits with controllable motion dynamics. At the core of our work is a dual-stage audio-visual alignment strategy. In the first stage, we employ a clip-level training scheme to establish coherent global motion by aligning audio-driven dynamics across the entire scene, including the reference portrait, contextual objects, and background. In the second stage, we refine lip movements at the frame level using a lip-tracing mask, ensuring precise synchronization with audio signals. To preserve identity without compromising motion flexibility, we replace the commonly used reference network with a facial-focused cross-attention module that effectively maintains facial consistency throughout the video. Furthermore, we integrate a motion intensity modulation module that explicitly controls expression and body motion intensity, enabling controllable manipulation of portrait movements beyond mere lip motion. Extensive experimental results show that our proposed approach achieves higher quality with better realism, coherence, motion intensity, and identity preservation. Ours project page: https://fantasy-amap.github.io/fantasy-talking/.
ChatAnything: Facetime Chat with LLM-Enhanced Personas
In this technical report, we target generating anthropomorphized personas for LLM-based characters in an online manner, including visual appearance, personality and tones, with only text descriptions. To achieve this, we first leverage the in-context learning capability of LLMs for personality generation by carefully designing a set of system prompts. We then propose two novel concepts: the mixture of voices (MoV) and the mixture of diffusers (MoD) for diverse voice and appearance generation. For MoV, we utilize the text-to-speech (TTS) algorithms with a variety of pre-defined tones and select the most matching one based on the user-provided text description automatically. For MoD, we combine the recent popular text-to-image generation techniques and talking head algorithms to streamline the process of generating talking objects. We termed the whole framework as ChatAnything. With it, users could be able to animate anything with any personas that are anthropomorphic using just a few text inputs. However, we have observed that the anthropomorphic objects produced by current generative models are often undetectable by pre-trained face landmark detectors, leading to failure of the face motion generation, even if these faces possess human-like appearances because those images are nearly seen during the training (e.g., OOD samples). To address this issue, we incorporate pixel-level guidance to infuse human face landmarks during the image generation phase. To benchmark these metrics, we have built an evaluation dataset. Based on it, we verify that the detection rate of the face landmark is significantly increased from 57.0% to 92.5% thus allowing automatic face animation based on generated speech content. The code and more results can be found at https://chatanything.github.io/.
ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering
Real-time rendering of photorealistic and controllable human avatars stands as a cornerstone in Computer Vision and Graphics. While recent advances in neural implicit rendering have unlocked unprecedented photorealism for digital avatars, real-time performance has mostly been demonstrated for static scenes only. To address this, we propose ASH, an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time. We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering. However, naively learning the Gaussian parameters in 3D space poses a severe challenge in terms of compute. Instead, we attach the Gaussians onto a deformable character model, and learn their parameters in 2D texture space, which allows leveraging efficient 2D convolutional architectures that easily scale with the required number of Gaussians. We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
AvatarGO: Zero-shot 4D Human-Object Interaction Generation and Animation
Recent advancements in diffusion models have led to significant improvements in the generation and animation of 4D full-body human-object interactions (HOI). Nevertheless, existing methods primarily focus on SMPL-based motion generation, which is limited by the scarcity of realistic large-scale interaction data. This constraint affects their ability to create everyday HOI scenes. This paper addresses this challenge using a zero-shot approach with a pre-trained diffusion model. Despite this potential, achieving our goals is difficult due to the diffusion model's lack of understanding of ''where'' and ''how'' objects interact with the human body. To tackle these issues, we introduce AvatarGO, a novel framework designed to generate animatable 4D HOI scenes directly from textual inputs. Specifically, 1) for the ''where'' challenge, we propose LLM-guided contact retargeting, which employs Lang-SAM to identify the contact body part from text prompts, ensuring precise representation of human-object spatial relations. 2) For the ''how'' challenge, we introduce correspondence-aware motion optimization that constructs motion fields for both human and object models using the linear blend skinning function from SMPL-X. Our framework not only generates coherent compositional motions, but also exhibits greater robustness in handling penetration issues. Extensive experiments with existing methods validate AvatarGO's superior generation and animation capabilities on a variety of human-object pairs and diverse poses. As the first attempt to synthesize 4D avatars with object interactions, we hope AvatarGO could open new doors for human-centric 4D content creation.
FaceCraft4D: Animated 3D Facial Avatar Generation from a Single Image
We present a novel framework for generating high-quality, animatable 4D avatar from a single image. While recent advances have shown promising results in 4D avatar creation, existing methods either require extensive multiview data or struggle with shape accuracy and identity consistency. To address these limitations, we propose a comprehensive system that leverages shape, image, and video priors to create full-view, animatable avatars. Our approach first obtains initial coarse shape through 3D-GAN inversion. Then, it enhances multiview textures using depth-guided warping signals for cross-view consistency with the help of the image diffusion model. To handle expression animation, we incorporate a video prior with synchronized driving signals across viewpoints. We further introduce a Consistent-Inconsistent training to effectively handle data inconsistencies during 4D reconstruction. Experimental results demonstrate that our method achieves superior quality compared to the prior art, while maintaining consistency across different viewpoints and expressions.
OHTA: One-shot Hand Avatar via Data-driven Implicit Priors
In this paper, we delve into the creation of one-shot hand avatars, attaining high-fidelity and drivable hand representations swiftly from a single image. With the burgeoning domains of the digital human, the need for quick and personalized hand avatar creation has become increasingly critical. Existing techniques typically require extensive input data and may prove cumbersome or even impractical in certain scenarios. To enhance accessibility, we present a novel method OHTA (One-shot Hand avaTAr) that enables the creation of detailed hand avatars from merely one image. OHTA tackles the inherent difficulties of this data-limited problem by learning and utilizing data-driven hand priors. Specifically, we design a hand prior model initially employed for 1) learning various hand priors with available data and subsequently for 2) the inversion and fitting of the target identity with prior knowledge. OHTA demonstrates the capability to create high-fidelity hand avatars with consistent animatable quality, solely relying on a single image. Furthermore, we illustrate the versatility of OHTA through diverse applications, encompassing text-to-avatar conversion, hand editing, and identity latent space manipulation.
Towards Practical Capture of High-Fidelity Relightable Avatars
In this paper, we propose a novel framework, Tracking-free Relightable Avatar (TRAvatar), for capturing and reconstructing high-fidelity 3D avatars. Compared to previous methods, TRAvatar works in a more practical and efficient setting. Specifically, TRAvatar is trained with dynamic image sequences captured in a Light Stage under varying lighting conditions, enabling realistic relighting and real-time animation for avatars in diverse scenes. Additionally, TRAvatar allows for tracking-free avatar capture and obviates the need for accurate surface tracking under varying illumination conditions. Our contributions are two-fold: First, we propose a novel network architecture that explicitly builds on and ensures the satisfaction of the linear nature of lighting. Trained on simple group light captures, TRAvatar can predict the appearance in real-time with a single forward pass, achieving high-quality relighting effects under illuminations of arbitrary environment maps. Second, we jointly optimize the facial geometry and relightable appearance from scratch based on image sequences, where the tracking is implicitly learned. This tracking-free approach brings robustness for establishing temporal correspondences between frames under different lighting conditions. Extensive qualitative and quantitative experiments demonstrate that our framework achieves superior performance for photorealistic avatar animation and relighting.
