- Holistic 3D Scene Understanding from a Single Image with Implicit Representation We present a new pipeline for holistic 3D scene understanding from a single image, which could predict object shapes, object poses, and scene layout. As it is a highly ill-posed problem, existing methods usually suffer from inaccurate estimation of both shapes and layout especially for the cluttered scene due to the heavy occlusion between objects. We propose to utilize the latest deep implicit representation to solve this challenge. We not only propose an image-based local structured implicit network to improve the object shape estimation, but also refine the 3D object pose and scene layout via a novel implicit scene graph neural network that exploits the implicit local object features. A novel physical violation loss is also proposed to avoid incorrect context between objects. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of object shape, scene layout estimation, and 3D object detection. 6 authors · Mar 10, 2021
- Image Inpainting via Generative Multi-column Convolutional Neural Networks In this paper, we propose a generative multi-column network for image inpainting. This network synthesizes different image components in a parallel manner within one stage. To better characterize global structures, we design a confidence-driven reconstruction loss while an implicit diversified MRF regularization is adopted to enhance local details. The multi-column network combined with the reconstruction and MRF loss propagates local and global information derived from context to the target inpainting regions. Extensive experiments on challenging street view, face, natural objects and scenes manifest that our method produces visual compelling results even without previously common post-processing. 5 authors · Oct 20, 2018
- HIIF: Hierarchical Encoding based Implicit Image Function for Continuous Super-resolution Recent advances in implicit neural representations (INRs) have shown significant promise in modeling visual signals for various low-vision tasks including image super-resolution (ISR). INR-based ISR methods typically learn continuous representations, providing flexibility for generating high-resolution images at any desired scale from their low-resolution counterparts. However, existing INR-based ISR methods utilize multi-layer perceptrons for parameterization in the network; this does not take account of the hierarchical structure existing in local sampling points and hence constrains the representation capability. In this paper, we propose a new Hierarchical encoding based Implicit Image Function for continuous image super-resolution, HIIF, which leverages a novel hierarchical positional encoding that enhances the local implicit representation, enabling it to capture fine details at multiple scales. Our approach also embeds a multi-head linear attention mechanism within the implicit attention network by taking additional non-local information into account. Our experiments show that, when integrated with different backbone encoders, HIIF outperforms the state-of-the-art continuous image super-resolution methods by up to 0.17dB in PSNR. The source code of HIIF will be made publicly available at www.github.com. 8 authors · Dec 4, 2024