48 Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model Recent breakthroughs in large language models (LLMs) have centered around a handful of data-rich languages. What does it take to broaden access to breakthroughs beyond first-class citizen languages? Our work introduces Aya, a massively multilingual generative language model that follows instructions in 101 languages of which over 50% are considered as lower-resourced. Aya outperforms mT0 and BLOOMZ on the majority of tasks while covering double the number of languages. We introduce extensive new evaluation suites that broaden the state-of-art for multilingual eval across 99 languages -- including discriminative and generative tasks, human evaluation, and simulated win rates that cover both held-out tasks and in-distribution performance. Furthermore, we conduct detailed investigations on the optimal finetuning mixture composition, data pruning, as well as the toxicity, bias, and safety of our models. We open-source our instruction datasets and our model at https://hf.co/CohereForAI/aya-101 17 authors · Feb 12, 2024 2
4 mT5: A massively multilingual pre-trained text-to-text transformer The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available. 8 authors · Oct 22, 2020
33 Aya 23: Open Weight Releases to Further Multilingual Progress This technical report introduces Aya 23, a family of multilingual language models. Aya 23 builds on the recent release of the Aya model (\"Ust\"un et al., 2024), focusing on pairing a highly performant pre-trained model with the recently released Aya collection (Singh et al., 2024). The result is a powerful multilingual large language model serving 23 languages, expanding state-of-art language modeling capabilities to approximately half of the world's population. The Aya model covered 101 languages whereas Aya 23 is an experiment in depth vs breadth, exploring the impact of allocating more capacity to fewer languages that are included during pre-training. Aya 23 outperforms both previous massively multilingual models like Aya 101 for the languages it covers, as well as widely used models like Gemma, Mistral and Mixtral on an extensive range of discriminative and generative tasks. We release the open weights for both the 8B and 35B models as part of our continued commitment for expanding access to multilingual progress. 17 authors · May 23, 2024 1
- LOLA -- An Open-Source Massively Multilingual Large Language Model This paper presents LOLA, a massively multilingual large language model trained on more than 160 languages using a sparse Mixture-of-Experts Transformer architecture. Our architectural and implementation choices address the challenge of harnessing linguistic diversity while maintaining efficiency and avoiding the common pitfalls of multilinguality. Our analysis of the evaluation results shows competitive performance in natural language generation and understanding tasks. Additionally, we demonstrate how the learned expert-routing mechanism exploits implicit phylogenetic linguistic patterns to potentially alleviate the curse of multilinguality. We provide an in-depth look at the training process, an analysis of the datasets, and a balanced exploration of the model's strengths and limitations. As an open-source model, LOLA promotes reproducibility and serves as a robust foundation for future research. Our findings enable the development of compute-efficient multilingual models with strong, scalable performance across languages. 8 authors · Sep 17, 2024
1 Cheetah: Natural Language Generation for 517 African Languages Low-resource African languages pose unique challenges for natural language processing (NLP) tasks, including natural language generation (NLG). In this paper, we develop Cheetah, a massively multilingual NLG language model for African languages. Cheetah supports 517 African languages and language varieties, allowing us to address the scarcity of NLG resources and provide a solution to foster linguistic diversity. We demonstrate the effectiveness of Cheetah through comprehensive evaluations across seven generation downstream tasks. In five of the seven tasks, Cheetah significantly outperforms other models, showcasing its remarkable performance for generating coherent and contextually appropriate text in a wide range of African languages. We additionally conduct a detailed human evaluation to delve deeper into the linguistic capabilities of Cheetah. The introduction of Cheetah has far-reaching benefits for linguistic diversity. By leveraging pretrained models and adapting them to specific languages, our approach facilitates the development of practical NLG applications for African communities. The findings of this study contribute to advancing NLP research in low-resource settings, enabling greater accessibility and inclusion for African languages in a rapidly expanding digital landscape. We will publicly release our models for research. 3 authors · Jan 2, 2024
4 ChiKhaPo: A Large-Scale Multilingual Benchmark for Evaluating Lexical Comprehension and Generation in Large Language Models Existing benchmarks for large language models (LLMs) are largely restricted to high- or mid-resource languages, and often evaluate performance on higher-order tasks in reasoning and generation. However, plenty of evidence points to the fact that LLMs lack basic linguistic competence in the vast majority of the world's 3800+ written languages. We introduce ChiKhaPo, consisting of 8 subtasks of varying difficulty designed to evaluate the lexical comprehension and generation abilities of generative models. ChiKhaPo draws on existing lexicons, monolingual data, and bitext, and provides coverage for 2700+ languages for 2 subtasks, surpassing any existing benchmark in terms of language coverage. We further show that 6 SOTA models struggle on our benchmark, and discuss the factors contributing to performance scores, including language family, language resourcedness, task, and comprehension versus generation directions. With ChiKhaPo, we hope to enable and encourage the massively multilingual benchmarking of LLMs. 2 authors · Oct 19
2 EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained on texts across 546 languages designed for enhanced multilingual performance, focusing on improving language coverage for low-resource languages. To facilitate continual pre-training, we compile the MaLA corpus, a comprehensive multilingual dataset enriched with curated datasets across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide collection of benchmarks, including a comprehensive set of multilingual tasks and PolyWrite, an open-ended generation benchmark developed in this study. Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity, particularly for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task generalization, and language adaptability. 11 authors · Sep 26, 2024
1 GlotEval: A Test Suite for Massively Multilingual Evaluation of Large Language Models Large language models (LLMs) are advancing at an unprecedented pace globally, with regions increasingly adopting these models for applications in their primary language. Evaluation of these models in diverse linguistic environments, especially in low-resource languages, has become a major challenge for academia and industry. Existing evaluation frameworks are disproportionately focused on English and a handful of high-resource languages, thereby overlooking the realistic performance of LLMs in multilingual and lower-resource scenarios. To address this gap, we introduce GlotEval, a lightweight framework designed for massively multilingual evaluation. Supporting seven key tasks (machine translation, text classification, summarization, open-ended generation, reading comprehension, sequence labeling, and intrinsic evaluation), spanning over dozens to hundreds of languages, GlotEval highlights consistent multilingual benchmarking, language-specific prompt templates, and non-English-centric machine translation. This enables a precise diagnosis of model strengths and weaknesses in diverse linguistic contexts. A multilingual translation case study demonstrates GlotEval's applicability for multilingual and language-specific evaluations. 13 authors · Apr 5 2
- MdEval: Massively Multilingual Code Debugging Code large language models (LLMs) have made significant progress in code debugging by directly generating the correct code based on the buggy code snippet. Programming benchmarks, typically consisting of buggy code snippet and their associated test cases, are used to assess the debugging capabilities of LLMs. However, many existing benchmarks primarily focus on Python and are often limited in terms of language diversity (e.g., DebugBench and DebugEval). To advance the field of multilingual debugging with LLMs, we propose the first massively multilingual debugging benchmark, which includes 3.6K test samples of 18 programming languages and covers the automated program repair (APR) task, the code review (CR) task, and the bug identification (BI) task. Further, we introduce the debugging instruction corpora MDEVAL-INSTRUCT by injecting bugs into the correct multilingual queries and solutions (xDebugGen). Further, a multilingual debugger xDebugCoder trained on MDEVAL-INSTRUCT as a strong baseline specifically to handle the bugs of a wide range of programming languages (e.g. "Missing Mut" in language Rust and "Misused Macro Definition" in language C). Our extensive experiments on MDEVAL reveal a notable performance gap between open-source models and closed-source LLMs (e.g., GPT and Claude series), highlighting huge room for improvement in multilingual code debugging scenarios. 18 authors · Nov 4, 2024
41 McEval: Massively Multilingual Code Evaluation Code large language models (LLMs) have shown remarkable advances in code understanding, completion, and generation tasks. Programming benchmarks, comprised of a selection of code challenges and corresponding test cases, serve as a standard to evaluate the capability of different LLMs in such tasks. However, most existing benchmarks primarily focus on Python and are still restricted to a limited number of languages, where other languages are translated from the Python samples (e.g. MultiPL-E) degrading the data diversity. To further facilitate the research of code LLMs, we propose a massively multilingual code benchmark covering 40 programming languages (McEval) with 16K test samples, which substantially pushes the limits of code LLMs in multilingual scenarios. The benchmark contains challenging code completion, understanding, and generation evaluation tasks with finely curated massively multilingual instruction corpora McEval-Instruct. In addition, we introduce an effective multilingual coder mCoder trained on McEval-Instruct to support multilingual programming language generation. Extensive experimental results on McEval show that there is still a difficult journey between open-source models and closed-source LLMs (e.g. GPT-series models) in numerous languages. The instruction corpora, evaluation benchmark, and leaderboard are available at https://mceval.github.io/. 18 authors · Jun 11, 2024 1
- Pseudo-Labeling for Massively Multilingual Speech Recognition Semi-supervised learning through pseudo-labeling has become a staple of state-of-the-art monolingual speech recognition systems. In this work, we extend pseudo-labeling to massively multilingual speech recognition with 60 languages. We propose a simple pseudo-labeling recipe that works well even with low-resource languages: train a supervised multilingual model, fine-tune it with semi-supervised learning on a target language, generate pseudo-labels for that language, and train a final model using pseudo-labels for all languages, either from scratch or by fine-tuning. Experiments on the labeled Common Voice and unlabeled VoxPopuli datasets show that our recipe can yield a model with better performance for many languages that also transfers well to LibriSpeech. 4 authors · Oct 29, 2021
- API Pack: A Massive Multilingual Dataset for API Call Generation We introduce API Pack, a multilingual dataset featuring over one million instruction-API call pairs aimed at advancing large language models' API call generation capabilities. Through experiments, we demonstrate API Pack's efficacy in enhancing models for this specialized task while maintaining their overall proficiency at general coding. Fine-tuning CodeLlama-13B on just 20,000 Python instances yields over 10% and 5% higher accuracy than GPT-3.5 and GPT-4 respectively in generating unseen API calls. Scaling to 100k examples improves generalization to new APIs not seen during training. In addition, cross-lingual API call generation is achieved without needing extensive data per language. The dataset, fine-tuned models, and overall code base are publicly available at https://github.com/zguo0525/API-Pack. 5 authors · Feb 14, 2024
- Authorship Obfuscation in Multilingual Machine-Generated Text Detection High-quality text generation capability of recent Large Language Models (LLMs) causes concerns about their misuse (e.g., in massive generation/spread of disinformation). Machine-generated text (MGT) detection is important to cope with such threats. However, it is susceptible to authorship obfuscation (AO) methods, such as paraphrasing, which can cause MGTs to evade detection. So far, this was evaluated only in monolingual settings. Thus, the susceptibility of recently proposed multilingual detectors is still unknown. We fill this gap by comprehensively benchmarking the performance of 10 well-known AO methods, attacking 37 MGT detection methods against MGTs in 11 languages (i.e., 10 times 37 times 11 = 4,070 combinations). We also evaluate the effect of data augmentation on adversarial robustness using obfuscated texts. The results indicate that all tested AO methods can cause evasion of automated detection in all tested languages, where homoglyph attacks are especially successful. However, some of the AO methods severely damaged the text, making it no longer readable or easily recognizable by humans (e.g., changed language, weird characters). 10 authors · Jan 15, 2024