new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering

When answering a question, humans utilize the information available across different modalities to synthesize a consistent and complete chain of thought (CoT). This process is normally a black box in the case of deep learning models like large-scale language models. Recently, science question benchmarks have been used to diagnose the multi-hop reasoning ability and interpretability of an AI system. However, existing datasets fail to provide annotations for the answers, or are restricted to the textual-only modality, small scales, and limited domain diversity. To this end, we present Science Question Answering (ScienceQA), a new benchmark that consists of ~21k multimodal multiple choice questions with a diverse set of science topics and annotations of their answers with corresponding lectures and explanations. We further design language models to learn to generate lectures and explanations as the chain of thought (CoT) to mimic the multi-hop reasoning process when answering ScienceQA questions. ScienceQA demonstrates the utility of CoT in language models, as CoT improves the question answering performance by 1.20% in few-shot GPT-3 and 3.99% in fine-tuned UnifiedQA. We also explore the upper bound for models to leverage explanations by feeding those in the input; we observe that it improves the few-shot performance of GPT-3 by 18.96%. Our analysis further shows that language models, similar to humans, benefit from explanations to learn from fewer data and achieve the same performance with just 40% of the data. The data and code are available at https://scienceqa.github.io.

  • 9 authors
·
Sep 20, 2022

MoreHopQA: More Than Multi-hop Reasoning

Most existing multi-hop datasets are extractive answer datasets, where the answers to the questions can be extracted directly from the provided context. This often leads models to use heuristics or shortcuts instead of performing true multi-hop reasoning. In this paper, we propose a new multi-hop dataset, MoreHopQA, which shifts from extractive to generative answers. Our dataset is created by utilizing three existing multi-hop datasets: HotpotQA, 2WikiMultihopQA, and MuSiQue. Instead of relying solely on factual reasoning, we enhance the existing multi-hop questions by adding another layer of questioning that involves one, two, or all three of the following types of reasoning: commonsense, arithmetic, and symbolic. Our dataset is created through a semi-automated process, resulting in a dataset with 1,118 samples that have undergone human verification. We then use our dataset to evaluate five different large language models: Mistral 7B, Gemma 7B, Llama 3 (8B and 70B), and GPT-4. We also design various cases to analyze the reasoning steps in the question-answering process. Our results show that models perform well on initial multi-hop questions but struggle with our extended questions, indicating that our dataset is more challenging than previous ones. Our analysis of question decomposition reveals that although models can correctly answer questions, only a portion - 38.7% for GPT-4 and 33.4% for Llama3-70B - achieve perfect reasoning, where all corresponding sub-questions are answered correctly. Evaluation code and data are available at https://github.com/Alab-NII/morehopqa

  • 6 authors
·
Jun 19, 2024

Multi-hop Question Answering via Reasoning Chains

Multi-hop question answering requires models to gather information from different parts of a text to answer a question. Most current approaches learn to address this task in an end-to-end way with neural networks, without maintaining an explicit representation of the reasoning process. We propose a method to extract a discrete reasoning chain over the text, which consists of a series of sentences leading to the answer. We then feed the extracted chains to a BERT-based QA model to do final answer prediction. Critically, we do not rely on gold annotated chains or "supporting facts:" at training time, we derive pseudogold reasoning chains using heuristics based on named entity recognition and coreference resolution. Nor do we rely on these annotations at test time, as our model learns to extract chains from raw text alone. We test our approach on two recently proposed large multi-hop question answering datasets: WikiHop and HotpotQA, and achieve state-of-art performance on WikiHop and strong performance on HotpotQA. Our analysis shows the properties of chains that are crucial for high performance: in particular, modeling extraction sequentially is important, as is dealing with each candidate sentence in a context-aware way. Furthermore, human evaluation shows that our extracted chains allow humans to give answers with high confidence, indicating that these are a strong intermediate abstraction for this task.

  • 3 authors
·
Oct 7, 2019

Single and Multi-Hop Question-Answering Datasets for Reticular Chemistry with GPT-4-Turbo

The rapid advancement in artificial intelligence and natural language processing has led to the development of large-scale datasets aimed at benchmarking the performance of machine learning models. Herein, we introduce 'RetChemQA,' a comprehensive benchmark dataset designed to evaluate the capabilities of such models in the domain of reticular chemistry. This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 Q&As for each type. The questions have been extracted from an extensive corpus of literature containing about 2,530 research papers from publishers including NAS, ACS, RSC, Elsevier, and Nature Publishing Group, among others. The dataset has been generated using OpenAI's GPT-4 Turbo, a cutting-edge model known for its exceptional language understanding and generation capabilities. In addition to the Q&A dataset, we also release a dataset of synthesis conditions extracted from the corpus of literature used in this study. The aim of RetChemQA is to provide a robust platform for the development and evaluation of advanced machine learning algorithms, particularly for the reticular chemistry community. The dataset is structured to reflect the complexities and nuances of real-world scientific discourse, thereby enabling nuanced performance assessments across a variety of tasks. The dataset is available at the following link: https://github.com/nakulrampal/RetChemQA

  • 14 authors
·
May 3, 2024

Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study

In this study, we introduced a new benchmark consisting of a curated dataset and a defined evaluation process to assess the compositional reasoning capabilities of large language models within the chemistry domain. We designed and validated a fully automated pipeline, verified by subject matter experts, to facilitate this task. Our approach integrates OpenAI reasoning models with named entity recognition (NER) systems to extract chemical entities from recent literature, which are then augmented with external knowledge bases to form a comprehensive knowledge graph. By generating multi-hop questions across these graphs, we assess LLM performance in both context-augmented and non-context augmented settings. Our experiments reveal that even state-of-the-art models face significant challenges in multi-hop compositional reasoning. The results reflect the importance of augmenting LLMs with document retrieval, which can have a substantial impact on improving their performance. However, even perfect retrieval accuracy with full context does not eliminate reasoning errors, underscoring the complexity of compositional reasoning. This work not only benchmarks and highlights the limitations of current LLMs but also presents a novel data generation pipeline capable of producing challenging reasoning datasets across various domains. Overall, this research advances our understanding of reasoning in computational linguistics.

  • 6 authors
·
Apr 23

BMGQ: A Bottom-up Method for Generating Complex Multi-hop Reasoning Questions from Semi-structured Data

Building training-ready multi-hop question answering (QA) datasets that truly stress a model's retrieval and reasoning abilities remains highly challenging recently. While there have been a few recent evaluation datasets that capture the characteristics of hard-to-search but easy-to-verify problems -- requiring the integration of ambiguous, indirect, and cross-domain cues -- these data resources remain scarce and are mostly designed for evaluation, making them unsuitable for supervised fine-tuning (SFT) or reinforcement learning (RL). Meanwhile, manually curating non-trivially retrievable questions -- where answers cannot be found through a single direct query but instead require multi-hop reasoning over oblique and loosely connected evidence -- incurs prohibitive human costs and fails to scale, creating a critical data bottleneck for training high-capability retrieval-and-reasoning agents. To address this, we present an automated framework for generating high-difficulty, training-ready multi-hop questions from semi-structured knowledge sources. The system (i) grows diverse, logically labeled evidence clusters through Natural Language Inference (NLI)-based relation typing and diversity-aware expansion; (ii) applies reverse question construction to compose oblique cues so that isolated signals are underinformative but their combination uniquely identifies the target entity; and (iii) enforces quality with a two-step evaluation pipeline that combines multi-model consensus filtering with structured constraint decomposition and evidence-based matching. The result is a scalable process that yields complex, retrieval-resistant yet verifiable questions suitable for SFT/RL training as well as challenging evaluation, substantially reducing human curation effort while preserving the difficulty profile of strong evaluation benchmarks.

  • 9 authors
·
Oct 28

KoBLEX: Open Legal Question Answering with Multi-hop Reasoning

Large Language Models (LLM) have achieved remarkable performances in general domains and are now extending into the expert domain of law. Several benchmarks have been proposed to evaluate LLMs' legal capabilities. However, these benchmarks fail to evaluate open-ended and provision-grounded Question Answering (QA). To address this, we introduce a Korean Benchmark for Legal EXplainable QA (KoBLEX), designed to evaluate provision-grounded, multi-hop legal reasoning. KoBLEX includes 226 scenario-based QA instances and their supporting provisions, created using a hybrid LLM-human expert pipeline. We also propose a method called Parametric provision-guided Selection Retrieval (ParSeR), which uses LLM-generated parametric provisions to guide legally grounded and reliable answers. ParSeR facilitates multi-hop reasoning on complex legal questions by generating parametric provisions and employing a three-stage sequential retrieval process. Furthermore, to better evaluate the legal fidelity of the generated answers, we propose Legal Fidelity Evaluation (LF-Eval). LF-Eval is an automatic metric that jointly considers the question, answer, and supporting provisions and shows a high correlation with human judgments. Experimental results show that ParSeR consistently outperforms strong baselines, achieving the best results across multiple LLMs. Notably, compared to standard retrieval with GPT-4o, ParSeR achieves +37.91 higher F1 and +30.81 higher LF-Eval. Further analyses reveal that ParSeR efficiently delivers consistent performance across reasoning depths, with ablations confirming the effectiveness of ParSeR.

  • 5 authors
·
Sep 1

Natural Logic-guided Autoregressive Multi-hop Document Retrieval for Fact Verification

A key component of fact verification is thevevidence retrieval, often from multiple documents. Recent approaches use dense representations and condition the retrieval of each document on the previously retrieved ones. The latter step is performed over all the documents in the collection, requiring storing their dense representations in an index, thus incurring a high memory footprint. An alternative paradigm is retrieve-and-rerank, where documents are retrieved using methods such as BM25, their sentences are reranked, and further documents are retrieved conditioned on these sentences, reducing the memory requirements. However, such approaches can be brittle as they rely on heuristics and assume hyperlinks between documents. We propose a novel retrieve-and-rerank method for multi-hop retrieval, that consists of a retriever that jointly scores documents in the knowledge source and sentences from previously retrieved documents using an autoregressive formulation and is guided by a proof system based on natural logic that dynamically terminates the retrieval process if the evidence is deemed sufficient. This method is competitive with current state-of-the-art methods on FEVER, HoVer and FEVEROUS-S, while using 5 to 10 times less memory than competing systems. Evaluation on an adversarial dataset indicates improved stability of our approach compared to commonly deployed threshold-based methods. Finally, the proof system helps humans predict model decisions correctly more often than using the evidence alone.

  • 2 authors
·
Dec 10, 2022

TreeHop: Generate and Filter Next Query Embeddings Efficiently for Multi-hop Question Answering

Retrieval-augmented generation (RAG) systems face significant challenges in multi-hop question answering (MHQA), where complex queries require synthesizing information across multiple document chunks. Existing approaches typically rely on iterative LLM-based query rewriting and routing, resulting in high computational costs due to repeated LLM invocations and multi-stage processes. To address these limitations, we propose TreeHop, an embedding-level framework without the need for LLMs in query refinement. TreeHop dynamically updates query embeddings by fusing semantic information from prior queries and retrieved documents, enabling iterative retrieval through embedding-space operations alone. This method replaces the traditional "Retrieve-Rewrite-Vectorize-Retrieve" cycle with a streamlined "Retrieve-Embed-Retrieve" loop, significantly reducing computational overhead. Moreover, a rule-based stop criterion is introduced to further prune redundant retrievals, balancing efficiency and recall rate. Experimental results show that TreeHop rivals advanced RAG methods across three open-domain MHQA datasets, achieving comparable performance with only 5\%-0.4\% of the model parameter size and reducing the query latency by approximately 99\% compared to concurrent approaches. This makes TreeHop a faster and more cost-effective solution for deployment in a range of knowledge-intensive applications. For reproducibility purposes, codes and data are available here: https://github.com/allen-li1231/TreeHop.

  • 5 authors
·
Apr 27 2

Improve Mathematical Reasoning in Language Models by Automated Process Supervision

Complex multi-step reasoning tasks, such as solving mathematical problems or generating code, remain a significant hurdle for even the most advanced large language models (LLMs). Verifying LLM outputs with an Outcome Reward Model (ORM) is a standard inference-time technique aimed at enhancing the reasoning performance of LLMs. However, this still proves insufficient for reasoning tasks with a lengthy or multi-hop reasoning chain, where the intermediate outcomes are neither properly rewarded nor penalized. Process supervision addresses this limitation by assigning intermediate rewards during the reasoning process. To date, the methods used to collect process supervision data have relied on either human annotation or per-step Monte Carlo estimation, both prohibitively expensive to scale, thus hindering the broad application of this technique. In response to this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named OmegaPRM for the efficient collection of high-quality process supervision data. This algorithm swiftly identifies the first error in the Chain of Thought (CoT) with binary search and balances the positive and negative examples, thereby ensuring both efficiency and quality. As a result, we are able to collect over 1.5 million process supervision annotations to train a Process Reward Model (PRM). Utilizing this fully automated process supervision alongside the weighted self-consistency algorithm, we have enhanced the instruction tuned Gemini Pro model's math reasoning performance, achieving a 69.4\% success rate on the MATH benchmark, a 36\% relative improvement from the 51\% base model performance. Additionally, the entire process operates without any human intervention, making our method both financially and computationally cost-effective compared to existing methods.

  • 11 authors
·
Jun 5, 2024

Infinite Retrieval: Attention Enhanced LLMs in Long-Context Processing

Limited by the context window size of Large Language Models(LLMs), handling various tasks with input tokens exceeding the upper limit has been challenging, whether it is a simple direct retrieval task or a complex multi-hop reasoning task. Although various methods have been proposed to enhance the long-context processing capabilities of LLMs, they either incur substantial post-training costs, or require additional tool modules(e.g.,RAG), or have not shown significant improvement in realistic tasks. Our work observes the correlation between the attention distribution and generated answers across each layer, and establishes the attention allocation aligns with retrieval-augmented capabilities through experiments. Drawing on the above insights, we propose a novel method InfiniRetri that leverages the LLMs's own attention information to enable accurate retrieval across inputs of infinitely length. Our evaluations indicate that InfiniRetri achieves 100% accuracy in the Needle-In-a-Haystack(NIH) test over 1M tokens using a 0.5B parameter model, surpassing other method or larger models and setting a new state-of-the-art(SOTA). Moreover, our method achieves significant performance improvements on real-world benchmarks, with a maximum 288% improvement. In addition, InfiniRetri can be applied to any Transformer-based LLMs without additional training and substantially reduces inference latency and compute overhead in long texts. In summary, our comprehensive studies show InfiniRetri's potential for practical applications and creates a paradigm for retrievaling information using LLMs own capabilities under infinite-length tokens. Code will be released in link.

  • 3 authors
·
Feb 18

SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling

Process or step-wise supervision has played a crucial role in advancing complex multi-step reasoning capabilities of Large Language Models (LLMs). However, efficient, high-quality automated process annotation remains a significant challenge. To address this, we introduce Single-Pass Annotation with Reference-Guided Evaluation (SPARE), a novel structured framework that enables single-pass, per-step annotation by aligning each solution step to one or multiple steps in a reference solution, accompanied by explicit reasoning for evaluation. We show that reference-guided step-level evaluation effectively facilitates process supervision on four datasets spanning three domains: mathematical reasoning, multi-hop compositional question answering, and spatial reasoning. We demonstrate that SPARE, when compared to baselines, improves reasoning performance when used for: (1) fine-tuning models in an offline RL setup for inference-time greedy-decoding, and (2) training reward models for ranking/aggregating multiple LLM-generated outputs. Additionally, SPARE achieves competitive performance on challenging mathematical datasets while offering 2.6 times greater efficiency, requiring only 38% of the runtime, compared to tree search-based automatic annotation. The codebase, along with a trained SPARE-PRM model, is publicly released to facilitate further research and reproducibility.

  • 3 authors
·
Jun 18

HyperFormer: Enhancing Entity and Relation Interaction for Hyper-Relational Knowledge Graph Completion

Hyper-relational knowledge graphs (HKGs) extend standard knowledge graphs by associating attribute-value qualifiers to triples, which effectively represent additional fine-grained information about its associated triple. Hyper-relational knowledge graph completion (HKGC) aims at inferring unknown triples while considering its qualifiers. Most existing approaches to HKGC exploit a global-level graph structure to encode hyper-relational knowledge into the graph convolution message passing process. However, the addition of multi-hop information might bring noise into the triple prediction process. To address this problem, we propose HyperFormer, a model that considers local-level sequential information, which encodes the content of the entities, relations and qualifiers of a triple. More precisely, HyperFormer is composed of three different modules: an entity neighbor aggregator module allowing to integrate the information of the neighbors of an entity to capture different perspectives of it; a relation qualifier aggregator module to integrate hyper-relational knowledge into the corresponding relation to refine the representation of relational content; a convolution-based bidirectional interaction module based on a convolutional operation, capturing pairwise bidirectional interactions of entity-relation, entity-qualifier, and relation-qualifier. realize the depth perception of the content related to the current statement. Furthermore, we introduce a Mixture-of-Experts strategy into the feed-forward layers of HyperFormer to strengthen its representation capabilities while reducing the amount of model parameters and computation. Extensive experiments on three well-known datasets with four different conditions demonstrate HyperFormer's effectiveness. Datasets and code are available at https://github.com/zhiweihu1103/HKGC-HyperFormer.

  • 5 authors
·
Aug 12, 2023

Retrieval-Augmented Generation by Evidence Retroactivity in LLMs

Retrieval-augmented generation has gained significant attention due to its ability to integrate relevant external knowledge, enhancing the accuracy and reliability of the LLMs' responses. Most of the existing methods apply a dynamic multiple retrieval-generating process, to address multi-hop complex questions by decomposing them into sub-problems. However, these methods rely on an unidirectional forward reasoning paradigm, where errors from insufficient reasoning steps or inherent flaws in current retrieval systems are irreversible, potentially derailing the entire reasoning chain. For the first time, this work introduces Retroactive Retrieval-Augmented Generation (RetroRAG), a novel framework to build a retroactive reasoning paradigm. RetroRAG revises and updates the evidence, redirecting the reasoning chain to the correct direction. RetroRAG constructs an evidence-collation-discovery framework to search, generate, and refine credible evidence. It synthesizes inferential evidence related to the key entities in the question from the existing source knowledge and formulates search queries to uncover additional information. As new evidence is found, RetroRAG continually updates and organizes this information, enhancing its ability to locate further necessary evidence. Paired with an Answerer to generate and evaluate outputs, RetroRAG is capable of refining its reasoning process iteratively until a reliable answer is obtained. Empirical evaluations show that RetroRAG significantly outperforms existing methods.

  • 7 authors
·
Jan 7

BrowserAgent: Building Web Agents with Human-Inspired Web Browsing Actions

Efficiently solving real-world problems with LLMs increasingly hinges on their ability to interact with dynamic web environments and autonomously acquire external information. While recent research like Search-R1 and WebDancer demonstrates strong performance in solving web tasks, they heavily rely on additional tools to convert the interactive web environment into static text content. This is in contrast to human browsing behaviors, which involve diverse interactions with the browser, such as scrolling, clicking, and typing. In this paper, we propose BrowserAgent, a more interactive agent that solves complex tasks through human-inspired browser actions. BrowserAgent operates directly on raw web pages via Playwright through a set of predefined browser actions. We adopt a two-stage training (Supervised Fine-Tuning (SFT) and Rejection Fine-Tuning (RFT)) to improve the model's generalization abilities. Despite using significantly less training data than Search-R1, BrowserAgent achieves more competitive results across different Open-QA tasks. Additionally, we introduce an explicit memory mechanism to store key conclusions across steps, further enhancing the model's reasoning capabilities for long-horizon tasks. Notably, BrowserAgent-7B can achieve around 20\% improvement over Search-R1 on multi-hop QA tasks like HotpotQA, 2Wiki, and Bamboogle. These results indicate that BrowserAgent can serve as a more advanced framework for more interactive and scalable web agents.

TIGER-Lab TIGER-Lab
·
Oct 12 2

Predictive-CSM: Lightweight Fragment Security for 6LoWPAN IoT Networks

Fragmentation is a routine part of communication in 6LoWPAN-based IoT networks, designed to accommodate small frame sizes on constrained wireless links. However, this process introduces a critical vulnerability fragments are typically stored and processed before their legitimacy is confirmed, allowing attackers to exploit this gap with minimal effort. In this work, we explore a defense strategy that takes a more adaptive, behavior-aware approach to this problem. Our system, called Predictive-CSM, introduces a combination of two lightweight mechanisms. The first tracks how each node behaves over time, rewarding consistent and successful interactions while quickly penalizing suspicious or failing patterns. The second checks the integrity of packet fragments using a chained hash, allowing incomplete or manipulated sequences to be caught early, before they can occupy memory or waste processing time. We put this system to the test using a set of targeted attack simulations, including early fragment injection, replayed headers, and flooding with fake data. Across all scenarios, Predictive CSM preserved network delivery and maintained energy efficiency, even under pressure. Rather than relying on heavyweight cryptography or rigid filters, this approach allows constrained de vices to adapt their defenses in real time based on what they observe, not just what they're told. In that way, it offers a step forward for securing fragmented communication in real world IoT systems

  • 1 authors
·
Jun 2

Foundation Inference Models for Markov Jump Processes

Markov jump processes are continuous-time stochastic processes which describe dynamical systems evolving in discrete state spaces. These processes find wide application in the natural sciences and machine learning, but their inference is known to be far from trivial. In this work we introduce a methodology for zero-shot inference of Markov jump processes (MJPs), on bounded state spaces, from noisy and sparse observations, which consists of two components. First, a broad probability distribution over families of MJPs, as well as over possible observation times and noise mechanisms, with which we simulate a synthetic dataset of hidden MJPs and their noisy observation process. Second, a neural network model that processes subsets of the simulated observations, and that is trained to output the initial condition and rate matrix of the target MJP in a supervised way. We empirically demonstrate that one and the same (pretrained) model can infer, in a zero-shot fashion, hidden MJPs evolving in state spaces of different dimensionalities. Specifically, we infer MJPs which describe (i) discrete flashing ratchet systems, which are a type of Brownian motors, and the conformational dynamics in (ii) molecular simulations, (iii) experimental ion channel data and (iv) simple protein folding models. What is more, we show that our model performs on par with state-of-the-art models which are finetuned to the target datasets.

  • 5 authors
·
Jun 10, 2024

Challenging the Need for Packet Spraying in Large-Scale Distributed Training

Large-scale distributed training in production datacenters constitutes a challenging workload bottlenecked by network communication. In response, both major industry players (e.g., Ultra Ethernet Consortium) and parts of academia have surprisingly, and almost unanimously, agreed that packet spraying is necessary to improve the performance of large-scale distributed training workloads. In this paper, we challenge this prevailing belief and pose the question: How close can a singlepath transport approach an optimal multipath transport? We demonstrate that singlepath transport (from a NIC's perspective) is sufficient and can perform nearly as well as an ideal multipath transport with packet spraying, particularly in the context of distributed training in leaf-spine topologies. Our assertion is based on four key observations about workloads driven by collective communication patterns: (i) flows within a collective start almost simultaneously, (ii) flow sizes are nearly equal, (iii) the completion time of a collective is more crucial than individual flow completion times, and (iv) flows can be split upon arrival. We analytically prove that singlepath transport, using minimal flow splitting (at the application layer), is equivalent to an ideal multipath transport with packet spraying in terms of maximum congestion. Our preliminary evaluations support our claims. This paper suggests an alternative agenda for developing next-generation transport protocols tailored for large-scale distributed training.

  • 3 authors
·
Jun 29, 2024

What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices

Recent advancements in large language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios. In order to achieve success in long context tasks, a large amount of work has been done to enhance the long context capabilities of the model through synthetic data. Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement. However, our preliminary experiments indicate that less than 35% of generated samples are multi-hop, and more than 40% exhibit poor quality, limiting comprehensive understanding and further research. To improve the quality of synthetic data, we propose the Multi-agent Interactive Multi-hop Generation (MIMG) framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent. This framework improves the data quality, with the proportion of high-quality, multi-hop, and diverse data exceeding 85%. Furthermore, we systematically investigate strategies for document selection, question merging, and validation techniques through extensive experiments across various models. Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human-annotated data. Our code is available at: https://github.com/WowCZ/LongMIT.

  • 10 authors
·
Sep 3, 2024

STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering

Multi-hop question answering (MHQA) requires a model to retrieve and integrate information from multiple passages to answer a complex question. Recent systems leverage the power of large language models and integrate evidence retrieval with reasoning prompts (e.g., chain-of-thought reasoning) for the MHQA task. However, the complexities in the question types (bridge v.s. comparison questions) and the reasoning types (sequential v.s. parallel reasonings) require more novel and fine-grained prompting methods to enhance the performance of MHQA under the zero-shot setting. In this paper, we propose STOC-TOT, a stochastic tree-of-thought reasoning prompting method with constrained decoding for MHQA and conduct a detailed comparison with other reasoning prompts on different question types and reasoning types. Specifically, we construct a tree-like reasoning structure by prompting the model to break down the original question into smaller sub-questions to form different reasoning paths. In addition, we prompt the model to provide a probability estimation for each reasoning path at each reasoning step. At answer time, we conduct constrained decoding on the model to generate more grounded answers and reduce hallucination. Experiments comparing STOC-TOT with two MHQA datasets and five large language models showed that our framework outperforms other reasoning prompts by a significant margin.

  • 5 authors
·
Jul 4, 2024

Masking in Multi-hop QA: An Analysis of How Language Models Perform with Context Permutation

Multi-hop Question Answering (MHQA) adds layers of complexity to question answering, making it more challenging. When Language Models (LMs) are prompted with multiple search results, they are tasked not only with retrieving relevant information but also employing multi-hop reasoning across the information sources. Although LMs perform well on traditional question-answering tasks, the causal mask can hinder their capacity to reason across complex contexts. In this paper, we explore how LMs respond to multi-hop questions by permuting search results (retrieved documents) under various configurations. Our study reveals interesting findings as follows: 1) Encoder-decoder models, such as the ones in the Flan-T5 family, generally outperform causal decoder-only LMs in MHQA tasks, despite being significantly smaller in size; 2) altering the order of gold documents reveals distinct trends in both Flan T5 models and fine-tuned decoder-only models, with optimal performance observed when the document order aligns with the reasoning chain order; 3) enhancing causal decoder-only models with bi-directional attention by modifying the causal mask can effectively boost their end performance. In addition to the above, we conduct a thorough investigation of the distribution of LM attention weights in the context of MHQA. Our experiments reveal that attention weights tend to peak at higher values when the resulting answer is correct. We leverage this finding to heuristically improve LMs' performance on this task. Our code is publicly available at https://github.com/hwy9855/MultiHopQA-Reasoning.

  • 4 authors
·
May 16 2

RConE: Rough Cone Embedding for Multi-Hop Logical Query Answering on Multi-Modal Knowledge Graphs

Multi-hop query answering over a Knowledge Graph (KG) involves traversing one or more hops from the start node to answer a query. Path-based and logic-based methods are state-of-the-art for multi-hop question answering. The former is used in link prediction tasks. The latter is for answering complex logical queries. The logical multi-hop querying technique embeds the KG and queries in the same embedding space. The existing work incorporates First Order Logic (FOL) operators, such as conjunction (wedge), disjunction (vee), and negation (neg), in queries. Though current models have most of the building blocks to execute the FOL queries, they cannot use the dense information of multi-modal entities in the case of Multi-Modal Knowledge Graphs (MMKGs). We propose RConE, an embedding method to capture the multi-modal information needed to answer a query. The model first shortlists candidate (multi-modal) entities containing the answer. It then finds the solution (sub-entities) within those entities. Several existing works tackle path-based question-answering in MMKGs. However, to our knowledge, we are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer. Extensive evaluation of four publicly available MMKGs indicates that RConE outperforms the current state-of-the-art.

  • 3 authors
·
Aug 21, 2024

Code2MCP: A Multi-Agent Framework for Automated Transformation of Code Repositories into Model Context Protocol Services

The proliferation of Large Language Models (LLMs) has created a significant integration challenge in the AI agent ecosystem, often called the "N times M problem," where N models require custom integrations for M tools. This fragmentation stifles innovation and creates substantial development overhead. While the Model Context Protocol (MCP) has emerged as a standard to resolve this, its adoption is hindered by the manual effort required to convert the vast universe of existing software into MCP-compliant services. This is especially true for the millions of open-source repositories on GitHub, the world's largest collection of functional code. This paper introduces Code2MCP, a highly automated, agentic framework designed to transform any GitHub repository into a functional MCP service with minimal human intervention. Our system employs a multi-stage workflow that automates the entire process, from code analysis and environment configuration to service generation and deployment. A key innovation of our framework is an LLM-driven, closed-loop "Run--Review--Fix" cycle, which enables the system to autonomously debug and repair the code it generates. Code2MCP produces not only deployable services but also comprehensive technical documentation, acting as a catalyst to accelerate the MCP ecosystem by systematically unlocking the world's largest open-source code repository and automating the critical last mile of tool integration. The code is open-sourced at https://github.com/DEFENSE-SEU/MCP-Github-Agent.

Seemingly Plausible Distractors in Multi-Hop Reasoning: Are Large Language Models Attentive Readers?

State-of-the-art Large Language Models (LLMs) are accredited with an increasing number of different capabilities, ranging from reading comprehension, over advanced mathematical and reasoning skills to possessing scientific knowledge. In this paper we focus on their multi-hop reasoning capability: the ability to identify and integrate information from multiple textual sources. Given the concerns with the presence of simplifying cues in existing multi-hop reasoning benchmarks, which allow models to circumvent the reasoning requirement, we set out to investigate, whether LLMs are prone to exploiting such simplifying cues. We find evidence that they indeed circumvent the requirement to perform multi-hop reasoning, but they do so in more subtle ways than what was reported about their fine-tuned pre-trained language model (PLM) predecessors. Motivated by this finding, we propose a challenging multi-hop reasoning benchmark, by generating seemingly plausible multi-hop reasoning chains, which ultimately lead to incorrect answers. We evaluate multiple open and proprietary state-of-the-art LLMs, and find that their performance to perform multi-hop reasoning is affected, as indicated by up to 45% relative decrease in F1 score when presented with such seemingly plausible alternatives. We conduct a deeper analysis and find evidence that while LLMs tend to ignore misleading lexical cues, misleading reasoning paths indeed present a significant challenge.

  • 3 authors
·
Sep 8, 2024

Multi-Head Adapter Routing for Cross-Task Generalization

Parameter-efficient fine-tuning (PEFT) for cross-task generalization consists in pre-training adapters on a multi-task training set before few-shot adaptation to test tasks. Polytropon [Ponti et al., 2023] (Poly) jointly learns an inventory of adapters and a routing function that selects a (variable-size) subset of adapters for each task during both pre-training and few-shot adaptation. In this paper, we investigate the role that adapter routing plays in its success and design new variants based on our findings. First, we build on the intuition that finer-grained routing provides more expressivity. Hence, we propose MHR (Multi-Head Routing), which combines subsets of adapter parameters and outperforms Poly under a comparable parameter budget; by only fine-tuning the routing function and not the adapters (MHR-z), we achieve competitive performance with extreme parameter efficiency. Second, we find that Poly/MHR performance is a result of better multi-task optimization, rather than modular inductive biases that facilitate adapter recombination and local adaptation, as previously hypothesized. In fact, we find that MHR exhibits higher gradient alignment between tasks than any other method. Since this implies that routing is only crucial during multi-task pre-training, we propose MHR-mu, which discards routing and fine-tunes the average of the pre-trained adapters during few-shot adaptation. This establishes MHR-mu as an effective method for single-adapter fine-tuning.

  • 6 authors
·
Nov 7, 2022 2

MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries

Retrieval-augmented generation (RAG) augments large language models (LLM) by retrieving relevant knowledge, showing promising potential in mitigating LLM hallucinations and enhancing response quality, thereby facilitating the great adoption of LLMs in practice. However, we find that existing RAG systems are inadequate in answering multi-hop queries, which require retrieving and reasoning over multiple pieces of supporting evidence. Furthermore, to our knowledge, no existing RAG benchmarking dataset focuses on multi-hop queries. In this paper, we develop a novel dataset, MultiHop-RAG, which consists of a knowledge base, a large collection of multi-hop queries, their ground-truth answers, and the associated supporting evidence. We detail the procedure of building the dataset, utilizing an English news article dataset as the underlying RAG knowledge base. We demonstrate the benchmarking utility of MultiHop-RAG in two experiments. The first experiment compares different embedding models for retrieving evidence for multi-hop queries. In the second experiment, we examine the capabilities of various state-of-the-art LLMs, including GPT-4, PaLM, and Llama2-70B, in reasoning and answering multi-hop queries given the evidence. Both experiments reveal that existing RAG methods perform unsatisfactorily in retrieving and answering multi-hop queries. We hope MultiHop-RAG will be a valuable resource for the community in developing effective RAG systems, thereby facilitating greater adoption of LLMs in practice. The MultiHop-RAG and implemented RAG system is publicly available at https://github.com/yixuantt/MultiHop-RAG/.

  • 2 authors
·
Jan 27, 2024 1

Serverless Cold Starts and Where to Find Them

This paper releases and analyzes a month-long trace of 85 billion user requests and 11.9 million cold starts from Huawei's serverless cloud platform. Our analysis spans workloads from five data centers. We focus on cold starts and provide a comprehensive examination of the underlying factors influencing the number and duration of cold starts. These factors include trigger types, request synchronicity, runtime languages, and function resource allocations. We investigate components of cold starts, including pod allocation time, code and dependency deployment time, and scheduling delays, and examine their relationships with runtime languages, trigger types, and resource allocation. We introduce pod utility ratio to measure the pod's useful lifetime relative to its cold start time, giving a more complete picture of cold starts, and see that some pods with long cold start times have longer useful lifetimes. Our findings reveal the complexity and multifaceted origins of the number, duration, and characteristics of cold starts, driven by differences in trigger types, runtime languages, and function resource allocations. For example, cold starts in Region 1 take up to 7 seconds, dominated by dependency deployment time and scheduling. In Region 2, cold starts take up to 3 seconds and are dominated by pod allocation time. Based on this, we identify opportunities to reduce the number and duration of cold starts using strategies for multi-region scheduling. Finally, we suggest directions for future research to address these challenges and enhance the performance of serverless cloud platforms. Our datasets and code are available here https://github.com/sir-lab/data-release

  • 8 authors
·
Oct 8, 2024

Evaluating the Ability of LLMs to Solve Semantics-Aware Process Mining Tasks

The process mining community has recently recognized the potential of large language models (LLMs) for tackling various process mining tasks. Initial studies report the capability of LLMs to support process analysis and even, to some extent, that they are able to reason about how processes work. This latter property suggests that LLMs could also be used to tackle process mining tasks that benefit from an understanding of process behavior. Examples of such tasks include (semantic) anomaly detection and next activity prediction, which both involve considerations of the meaning of activities and their inter-relations. In this paper, we investigate the capabilities of LLMs to tackle such semantics-aware process mining tasks. Furthermore, whereas most works on the intersection of LLMs and process mining only focus on testing these models out of the box, we provide a more principled investigation of the utility of LLMs for process mining, including their ability to obtain process mining knowledge post-hoc by means of in-context learning and supervised fine-tuning. Concretely, we define three process mining tasks that benefit from an understanding of process semantics and provide extensive benchmarking datasets for each of them. Our evaluation experiments reveal that (1) LLMs fail to solve challenging process mining tasks out of the box and when provided only a handful of in-context examples, (2) but they yield strong performance when fine-tuned for these tasks, consistently surpassing smaller, encoder-based language models.

  • 4 authors
·
Jul 2, 2024

Hopfield Networks is All You Need

We introduce a modern Hopfield network with continuous states and a corresponding update rule. The new Hopfield network can store exponentially (with the dimension of the associative space) many patterns, retrieves the pattern with one update, and has exponentially small retrieval errors. It has three types of energy minima (fixed points of the update): (1) global fixed point averaging over all patterns, (2) metastable states averaging over a subset of patterns, and (3) fixed points which store a single pattern. The new update rule is equivalent to the attention mechanism used in transformers. This equivalence enables a characterization of the heads of transformer models. These heads perform in the first layers preferably global averaging and in higher layers partial averaging via metastable states. The new modern Hopfield network can be integrated into deep learning architectures as layers to allow the storage of and access to raw input data, intermediate results, or learned prototypes. These Hopfield layers enable new ways of deep learning, beyond fully-connected, convolutional, or recurrent networks, and provide pooling, memory, association, and attention mechanisms. We demonstrate the broad applicability of the Hopfield layers across various domains. Hopfield layers improved state-of-the-art on three out of four considered multiple instance learning problems as well as on immune repertoire classification with several hundreds of thousands of instances. On the UCI benchmark collections of small classification tasks, where deep learning methods typically struggle, Hopfield layers yielded a new state-of-the-art when compared to different machine learning methods. Finally, Hopfield layers achieved state-of-the-art on two drug design datasets. The implementation is available at: https://github.com/ml-jku/hopfield-layers

  • 16 authors
·
Jul 16, 2020

Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.

  • 1 authors
·
Sep 9, 2012