Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFrom Independence to Interaction: Speaker-Aware Simulation of Multi-Speaker Conversational Timing
We present a speaker-aware approach for simulating multi-speaker conversations that captures temporal consistency and realistic turn-taking dynamics. Prior work typically models aggregate conversational statistics under an independence assumption across speakers and turns. In contrast, our method uses speaker-specific deviation distributions enforcing intra-speaker temporal consistency, while a Markov chain governs turn-taking and a fixed room impulse response preserves spatial realism. We also unify pauses and overlaps into a single gap distribution, modeled with kernel density estimation for smooth continuity. Evaluation on Switchboard using intrinsic metrics - global gap statistics, correlations between consecutive gaps, copula-based higher-order dependencies, turn-taking entropy, and gap survival functions - shows that speaker-aware simulation better aligns with real conversational patterns than the baseline method, capturing fine-grained temporal dependencies and realistic speaker alternation, while revealing open challenges in modeling long-range conversational structure.
Qwen2-Audio Technical Report
We introduce the latest progress of Qwen-Audio, a large-scale audio-language model called Qwen2-Audio, which is capable of accepting various audio signal inputs and performing audio analysis or direct textual responses with regard to speech instructions. In contrast to complex hierarchical tags, we have simplified the pre-training process by utilizing natural language prompts for different data and tasks, and have further expanded the data volume. We have boosted the instruction-following capability of Qwen2-Audio and implemented two distinct audio interaction modes for voice chat and audio analysis. In the voice chat mode, users can freely engage in voice interactions with Qwen2-Audio without text input. In the audio analysis mode, users could provide audio and text instructions for analysis during the interaction. Note that we do not use any system prompts to switch between voice chat and audio analysis modes. Qwen2-Audio is capable of intelligently comprehending the content within audio and following voice commands to respond appropriately. For instance, in an audio segment that simultaneously contains sounds, multi-speaker conversations, and a voice command, Qwen2-Audio can directly understand the command and provide an interpretation and response to the audio. Additionally, DPO has optimized the model's performance in terms of factuality and adherence to desired behavior. According to the evaluation results from AIR-Bench, Qwen2-Audio outperformed previous SOTAs, such as Gemini-1.5-pro, in tests focused on audio-centric instruction-following capabilities. Qwen2-Audio is open-sourced with the aim of fostering the advancement of the multi-modal language community.
Diarization-Aware Multi-Speaker Automatic Speech Recognition via Large Language Models
Multi-speaker automatic speech recognition (MS-ASR) faces significant challenges in transcribing overlapped speech, a task critical for applications like meeting transcription and conversational analysis. While serialized output training (SOT)-style methods serve as common solutions, they often discard absolute timing information, limiting their utility in time-sensitive scenarios. Leveraging recent advances in large language models (LLMs) for conversational audio processing, we propose a novel diarization-aware multi-speaker ASR system that integrates speaker diarization with LLM-based transcription. Our framework processes structured diarization inputs alongside frame-level speaker and semantic embeddings, enabling the LLM to generate segment-level transcriptions. Experiments demonstrate that the system achieves robust performance in multilingual dyadic conversations and excels in complex, high-overlap multi-speaker meeting scenarios. This work highlights the potential of LLMs as unified back-ends for joint speaker-aware segmentation and transcription.
IndicVoices-R: Unlocking a Massive Multilingual Multi-speaker Speech Corpus for Scaling Indian TTS
Recent advancements in text-to-speech (TTS) synthesis show that large-scale models trained with extensive web data produce highly natural-sounding output. However, such data is scarce for Indian languages due to the lack of high-quality, manually subtitled data on platforms like LibriVox or YouTube. To address this gap, we enhance existing large-scale ASR datasets containing natural conversations collected in low-quality environments to generate high-quality TTS training data. Our pipeline leverages the cross-lingual generalization of denoising and speech enhancement models trained on English and applied to Indian languages. This results in IndicVoices-R (IV-R), the largest multilingual Indian TTS dataset derived from an ASR dataset, with 1,704 hours of high-quality speech from 10,496 speakers across 22 Indian languages. IV-R matches the quality of gold-standard TTS datasets like LJSpeech, LibriTTS, and IndicTTS. We also introduce the IV-R Benchmark, the first to assess zero-shot, few-shot, and many-shot speaker generalization capabilities of TTS models on Indian voices, ensuring diversity in age, gender, and style. We demonstrate that fine-tuning an English pre-trained model on a combined dataset of high-quality IndicTTS and our IV-R dataset results in better zero-shot speaker generalization compared to fine-tuning on the IndicTTS dataset alone. Further, our evaluation reveals limited zero-shot generalization for Indian voices in TTS models trained on prior datasets, which we improve by fine-tuning the model on our data containing diverse set of speakers across language families. We open-source all data and code, releasing the first TTS model for all 22 official Indian languages.
LibriConvo: Simulating Conversations from Read Literature for ASR and Diarization
We introduce LibriConvo, a simulated multi-speaker conversational dataset based on speaker-aware conversation simulation (SASC), designed to support training and evaluation of speaker diarization and automatic speech recognition (ASR) systems. Unlike prior resources that mostly rely on semantically disconnected utterances and implausible temporal gaps, LibriConvo ensures semantic coherence and realistic conversational timing. Our pipeline leverages CallHome with external VAD for reliable boundaries, applies compression to reduce unnaturally long silences, and organizes LibriTTS utterances by book to maintain contextual consistency. Acoustic realism is enhanced via a novel room impulse response selection procedure that ranks speaker-microphone configurations by spatial plausibility, balancing realism and diversity. The dataset comprises 240.1 hours across 1,496 dialogues with 830 unique speakers, split in a speaker-disjoint manner for robust evaluation. Baselines show that the sortformer model outperforms the pyannote pipeline in diarization, while a fine-tuned Fast Conformer-CTC XLarge with Serialized Output Training achieves 7.29\% WER for ASR, surpassing zero-shot Whisper-large-v3. LibriConvo provides a valuable resource for advancing multi-speaker speech processing research with realistic conversational dynamics and controlled experimental conditions.
A Framework for Synthetic Audio Conversations Generation using Large Language Models
In this paper, we introduce ConversaSynth, a framework designed to generate synthetic conversation audio using large language models (LLMs) with multiple persona settings. The framework first creates diverse and coherent text-based dialogues across various topics, which are then converted into audio using text-to-speech (TTS) systems. Our experiments demonstrate that ConversaSynth effectively generates highquality synthetic audio datasets, which can significantly enhance the training and evaluation of models for audio tagging, audio classification, and multi-speaker speech recognition. The results indicate that the synthetic datasets generated by ConversaSynth exhibit substantial diversity and realism, making them suitable for developing robust, adaptable audio-based AI systems.
Beamforming-LLM: What, Where and When Did I Miss?
We present Beamforming-LLM, a system that enables users to semantically recall conversations they may have missed in multi-speaker environments. The system combines spatial audio capture using a microphone array with retrieval-augmented generation (RAG) to support natural language queries such as, "What did I miss when I was following the conversation on dogs?" Directional audio streams are separated using beamforming, transcribed with Whisper, and embedded into a vector database using sentence encoders. Upon receiving a user query, semantically relevant segments are retrieved, temporally aligned with non-attended segments, and summarized using a lightweight large language model (GPT-4o-mini). The result is a user-friendly interface that provides contrastive summaries, spatial context, and timestamped audio playback. This work lays the foundation for intelligent auditory memory systems and has broad applications in assistive technology, meeting summarization, and context-aware personal spatial computing.
DualTalk: Dual-Speaker Interaction for 3D Talking Head Conversations
In face-to-face conversations, individuals need to switch between speaking and listening roles seamlessly. Existing 3D talking head generation models focus solely on speaking or listening, neglecting the natural dynamics of interactive conversation, which leads to unnatural interactions and awkward transitions. To address this issue, we propose a new task -- multi-round dual-speaker interaction for 3D talking head generation -- which requires models to handle and generate both speaking and listening behaviors in continuous conversation. To solve this task, we introduce DualTalk, a novel unified framework that integrates the dynamic behaviors of speakers and listeners to simulate realistic and coherent dialogue interactions. This framework not only synthesizes lifelike talking heads when speaking but also generates continuous and vivid non-verbal feedback when listening, effectively capturing the interplay between the roles. We also create a new dataset featuring 50 hours of multi-round conversations with over 1,000 characters, where participants continuously switch between speaking and listening roles. Extensive experiments demonstrate that our method significantly enhances the naturalness and expressiveness of 3D talking heads in dual-speaker conversations. We recommend watching the supplementary video: https://ziqiaopeng.github.io/dualtalk.
Enhancing Child Vocalization Classification in Multi-Channel Child-Adult Conversations Through Wav2vec2 Children ASR Features
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that often emerges in early childhood. ASD assessment typically involves an observation protocol including note-taking and ratings of child's social behavior conducted by a trained clinician. A robust machine learning (ML) model that is capable of labeling adult and child audio has the potential to save significant time and labor in manual coding children's behaviors. This may assist clinicians capture events of interest, better communicate events with parents, and educate new clinicians. In this study, we leverage the self-supervised learning model, Wav2Vec 2.0 (W2V2), pretrained on 4300h of home recordings of children under 5 years old, to build a unified system that performs both speaker diarization (SD) and vocalization classification (VC) tasks. We apply this system to two-channel audio recordings of brief 3-5 minute clinician-child interactions using the Rapid-ABC corpus. We propose a novel technique by introducing auxiliary features extracted from W2V2-based automatic speech recognition (ASR) system for children under 4 years old to improve children's VC task. We test our proposed method of improving children's VC task on two corpora (Rapid-ABC and BabbleCor) and observe consistent improvements. Furthermore, we reach, or perhaps outperform, the state-of-the-art performance of BabbleCor.
Advancing Multi-Party Dialogue Systems with Speaker-ware Contrastive Learning
Dialogue response generation has made significant progress, but most research has focused on dyadic dialogue. In contrast, multi-party dialogues involve more participants, each potentially discussing different topics, making the task more complex. Current methods often rely on graph neural networks to model dialogue context, which helps capture the structural dynamics of multi-party conversations. However, these methods are heavily dependent on intricate graph structures and dataset annotations, and they often overlook the distinct speaking styles of participants. To address these challenges, we propose CMR, a Contrastive learning-based Multi-party dialogue Response generation model. CMR uses self-supervised contrastive learning to better distinguish "who says what." Additionally, by comparing speakers within the same conversation, the model captures differences in speaking styles and thematic transitions. To the best of our knowledge, this is the first approach to apply contrastive learning in multi-party dialogue generation. Experimental results show that CMR significantly outperforms state-of-the-art models in multi-party dialogue response tasks.
Data Augmentation for Human Behavior Analysis in Multi-Person Conversations
In this paper, we present the solution of our team HFUT-VUT for the MultiMediate Grand Challenge 2023 at ACM Multimedia 2023. The solution covers three sub-challenges: bodily behavior recognition, eye contact detection, and next speaker prediction. We select Swin Transformer as the baseline and exploit data augmentation strategies to address the above three tasks. Specifically, we crop the raw video to remove the noise from other parts. At the same time, we utilize data augmentation to improve the generalization of the model. As a result, our solution achieves the best results of 0.6262 for bodily behavior recognition in terms of mean average precision and the accuracy of 0.7771 for eye contact detection on the corresponding test set. In addition, our approach also achieves comparable results of 0.5281 for the next speaker prediction in terms of unweighted average recall.
Conversation Chronicles: Towards Diverse Temporal and Relational Dynamics in Multi-Session Conversations
In the field of natural language processing, open-domain chatbots have emerged as an important research topic. However, a major limitation of existing open-domain chatbot research is its singular focus on short single-session dialogue, neglecting the potential need for understanding contextual information in multiple consecutive sessions that precede an ongoing dialogue. Among the elements that compose the context in multi-session conversation settings, the time intervals between sessions and the relationships between speakers would be particularly important. Despite their importance, current research efforts have not sufficiently addressed these dialogical components. In this paper, we introduce a new 1M multi-session dialogue dataset, called Conversation Chronicles, for implementing a long-term conversation setup in which time intervals and fine-grained speaker relationships are incorporated. Following recent works, we exploit a large language model to produce the data. The extensive human evaluation shows that dialogue episodes in Conversation Chronicles reflect those properties while maintaining coherent and consistent interactions across all the sessions. We also propose a dialogue model, called ReBot, which consists of chronological summarization and dialogue generation modules using only around 630M parameters. When trained on Conversation Chronicles, ReBot demonstrates long-term context understanding with a high human engagement score.
Proactive Hearing Assistants that Isolate Egocentric Conversations
We introduce proactive hearing assistants that automatically identify and separate the wearer's conversation partners, without requiring explicit prompts. Our system operates on egocentric binaural audio and uses the wearer's self-speech as an anchor, leveraging turn-taking behavior and dialogue dynamics to infer conversational partners and suppress others. To enable real-time, on-device operation, we propose a dual-model architecture: a lightweight streaming model runs every 12.5 ms for low-latency extraction of the conversation partners, while a slower model runs less frequently to capture longer-range conversational dynamics. Results on real-world 2- and 3-speaker conversation test sets, collected with binaural egocentric hardware from 11 participants totaling 6.8 hours, show generalization in identifying and isolating conversational partners in multi-conversation settings. Our work marks a step toward hearing assistants that adapt proactively to conversational dynamics and engagement. More information can be found on our website: https://proactivehearing.cs.washington.edu/
Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding
Multi-modal multi-party conversation (MMC) is a less studied yet important topic of research due to that it well fits real-world scenarios and thus potentially has more widely-used applications. Compared with the traditional multi-modal conversations, MMC requires stronger character-centered understanding abilities as there are many interlocutors appearing in both the visual and textual context. To facilitate the study of this problem, we present Friends-MMC in this paper, an MMC dataset that contains 24,000+ unique utterances paired with video context. To explore the character-centered understanding of the dialogue, we also annotate the speaker of each utterance, the names and bounding bboxes of faces that appear in the video. Based on this Friends-MMC dataset, we further study two fundamental MMC tasks: conversation speaker identification and conversation response prediction, both of which have the multi-party nature with the video or image as visual context. For conversation speaker identification, we demonstrate the inefficiencies of existing methods such as pre-trained models, and propose a simple yet effective baseline method that leverages an optimization solver to utilize the context of two modalities to achieve better performance. For conversation response prediction, we fine-tune generative dialogue models on Friend-MMC, and analyze the benefits of speaker information. The code and dataset is publicly available at https://github.com/yellow-binary-tree/Friends-MMC and thus we call for more attention on modeling speaker information when understanding conversations.
InstructERC: Reforming Emotion Recognition in Conversation with a Retrieval Multi-task LLMs Framework
The development of emotion recognition in dialogue (ERC) has been consistently hindered by the complexity of pipeline designs, leading to ERC models that often overfit to specific datasets and dialogue patterns. In this study, we propose a novel approach, namely InstructERC, to reformulates the ERC task from a discriminative framework to a generative framework based on Large Language Models (LLMs) . InstructERC has two significant contributions: Firstly, InstructERC introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information by concatenating the historical dialog content, label statement, and emotional domain demonstrations with high semantic similarity. Furthermore, we introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations. Our LLM-based plug-and-play plugin framework significantly outperforms all previous models and achieves comprehensive SOTA on three commonly used ERC datasets. Extensive analysis of parameter-efficient and data-scaling experiments provide empirical guidance for applying InstructERC in practical scenarios. Our code will be released after blind review.
DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage
Laughing, sighing, stuttering, and other forms of paralanguage do not contribute any direct lexical meaning to speech, but they provide crucial propositional context that aids semantic and pragmatic processes such as irony. It is thus important for artificial social agents to both understand and be able to generate speech with semantically-important paralanguage. Most speech datasets do not include transcribed non-lexical speech sounds and disfluencies, while those that do are typically multi-speaker datasets where each speaker provides relatively little audio. This makes it challenging to train conversational Text-to-Speech (TTS) synthesis models that include such paralinguistic components. We thus present DisfluencySpeech, a studio-quality labeled English speech dataset with paralanguage. A single speaker recreates nearly 10 hours of expressive utterances from the Switchboard-1 Telephone Speech Corpus (Switchboard), simulating realistic informal conversations. To aid the development of a TTS model that is able to predictively synthesise paralanguage from text without such components, we provide three different transcripts at different levels of information removal (removal of non-speech events, removal of non-sentence elements, and removal of false starts), as well as benchmark TTS models trained on each of these levels.
Benchmarking Diarization Models
Speaker diarization is the task of partitioning audio into segments according to speaker identity, answering the question of "who spoke when" in multi-speaker conversation recordings. While diarization is an essential task for many downstream applications, it remains an unsolved problem. Errors in diarization propagate to downstream systems and cause wide-ranging failures. To this end, we examine exact failure modes by evaluating five state-of-the-art diarization models, across four diarization datasets spanning multiple languages and acoustic conditions. The evaluation datasets consist of 196.6 hours of multilingual audio, including English, Mandarin, German, Japanese, and Spanish. Overall, we find that PyannoteAI achieves the best performance at 11.2% DER, while DiariZen provides a competitive open-source alternative at 13.3% DER. When analyzing failure cases, we find that the primary cause of diarization errors stem from missed speech segments followed by speaker confusion, especially in high-speaker count settings.
SoulX-Podcast: Towards Realistic Long-form Podcasts with Dialectal and Paralinguistic Diversity
Recent advances in text-to-speech (TTS) synthesis have significantly improved speech expressiveness and naturalness. However, most existing systems are tailored for single-speaker synthesis and fall short in generating coherent multi-speaker conversational speech. This technical report presents SoulX-Podcast, a system designed for podcast-style multi-turn, multi-speaker dialogic speech generation, while also achieving state-of-the-art performance in conventional TTS tasks. To meet the higher naturalness demands of multi-turn spoken dialogue, SoulX-Podcast integrates a range of paralinguistic controls and supports both Mandarin and English, as well as several Chinese dialects, including Sichuanese, Henanese, and Cantonese, enabling more personalized podcast-style speech generation. Experimental results demonstrate that SoulX-Podcast can continuously produce over 90 minutes of conversation with stable speaker timbre and smooth speaker transitions. Moreover, speakers exhibit contextually adaptive prosody, reflecting natural rhythm and intonation changes as dialogues progress. Across multiple evaluation metrics, SoulX-Podcast achieves state-of-the-art performance in both monologue TTS and multi-turn conversational speech synthesis.
Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation
Audio-driven human animation methods, such as talking head and talking body generation, have made remarkable progress in generating synchronized facial movements and appealing visual quality videos. However, existing methods primarily focus on single human animation and struggle with multi-stream audio inputs, facing incorrect binding problems between audio and persons. Additionally, they exhibit limitations in instruction-following capabilities. To solve this problem, in this paper, we propose a novel task: Multi-Person Conversational Video Generation, and introduce a new framework, MultiTalk, to address the challenges during multi-person generation. Specifically, for audio injection, we investigate several schemes and propose the Label Rotary Position Embedding (L-RoPE) method to resolve the audio and person binding problem. Furthermore, during training, we observe that partial parameter training and multi-task training are crucial for preserving the instruction-following ability of the base model. MultiTalk achieves superior performance compared to other methods on several datasets, including talking head, talking body, and multi-person datasets, demonstrating the powerful generation capabilities of our approach.
Multi-human Interactive Talking Dataset
Existing studies on talking video generation have predominantly focused on single-person monologues or isolated facial animations, limiting their applicability to realistic multi-human interactions. To bridge this gap, we introduce MIT, a large-scale dataset specifically designed for multi-human talking video generation. To this end, we develop an automatic pipeline that collects and annotates multi-person conversational videos. The resulting dataset comprises 12 hours of high-resolution footage, each featuring two to four speakers, with fine-grained annotations of body poses and speech interactions. It captures natural conversational dynamics in multi-speaker scenario, offering a rich resource for studying interactive visual behaviors. To demonstrate the potential of MIT, we furthur propose CovOG, a baseline model for this novel task. It integrates a Multi-Human Pose Encoder (MPE) to handle varying numbers of speakers by aggregating individual pose embeddings, and an Interactive Audio Driver (IAD) to modulate head dynamics based on speaker-specific audio features. Together, these components showcase the feasibility and challenges of generating realistic multi-human talking videos, establishing MIT as a valuable benchmark for future research. The code is avalibale at: https://github.com/showlab/Multi-human-Talking-Video-Dataset.
FireRedTTS-2: Towards Long Conversational Speech Generation for Podcast and Chatbot
Current dialogue generation approaches typically require the complete dialogue text before synthesis and produce a single, inseparable speech containing all voices, making them unsuitable for interactive chat; moreover, they suffer from unstable synthesis, inaccurate speaker transitions, and incoherent prosody. In this work, we present FireRedTTS-2, a long-form streaming TTS system for multi-speaker dialogue generation, delivering stable, natural speech with reliable speaker switching and context-aware prosody. A new 12.5Hz streaming speech tokenizer accelerates training and inference, extends maximum dialogue length, encodes richer semantics to stabilize text-to-token modeling and supports high-fidelity streaming generation for real-time applications. We adopt a text-speech interleaved format, concatenating speaker-labeled text with aligned speech tokens in chronological order, and model it with a dual-transformer: a large decoder-only transformer predicts tokens at the first layer, and a smaller one completes subsequent layers. Experimental results show that FireRedTTS-2 integrates seamlessly with chat frameworks and, with minimal fine-tuning, produces emotionally expressive speech guided by implicit contextual cues. In podcast generation, it surpasses existing systems including MoonCast, Zipvoice-Dialogue, and MOSS-TTSD in objective intelligibility, speaker-turn reliability, and perceived naturalness with context-consistent prosody. Our demos are available at https://fireredteam.github.io/demos/firered_tts_2.
AISHELL-4: An Open Source Dataset for Speech Enhancement, Separation, Recognition and Speaker Diarization in Conference Scenario
In this paper, we present AISHELL-4, a sizable real-recorded Mandarin speech dataset collected by 8-channel circular microphone array for speech processing in conference scenario. The dataset consists of 211 recorded meeting sessions, each containing 4 to 8 speakers, with a total length of 120 hours. This dataset aims to bridge the advanced research on multi-speaker processing and the practical application scenario in three aspects. With real recorded meetings, AISHELL-4 provides realistic acoustics and rich natural speech characteristics in conversation such as short pause, speech overlap, quick speaker turn, noise, etc. Meanwhile, accurate transcription and speaker voice activity are provided for each meeting in AISHELL-4. This allows the researchers to explore different aspects in meeting processing, ranging from individual tasks such as speech front-end processing, speech recognition and speaker diarization, to multi-modality modeling and joint optimization of relevant tasks. Given most open source dataset for multi-speaker tasks are in English, AISHELL-4 is the only Mandarin dataset for conversation speech, providing additional value for data diversity in speech community. We also release a PyTorch-based training and evaluation framework as baseline system to promote reproducible research in this field.
Contrastive Speaker-Aware Learning for Multi-party Dialogue Generation with LLMs
Multi-party dialogue generation presents significant challenges due to the complex interplay of multiple speakers and interwoven conversational threads. Traditional approaches often fall short in capturing these complexities, particularly when relying on manually annotated dialogue relations. This paper introduces Speaker-Attentive LLM (SA-LLM), a novel generative model that leverages pre-trained Large Language Models (LLMs) and a speaker-aware contrastive learning strategy to address these challenges. SA-LLM incorporates a speaker-attributed input encoding and a contrastive learning objective to implicitly learn contextual coherence and speaker roles without explicit relation annotations. Extensive experiments on the Ubuntu IRC and Movie Dialogues datasets demonstrate that SA-LLM significantly outperforms state-of-the-art baselines in automatic and human evaluations, achieving superior performance in fluency, coherence, informativeness, and response diversity. Ablation studies and detailed error analyses further validate the effectiveness of the proposed speaker-attentive training approach, highlighting its robustness across different speaker roles and context lengths. The results underscore the potential of SA-LLM as a powerful and annotation-free solution for high-quality multi-party dialogue generation.
ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation
Code-switching is a speech phenomenon occurring when a speaker switches language during a conversation. Despite the spontaneous nature of code-switching in conversational spoken language, most existing works collect code-switching data from read speech instead of spontaneous speech. ASCEND (A Spontaneous Chinese-English Dataset) is a high-quality Mandarin Chinese-English code-switching corpus built on spontaneous multi-turn conversational dialogue sources collected in Hong Kong. We report ASCEND's design and procedure for collecting the speech data, including annotations. ASCEND consists of 10.62 hours of clean speech, collected from 23 bilingual speakers of Chinese and English. Furthermore, we conduct baseline experiments using pre-trained wav2vec 2.0 models, achieving a best performance of 22.69\% character error rate and 27.05% mixed error rate.
BEAT: A Large-Scale Semantic and Emotional Multi-Modal Dataset for Conversational Gestures Synthesis
Achieving realistic, vivid, and human-like synthesized conversational gestures conditioned on multi-modal data is still an unsolved problem due to the lack of available datasets, models and standard evaluation metrics. To address this, we build Body-Expression-Audio-Text dataset, BEAT, which has i) 76 hours, high-quality, multi-modal data captured from 30 speakers talking with eight different emotions and in four different languages, ii) 32 millions frame-level emotion and semantic relevance annotations. Our statistical analysis on BEAT demonstrates the correlation of conversational gestures with facial expressions, emotions, and semantics, in addition to the known correlation with audio, text, and speaker identity. Based on this observation, we propose a baseline model, Cascaded Motion Network (CaMN), which consists of above six modalities modeled in a cascaded architecture for gesture synthesis. To evaluate the semantic relevancy, we introduce a metric, Semantic Relevance Gesture Recall (SRGR). Qualitative and quantitative experiments demonstrate metrics' validness, ground truth data quality, and baseline's state-of-the-art performance. To the best of our knowledge, BEAT is the largest motion capture dataset for investigating human gestures, which may contribute to a number of different research fields, including controllable gesture synthesis, cross-modality analysis, and emotional gesture recognition. The data, code and model are available on https://pantomatrix.github.io/BEAT/.
MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations
Emotion recognition in conversations is a challenging task that has recently gained popularity due to its potential applications. Until now, however, a large-scale multimodal multi-party emotional conversational database containing more than two speakers per dialogue was missing. Thus, we propose the Multimodal EmotionLines Dataset (MELD), an extension and enhancement of EmotionLines. MELD contains about 13,000 utterances from 1,433 dialogues from the TV-series Friends. Each utterance is annotated with emotion and sentiment labels, and encompasses audio, visual and textual modalities. We propose several strong multimodal baselines and show the importance of contextual and multimodal information for emotion recognition in conversations. The full dataset is available for use at http:// affective-meld.github.io.
Multi-Party Chat: Conversational Agents in Group Settings with Humans and Models
Current dialogue research primarily studies pairwise (two-party) conversations, and does not address the everyday setting where more than two speakers converse together. In this work, we both collect and evaluate multi-party conversations to study this more general case. We use the LIGHT environment to construct grounded conversations, where each participant has an assigned character to role-play. We thus evaluate the ability of language models to act as one or more characters in such conversations. Models require two skills that pairwise-trained models appear to lack: (1) being able to decide when to talk; (2) producing coherent utterances grounded on multiple characters. We compare models trained on our new dataset to existing pairwise-trained dialogue models, as well as large language models with few-shot prompting. We find that our new dataset, MultiLIGHT, which we will publicly release, can help bring significant improvements in the group setting.
MPCHAT: Towards Multimodal Persona-Grounded Conversation
In order to build self-consistent personalized dialogue agents, previous research has mostly focused on textual persona that delivers personal facts or personalities. However, to fully describe the multi-faceted nature of persona, image modality can help better reveal the speaker's personal characteristics and experiences in episodic memory (Rubin et al., 2003; Conway, 2009). In this work, we extend persona-based dialogue to the multimodal domain and make two main contributions. First, we present the first multimodal persona-based dialogue dataset named MPCHAT, which extends persona with both text and images to contain episodic memories. Second, we empirically show that incorporating multimodal persona, as measured by three proposed multimodal persona-grounded dialogue tasks (i.e., next response prediction, grounding persona prediction, and speaker identification), leads to statistically significant performance improvements across all tasks. Thus, our work highlights that multimodal persona is crucial for improving multimodal dialogue comprehension, and our MPCHAT serves as a high-quality resource for this research.
SwitchLingua: The First Large-Scale Multilingual and Multi-Ethnic Code-Switching Dataset
Code-switching (CS) is the alternating use of two or more languages within a conversation or utterance, often influenced by social context and speaker identity. This linguistic phenomenon poses challenges for Automatic Speech Recognition (ASR) systems, which are typically designed for a single language and struggle to handle multilingual inputs. The growing global demand for multilingual applications, including Code-Switching ASR (CSASR), Text-to-Speech (CSTTS), and Cross-Lingual Information Retrieval (CLIR), highlights the inadequacy of existing monolingual datasets. Although some code-switching datasets exist, most are limited to bilingual mixing within homogeneous ethnic groups, leaving a critical need for a large-scale, diverse benchmark akin to ImageNet in computer vision. To bridge this gap, we introduce LinguaMaster, a multi-agent collaboration framework specifically designed for efficient and scalable multilingual data synthesis. Leveraging this framework, we curate SwitchLingua, the first large-scale multilingual and multi-ethnic code-switching dataset, including: (1) 420K CS textual samples across 12 languages, and (2) over 80 hours of audio recordings from 174 speakers representing 18 countries/regions and 63 racial/ethnic backgrounds, based on the textual data. This dataset captures rich linguistic and cultural diversity, offering a foundational resource for advancing multilingual and multicultural research. Furthermore, to address the issue that existing ASR evaluation metrics lack sensitivity to code-switching scenarios, we propose the Semantic-Aware Error Rate (SAER), a novel evaluation metric that incorporates semantic information, providing a more accurate and context-aware assessment of system performance.
MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations
Multimodal intent recognition poses significant challenges, requiring the incorporation of non-verbal modalities from real-world contexts to enhance the comprehension of human intentions. Existing benchmark datasets are limited in scale and suffer from difficulties in handling out-of-scope samples that arise in multi-turn conversational interactions. We introduce MIntRec2.0, a large-scale benchmark dataset for multimodal intent recognition in multi-party conversations. It contains 1,245 dialogues with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-grained classes. Besides 9,304 in-scope samples, it also includes 5,736 out-of-scope samples appearing in multi-turn contexts, which naturally occur in real-world scenarios. Furthermore, we provide comprehensive information on the speakers in each utterance, enriching its utility for multi-party conversational research. We establish a general framework supporting the organization of single-turn and multi-turn dialogue data, modality feature extraction, multimodal fusion, as well as in-scope classification and out-of-scope detection. Evaluation benchmarks are built using classic multimodal fusion methods, ChatGPT, and human evaluators. While existing methods incorporating nonverbal information yield improvements, effectively leveraging context information and detecting out-of-scope samples remains a substantial challenge. Notably, large language models exhibit a significant performance gap compared to humans, highlighting the limitations of machine learning methods in the cognitive intent understanding task. We believe that MIntRec2.0 will serve as a valuable resource, providing a pioneering foundation for research in human-machine conversational interactions, and significantly facilitating related applications. The full dataset and codes are available at https://github.com/thuiar/MIntRec2.0.
EmotionIC: Emotional Inertia and Contagion-driven Dependency Modelling for Emotion Recognition in Conversation
Emotion Recognition in Conversation (ERC) has attracted growing attention in recent years as a result of the advancement and implementation of human-computer interface technologies. However, previous approaches to modeling global and local context dependencies lost the diversity of dependency information and do not take the context dependency into account at the classification level. In this paper, we propose a novel approach to dependency modeling driven by Emotional Inertia and Contagion (EmotionIC) for conversational emotion recognition at the feature extraction and classification levels. At the feature extraction level, our designed Identity Masked Multi-head Attention (IM-MHA) captures the identity-based long-distant context in the dialogue to contain the diverse influence of different participants and construct the global emotional atmosphere, while the devised Dialogue-based Gate Recurrent Unit (DialogGRU) that aggregates the emotional tendencies of dyadic dialogue is applied to refine the contextual features with inter- and intra-speaker dependencies. At the classification level, by introducing skip connections in Conditional Random Field (CRF), we elaborate the Skip-chain CRF (SkipCRF) to capture the high-order dependencies within and between speakers, and to emulate the emotional flow of distant participants. Experimental results show that our method can significantly outperform the state-of-the-art models on four benchmark datasets. The ablation studies confirm that our modules can effectively model emotional inertia and contagion.
NOTSOFAR-1 Challenge: New Datasets, Baseline, and Tasks for Distant Meeting Transcription
We introduce the first Natural Office Talkers in Settings of Far-field Audio Recordings (``NOTSOFAR-1'') Challenge alongside datasets and baseline system. The challenge focuses on distant speaker diarization and automatic speech recognition (DASR) in far-field meeting scenarios, with single-channel and known-geometry multi-channel tracks, and serves as a launch platform for two new datasets: First, a benchmarking dataset of 315 meetings, averaging 6 minutes each, capturing a broad spectrum of real-world acoustic conditions and conversational dynamics. It is recorded across 30 conference rooms, featuring 4-8 attendees and a total of 35 unique speakers. Second, a 1000-hour simulated training dataset, synthesized with enhanced authenticity for real-world generalization, incorporating 15,000 real acoustic transfer functions. The tasks focus on single-device DASR, where multi-channel devices always share the same known geometry. This is aligned with common setups in actual conference rooms, and avoids technical complexities associated with multi-device tasks. It also allows for the development of geometry-specific solutions. The NOTSOFAR-1 Challenge aims to advance research in the field of distant conversational speech recognition, providing key resources to unlock the potential of data-driven methods, which we believe are currently constrained by the absence of comprehensive high-quality training and benchmarking datasets.
NaturalConv: A Chinese Dialogue Dataset Towards Multi-turn Topic-driven Conversation
In this paper, we propose a Chinese multi-turn topic-driven conversation dataset, NaturalConv, which allows the participants to chat anything they want as long as any element from the topic is mentioned and the topic shift is smooth. Our corpus contains 19.9K conversations from six domains, and 400K utterances with an average turn number of 20.1. These conversations contain in-depth discussions on related topics or widely natural transition between multiple topics. We believe either way is normal for human conversation. To facilitate the research on this corpus, we provide results of several benchmark models. Comparative results show that for this dataset, our current models are not able to provide significant improvement by introducing background knowledge/topic. Therefore, the proposed dataset should be a good benchmark for further research to evaluate the validity and naturalness of multi-turn conversation systems. Our dataset is available at https://ai.tencent.com/ailab/nlp/dialogue/#datasets.
Enabling Chatbots with Eyes and Ears: An Immersive Multimodal Conversation System for Dynamic Interactions
As chatbots continue to evolve toward human-like, real-world, interactions, multimodality remains an active area of research and exploration. So far, efforts to integrate multimodality into chatbots have primarily focused on image-centric tasks, such as visual dialogue and image-based instructions, placing emphasis on the "eyes" of human perception while neglecting the "ears", namely auditory aspects. Moreover, these studies often center around static interactions that focus on discussing the modality rather than naturally incorporating it into the conversation, which limits the richness of simultaneous, dynamic engagement. Furthermore, while multimodality has been explored in multi-party and multi-session conversations, task-specific constraints have hindered its seamless integration into dynamic, natural conversations. To address these challenges, this study aims to equip chatbots with "eyes and ears" capable of more immersive interactions with humans. As part of this effort, we introduce a new multimodal conversation dataset, Multimodal Multi-Session Multi-Party Conversation (M^3C), and propose a novel multimodal conversation model featuring multimodal memory retrieval. Our model, trained on the M^3C, demonstrates the ability to seamlessly engage in long-term conversations with multiple speakers in complex, real-world-like settings, effectively processing visual and auditory inputs to understand and respond appropriately. Human evaluations highlight the model's strong performance in maintaining coherent and dynamic interactions, demonstrating its potential for advanced multimodal conversational agents.
Mixed-Session Conversation with Egocentric Memory
Recently introduced dialogue systems have demonstrated high usability. However, they still fall short of reflecting real-world conversation scenarios. Current dialogue systems exhibit an inability to replicate the dynamic, continuous, long-term interactions involving multiple partners. This shortfall arises because there have been limited efforts to account for both aspects of real-world dialogues: deeply layered interactions over the long-term dialogue and widely expanded conversation networks involving multiple participants. As the effort to incorporate these aspects combined, we introduce Mixed-Session Conversation, a dialogue system designed to construct conversations with various partners in a multi-session dialogue setup. We propose a new dataset called MiSC to implement this system. The dialogue episodes of MiSC consist of 6 consecutive sessions, with four speakers (one main speaker and three partners) appearing in each episode. Also, we propose a new dialogue model with a novel memory management mechanism, called Egocentric Memory Enhanced Mixed-Session Conversation Agent (EMMA). EMMA collects and retains memories from the main speaker's perspective during conversations with partners, enabling seamless continuity in subsequent interactions. Extensive human evaluations validate that the dialogues in MiSC demonstrate a seamless conversational flow, even when conversation partners change in each session. EMMA trained with MiSC is also evaluated to maintain high memorability without contradiction throughout the entire conversation.
MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging Knowledge Graphs
Despite advancements in on-topic dialogue systems, effectively managing topic shifts within dialogues remains a persistent challenge, largely attributed to the limited availability of training datasets. To address this issue, we propose Multi-Passage to Dialogue (MP2D), a data generation framework that automatically creates conversational question-answering datasets with natural topic transitions. By leveraging the relationships between entities in a knowledge graph, MP2D maps the flow of topics within a dialogue, effectively mirroring the dynamics of human conversation. It retrieves relevant passages corresponding to the topics and transforms them into dialogues through the passage-to-dialogue method. Through quantitative and qualitative experiments, we demonstrate MP2D's efficacy in generating dialogue with natural topic shifts. Furthermore, this study introduces a novel benchmark for topic shift dialogues, TS-WikiDialog. Utilizing the dataset, we demonstrate that even Large Language Models (LLMs) struggle to handle topic shifts in dialogue effectively, and we showcase the performance improvements of models trained on datasets generated by MP2D across diverse topic shift dialogue tasks.
AnyTalker: Scaling Multi-Person Talking Video Generation with Interactivity Refinement
Recently, multi-person video generation has started to gain prominence. While a few preliminary works have explored audio-driven multi-person talking video generation, they often face challenges due to the high costs of diverse multi-person data collection and the difficulty of driving multiple identities with coherent interactivity. To address these challenges, we propose AnyTalker, a multi-person generation framework that features an extensible multi-stream processing architecture. Specifically, we extend Diffusion Transformer's attention block with a novel identity-aware attention mechanism that iteratively processes identity-audio pairs, allowing arbitrary scaling of drivable identities. Besides, training multi-person generative models demands massive multi-person data. Our proposed training pipeline depends solely on single-person videos to learn multi-person speaking patterns and refines interactivity with only a few real multi-person clips. Furthermore, we contribute a targeted metric and dataset designed to evaluate the naturalness and interactivity of the generated multi-person videos. Extensive experiments demonstrate that AnyTalker achieves remarkable lip synchronization, visual quality, and natural interactivity, striking a favorable balance between data costs and identity scalability.
Parrot: Enhancing Multi-Turn Chat Models by Learning to Ask Questions
Impressive progress has been made on chat models based on Large Language Models (LLMs) recently; however, there is a noticeable lag in multi-turn conversations between open-source chat models (e.g., Alpaca and Vicuna) and the leading chat models (e.g., ChatGPT and GPT-4). Through a series of analyses, we attribute the lag to the lack of enough high-quality multi-turn instruction-tuning data. The available instruction-tuning data for the community are either single-turn conversations or multi-turn ones with certain issues, such as non-human-like instructions, less detailed responses, or rare topic shifts. In this paper, we address these challenges by introducing Parrot, a highly scalable solution designed to automatically generate high-quality instruction-tuning data, which are then used to enhance the effectiveness of chat models in multi-turn conversations. Specifically, we start by training the Parrot-Ask model, which is designed to emulate real users in generating instructions. We then utilize Parrot-Ask to engage in multi-turn conversations with ChatGPT across a diverse range of topics, resulting in a collection of 40K high-quality multi-turn dialogues (Parrot-40K). These data are subsequently employed to train a chat model that we have named Parrot-Chat. We demonstrate that the dialogues gathered from Parrot-Ask markedly outperform existing multi-turn instruction-following datasets in critical metrics, including topic diversity, number of turns, and resemblance to human conversation. With only 40K training examples, Parrot-Chat achieves strong performance against other 13B open-source models across a range of instruction-following benchmarks, and particularly excels in evaluations of multi-turn capabilities. We make all codes, datasets, and two versions of the Parrot-Ask model based on LLaMA2-13B and KuaiYii-13B available at https://github.com/kwai/KwaiYii/Parrot.
DocTalk: Scalable Graph-based Dialogue Synthesis for Enhancing LLM Conversational Capabilities
Large Language Models (LLMs) are increasingly employed in multi-turn conversational tasks, yet their pre-training data predominantly consists of continuous prose, creating a potential mismatch between required capabilities and training paradigms. We introduce a novel approach to address this discrepancy by synthesizing conversational data from existing text corpora. We present a pipeline that transforms a cluster of multiple related documents into an extended multi-turn, multi-topic information-seeking dialogue. Applying our pipeline to Wikipedia articles, we curate DocTalk, a multi-turn pre-training dialogue corpus consisting of over 730k long conversations. We hypothesize that exposure to such synthesized conversational structures during pre-training can enhance the fundamental multi-turn capabilities of LLMs, such as context memory and understanding. Empirically, we show that incorporating DocTalk during pre-training results in up to 40% gain in context memory and understanding, without compromising base performance. DocTalk is available at https://huggingface.co/datasets/AmazonScience/DocTalk.
Response Selection for Multi-Party Conversations with Dynamic Topic Tracking
While participants in a multi-party multi-turn conversation simultaneously engage in multiple conversation topics, existing response selection methods are developed mainly focusing on a two-party single-conversation scenario. Hence, the prolongation and transition of conversation topics are ignored by current methods. In this work, we frame response selection as a dynamic topic tracking task to match the topic between the response and relevant conversation context. With this new formulation, we propose a novel multi-task learning framework that supports efficient encoding through large pretrained models with only two utterances at once to perform dynamic topic disentanglement and response selection. We also propose Topic-BERT an essential pretraining step to embed topic information into BERT with self-supervised learning. Experimental results on the DSTC-8 Ubuntu IRC dataset show state-of-the-art results in response selection and topic disentanglement tasks outperforming existing methods by a good margin.
Task-Oriented Dialog Systems that Consider Multiple Appropriate Responses under the Same Context
Conversations have an intrinsic one-to-many property, which means that multiple responses can be appropriate for the same dialog context. In task-oriented dialogs, this property leads to different valid dialog policies towards task completion. However, none of the existing task-oriented dialog generation approaches takes this property into account. We propose a Multi-Action Data Augmentation (MADA) framework to utilize the one-to-many property to generate diverse appropriate dialog responses. Specifically, we first use dialog states to summarize the dialog history, and then discover all possible mappings from every dialog state to its different valid system actions. During dialog system training, we enable the current dialog state to map to all valid system actions discovered in the previous process to create additional state-action pairs. By incorporating these additional pairs, the dialog policy learns a balanced action distribution, which further guides the dialog model to generate diverse responses. Experimental results show that the proposed framework consistently improves dialog policy diversity, and results in improved response diversity and appropriateness. Our model obtains state-of-the-art results on MultiWOZ.
WavChat: A Survey of Spoken Dialogue Models
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
Multi-Agent Large Language Models for Conversational Task-Solving
In an era where single large language models have dominated the landscape of artificial intelligence for years, multi-agent systems arise as new protagonists in conversational task-solving. While previous studies have showcased their potential in reasoning tasks and creative endeavors, an analysis of their limitations concerning the conversational paradigms and the impact of individual agents is missing. It remains unascertained how multi-agent discussions perform across tasks of varying complexity and how the structure of these conversations influences the process. To fill that gap, this work systematically evaluates multi-agent systems across various discussion paradigms, assessing their strengths and weaknesses in both generative tasks and question-answering tasks. Alongside the experiments, I propose a taxonomy of 20 multi-agent research studies from 2022 to 2024, followed by the introduction of a framework for deploying multi-agent LLMs in conversational task-solving. I demonstrate that while multi-agent systems excel in complex reasoning tasks, outperforming a single model by leveraging expert personas, they fail on basic tasks. Concretely, I identify three challenges that arise: 1) While longer discussions enhance reasoning, agents fail to maintain conformity to strict task requirements, which leads to problem drift, making shorter conversations more effective for basic tasks. 2) Prolonged discussions risk alignment collapse, raising new safety concerns for these systems. 3) I showcase discussion monopolization through long generations, posing the problem of fairness in decision-making for tasks like summarization. This work uncovers both the potential and challenges that arise with multi-agent interaction and varying conversational paradigms, providing insights into how future research could improve the efficiency, performance, and safety of multi-agent LLMs.
OleSpeech-IV: A Large-Scale Multispeaker and Multilingual Conversational Speech Dataset with Diverse Topics
OleSpeech-IV dataset is a large-scale multispeaker and multilingual conversational speech dataset with diverse topics. The audio content comes from publicly-available English podcasts, talk shows, teleconferences, and other conversations. Speaker names, turns, and transcripts are human-sourced and refined by a proprietary pipeline, while additional information such as timestamps and confidence scores is derived from the pipeline. The IV denotes its position as Tier IV in the Olewave dataset series. In addition, we have open-sourced a subset, OleSpeech-IV-2025-EN-AR-100, for non-commercial research use.
DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization
Dialogue is an essential part of human communication and cooperation. Existing research mainly focuses on short dialogue scenarios in a one-on-one fashion. However, multi-person interactions in the real world, such as meetings or interviews, are frequently over a few thousand words. There is still a lack of corresponding research and powerful tools to understand and process such long dialogues. Therefore, in this work, we present a pre-training framework for long dialogue understanding and summarization. Considering the nature of long conversations, we propose a window-based denoising approach for generative pre-training. For a dialogue, it corrupts a window of text with dialogue-inspired noise, and guides the model to reconstruct this window based on the content of the remaining conversation. Furthermore, to process longer input, we augment the model with sparse attention which is combined with conventional attention in a hybrid manner. We conduct extensive experiments on five datasets of long dialogues, covering tasks of dialogue summarization, abstractive question answering and topic segmentation. Experimentally, we show that our pre-trained model DialogLM significantly surpasses the state-of-the-art models across datasets and tasks. Source code and all the pre-trained models are available on our GitHub repository (https://github.com/microsoft/DialogLM).
Multi-Party Supervised Fine-tuning of Language Models for Multi-Party Dialogue Generation
Large Language Models (LLM) are usually fine-tuned to participate in dyadic or two-party dialogues, which can not adapt well to multi-party dialogues (MPD), which hinders their applications in such scenarios including multi-personal meetings, discussions and daily communication. Previous LLM-based researches mainly focus on the multi-agent framework, while their base LLMs are still pairwisely fine-tuned. In this work, we design a multi-party fine-tuning framework (MuPaS) for LLMs on the multi-party dialogue datasets, and prove such a straightforward framework can let the LLM align with the multi-party conversation style efficiently and effectively. We also design two training strategies which can convert MuPaS into the MPD simulator. Substantial experiments show that MuPaS can achieve state-of-the-art multi-party response, higher accuracy of the-next-speaker prediction, higher human and automatic evaluated utterance qualities, and can even generate reasonably with out-of-distribution scene, topic and role descriptions. The MuPaS framework bridges the LLM training with more complicated multi-party applications, such as conversation generation, virtual rehearsal or meta-universe.
Audio Dialogues: Dialogues dataset for audio and music understanding
Existing datasets for audio understanding primarily focus on single-turn interactions (i.e. audio captioning, audio question answering) for describing audio in natural language, thus limiting understanding audio via interactive dialogue. To address this gap, we introduce Audio Dialogues: a multi-turn dialogue dataset containing 163.8k samples for general audio sounds and music. In addition to dialogues, Audio Dialogues also has question-answer pairs to understand and compare multiple input audios together. Audio Dialogues leverages a prompting-based approach and caption annotations from existing datasets to generate multi-turn dialogues using a Large Language Model (LLM). We evaluate existing audio-augmented large language models on our proposed dataset to demonstrate the complexity and applicability of Audio Dialogues. Our code for generating the dataset will be made publicly available. Detailed prompts and generated dialogues can be found on the demo website https://audiodialogues.github.io/.
Advancing Multi-talker ASR Performance with Large Language Models
Recognizing overlapping speech from multiple speakers in conversational scenarios is one of the most challenging problem for automatic speech recognition (ASR). Serialized output training (SOT) is a classic method to address multi-talker ASR, with the idea of concatenating transcriptions from multiple speakers according to the emission times of their speech for training. However, SOT-style transcriptions, derived from concatenating multiple related utterances in a conversation, depend significantly on modeling long contexts. Therefore, compared to traditional methods that primarily emphasize encoder performance in attention-based encoder-decoder (AED) architectures, a novel approach utilizing large language models (LLMs) that leverages the capabilities of pre-trained decoders may be better suited for such complex and challenging scenarios. In this paper, we propose an LLM-based SOT approach for multi-talker ASR, leveraging pre-trained speech encoder and LLM, fine-tuning them on multi-talker dataset using appropriate strategies. Experimental results demonstrate that our approach surpasses traditional AED-based methods on the simulated dataset LibriMix and achieves state-of-the-art performance on the evaluation set of the real-world dataset AMI, outperforming the AED model trained with 1000 times more supervised data in previous works.
CoVoMix2: Advancing Zero-Shot Dialogue Generation with Fully Non-Autoregressive Flow Matching
Generating natural-sounding, multi-speaker dialogue is crucial for applications such as podcast creation, virtual agents, and multimedia content generation. However, existing systems struggle to maintain speaker consistency, model overlapping speech, and synthesize coherent conversations efficiently. In this paper, we introduce CoVoMix2, a fully non-autoregressive framework for zero-shot multi-talker dialogue generation. CoVoMix2 directly predicts mel-spectrograms from multi-stream transcriptions using a flow-matching-based generative model, eliminating the reliance on intermediate token representations. To better capture realistic conversational dynamics, we propose transcription-level speaker disentanglement, sentence-level alignment, and prompt-level random masking strategies. Our approach achieves state-of-the-art performance, outperforming strong baselines like MoonCast and Sesame in speech quality, speaker consistency, and inference speed. Notably, CoVoMix2 operates without requiring transcriptions for the prompt and supports controllable dialogue generation, including overlapping speech and precise timing control, demonstrating strong generalizability to real-world speech generation scenarios.
Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions
Recent advancements in large language models (LLMs) have revolutionized various domains, bringing significant progress and new opportunities. Despite progress in speech-related tasks, LLMs have not been sufficiently explored in multi-talker scenarios. In this work, we present a pioneering effort to investigate the capability of LLMs in transcribing speech in multi-talker environments, following versatile instructions related to multi-talker automatic speech recognition (ASR), target talker ASR, and ASR based on specific talker attributes such as sex, occurrence order, language, and keyword spoken. Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context. These representations are then fed into an LLM fine-tuned using LoRA, enabling the capabilities for speech comprehension and transcription. Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios, highlighting the potential of LLM to handle speech-related tasks based on user instructions in such complex settings.
MSceneSpeech: A Multi-Scene Speech Dataset For Expressive Speech Synthesis
We introduce an open source high-quality Mandarin TTS dataset MSceneSpeech (Multiple Scene Speech Dataset), which is intended to provide resources for expressive speech synthesis. MSceneSpeech comprises numerous audio recordings and texts performed and recorded according to daily life scenarios. Each scenario includes multiple speakers and a diverse range of prosodic styles, making it suitable for speech synthesis that entails multi-speaker style and prosody modeling. We have established a robust baseline, through the prompting mechanism, that can effectively synthesize speech characterized by both user-specific timbre and scene-specific prosody with arbitrary text input. The open source MSceneSpeech Dataset and audio samples of our baseline are available at https://speechai-demo.github.io/MSceneSpeech/.
Duplex Conversation: Towards Human-like Interaction in Spoken Dialogue Systems
In this paper, we present Duplex Conversation, a multi-turn, multimodal spoken dialogue system that enables telephone-based agents to interact with customers like a human. We use the concept of full-duplex in telecommunication to demonstrate what a human-like interactive experience should be and how to achieve smooth turn-taking through three subtasks: user state detection, backchannel selection, and barge-in detection. Besides, we propose semi-supervised learning with multimodal data augmentation to leverage unlabeled data to increase model generalization. Experimental results on three sub-tasks show that the proposed method achieves consistent improvements compared with baselines. We deploy the Duplex Conversation to Alibaba intelligent customer service and share lessons learned in production. Online A/B experiments show that the proposed system can significantly reduce response latency by 50%.
Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models
As large language models (LLMs) increasingly permeate daily lives, there is a growing demand for real-time interactions that mirror human conversations. Traditional turn-based chat systems driven by LLMs prevent users from verbally interacting with the system while it is generating responses. To overcome these limitations, we adapt existing LLMs to duplex models so that these LLMs can listen for users while generating output and dynamically adjust themselves to provide users with instant feedback. % such as in response to interruptions. Specifically, we divide the queries and responses of conversations into several time slices and then adopt a time-division-multiplexing (TDM) encoding-decoding strategy to pseudo-simultaneously process these slices. Furthermore, to make LLMs proficient enough to handle real-time conversations, we build a fine-tuning dataset consisting of alternating time slices of queries and responses as well as covering typical feedback types in instantaneous interactions. Our experiments show that although the queries and responses of conversations are segmented into incomplete slices for processing, LLMs can preserve their original performance on standard benchmarks with a few fine-tuning steps on our dataset. Automatic and human evaluation indicate that duplex models make user-AI interactions more natural and human-like, and greatly improve user satisfaction compared to vanilla LLMs. Our duplex model and dataset will be released.
ELF: Encoding Speaker-Specific Latent Speech Feature for Speech Synthesis
In this work, we propose a novel method for modeling numerous speakers, which enables expressing the overall characteristics of speakers in detail like a trained multi-speaker model without additional training on the target speaker's dataset. Although various works with similar purposes have been actively studied, their performance has not yet reached that of trained multi-speaker models due to their fundamental limitations. To overcome previous limitations, we propose effective methods for feature learning and representing target speakers' speech characteristics by discretizing the features and conditioning them to a speech synthesis model. Our method obtained a significantly higher similarity mean opinion score (SMOS) in subjective similarity evaluation than seen speakers of a high-performance multi-speaker model, even with unseen speakers. The proposed method also outperforms a zero-shot method by significant margins. Furthermore, our method shows remarkable performance in generating new artificial speakers. In addition, we demonstrate that the encoded latent features are sufficiently informative to reconstruct an original speaker's speech completely. It implies that our method can be used as a general methodology to encode and reconstruct speakers' characteristics in various tasks.
A Large-Scale Corpus for Conversation Disentanglement
Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our dataset is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 80% of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research.
MD3: The Multi-Dialect Dataset of Dialogues
We introduce a new dataset of conversational speech representing English from India, Nigeria, and the United States. The Multi-Dialect Dataset of Dialogues (MD3) strikes a new balance between open-ended conversational speech and task-oriented dialogue by prompting participants to perform a series of short information-sharing tasks. This facilitates quantitative cross-dialectal comparison, while avoiding the imposition of a restrictive task structure that might inhibit the expression of dialect features. Preliminary analysis of the dataset reveals significant differences in syntax and in the use of discourse markers. The dataset, which will be made publicly available with the publication of this paper, includes more than 20 hours of audio and more than 200,000 orthographically-transcribed tokens.
TalkPlayData 2: An Agentic Synthetic Data Pipeline for Multimodal Conversational Music Recommendation
We present TalkPlayData 2, a synthetic dataset for multimodal conversational music recommendation generated by an agentic data pipeline. In TalkPlayData 2 pipeline, multiple large language model (LLM) agents are created under various roles with specialized prompts and access to different parts of information, and the chat data is acquired by logging the conversation between the Listener LLM and the Recsys LLM. To cover various conversation scenarios, for each conversation, the Listener LLM is conditioned on a finetuned conversation goal. Finally, all the LLMs are multimodal with audio and images, allowing a simulation of multimodal recommendation and conversation. In the LLM-as-a-judge and subjective evaluation experiments, TalkPlayData 2 achieved the proposed goal in various aspects related to training a generative recommendation model for music. TalkPlayData 2 and its generation code are open-sourced at https://talkpl.ai/talkplaydata2.html.
MoonCast: High-Quality Zero-Shot Podcast Generation
Recent advances in text-to-speech synthesis have achieved notable success in generating high-quality short utterances for individual speakers. However, these systems still face challenges when extending their capabilities to long, multi-speaker, and spontaneous dialogues, typical of real-world scenarios such as podcasts. These limitations arise from two primary challenges: 1) long speech: podcasts typically span several minutes, exceeding the upper limit of most existing work; 2) spontaneity: podcasts are marked by their spontaneous, oral nature, which sharply contrasts with formal, written contexts; existing works often fall short in capturing this spontaneity. In this paper, we propose MoonCast, a solution for high-quality zero-shot podcast generation, aiming to synthesize natural podcast-style speech from text-only sources (e.g., stories, technical reports, news in TXT, PDF, or Web URL formats) using the voices of unseen speakers. To generate long audio, we adopt a long-context language model-based audio modeling approach utilizing large-scale long-context speech data. To enhance spontaneity, we utilize a podcast generation module to generate scripts with spontaneous details, which have been empirically shown to be as crucial as the text-to-speech modeling itself. Experiments demonstrate that MoonCast outperforms baselines, with particularly notable improvements in spontaneity and coherence.
Property-Aware Multi-Speaker Data Simulation: A Probabilistic Modelling Technique for Synthetic Data Generation
We introduce a sophisticated multi-speaker speech data simulator, specifically engineered to generate multi-speaker speech recordings. A notable feature of this simulator is its capacity to modulate the distribution of silence and overlap via the adjustment of statistical parameters. This capability offers a tailored training environment for developing neural models suited for speaker diarization and voice activity detection. The acquisition of substantial datasets for speaker diarization often presents a significant challenge, particularly in multi-speaker scenarios. Furthermore, the precise time stamp annotation of speech data is a critical factor for training both speaker diarization and voice activity detection. Our proposed multi-speaker simulator tackles these problems by generating large-scale audio mixtures that maintain statistical properties closely aligned with the input parameters. We demonstrate that the proposed multi-speaker simulator generates audio mixtures with statistical properties that closely align with the input parameters derived from real-world statistics. Additionally, we present the effectiveness of speaker diarization and voice activity detection models, which have been trained exclusively on the generated simulated datasets.
DialoGPS: Dialogue Path Sampling in Continuous Semantic Space for Data Augmentation in Multi-Turn Conversations
In open-domain dialogue generation tasks, contexts and responses in most datasets are one-to-one mapped, violating an important many-to-many characteristic: a context leads to various responses, and a response answers multiple contexts. Without such patterns, models poorly generalize and prefer responding safely. Many attempts have been made in either multi-turn settings from a one-to-many perspective or in a many-to-many perspective but limited to single-turn settings. The major challenge to many-to-many augment multi-turn dialogues is that discretely replacing each turn with semantic similarity breaks fragile context coherence. In this paper, we propose DialoGue Path Sampling (DialoGPS) method in continuous semantic space, the first many-to-many augmentation method for multi-turn dialogues. Specifically, we map a dialogue to our extended Brownian Bridge, a special Gaussian process. We sample latent variables to form coherent dialogue paths in the continuous space. A dialogue path corresponds to a new multi-turn dialogue and is used as augmented training data. We show the effect of DialoGPS with both automatic and human evaluation.
KdConv: A Chinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation
The research of knowledge-driven conversational systems is largely limited due to the lack of dialog data which consist of multi-turn conversations on multiple topics and with knowledge annotations. In this paper, we propose a Chinese multi-domain knowledge-driven conversation dataset, KdConv, which grounds the topics in multi-turn conversations to knowledge graphs. Our corpus contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics. To facilitate the following research on this corpus, we provide several benchmark models. Comparative results show that the models can be enhanced by introducing background knowledge, yet there is still a large space for leveraging knowledge to model multi-turn conversations for further research. Results also show that there are obvious performance differences between different domains, indicating that it is worth to further explore transfer learning and domain adaptation. The corpus and benchmark models are publicly available.
WildSpeech-Bench: Benchmarking Audio LLMs in Natural Speech Conversation
Recent multi-modal Large Language Models (LLMs) such as GPT-4o have demonstrated strong capabilities of direct speech interaction. However, the lack of specialized and comprehensive benchmarks for end-to-end speech LLM evaluation hinders optimizing the user experience of Audio LLMs in real-world applications. Existing evaluation methods often adapt text-based benchmarks, overlooking speech's unique characteristics and challenges, including prosody, homophones, stuttering, and differing user expectations. Here, we present a novel approach to thoroughly evaluate LLMs in practical speech conversations. We systematically curate real-world chat data relevant to spoken scenarios, introduce diversity in speaker attributes and acoustic conditions, and augment the dataset with speech-specific phenomena. We further design a query-aware evaluation method to use customized evaluation checklists and prompts to enhance the accuracy of automatic evaluation. We conduct comprehensive testing and detailed analysis of various mainstream speech models, revealing significant differences in model performance across different speech scenarios. The use of query-aware evaluation further enables a finer-grained assessment under various speech-specific scenarios. Our benchmark can provide valuable insights for speech model development and evaluation.
Topic-Aware Multi-turn Dialogue Modeling
In the retrieval-based multi-turn dialogue modeling, it remains a challenge to select the most appropriate response according to extracting salient features in context utterances. As a conversation goes on, topic shift at discourse-level naturally happens through the continuous multi-turn dialogue context. However, all known retrieval-based systems are satisfied with exploiting local topic words for context utterance representation but fail to capture such essential global topic-aware clues at discourse-level. Instead of taking topic-agnostic n-gram utterance as processing unit for matching purpose in existing systems, this paper presents a novel topic-aware solution for multi-turn dialogue modeling, which segments and extracts topic-aware utterances in an unsupervised way, so that the resulted model is capable of capturing salient topic shift at discourse-level in need and thus effectively track topic flow during multi-turn conversation. Our topic-aware modeling is implemented by a newly proposed unsupervised topic-aware segmentation algorithm and Topic-Aware Dual-attention Matching (TADAM) Network, which matches each topic segment with the response in a dual cross-attention way. Experimental results on three public datasets show TADAM can outperform the state-of-the-art method, especially by 3.3% on E-commerce dataset that has an obvious topic shift.
BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues
Interacting with human via high-quality multi-turn dialogues is a key feature of large language models (LLMs). However, human-based evaluation of such capability involves intensive manual labor. This report provides a preliminary evaluation of existing large language models for human-style multi-turn chatting, through an LLM-based approach. We start from real-world human dialogues and keep the very first utterances as the ChatSEED. Then we prompt LLMs to generate a full multi-turn dialogue (tens of utterances) based on the ChatSEED, utterance by utterance. Finally, we adopt state-of-the-art LLMs (GPT-4, \etc) as the judge to evaluate the generated dialogues. With different evaluation protocols, we come to substantially identical conclusions. We find that GPT-4 can generate human-style multi-turn dialogues with impressive quality, significantly outperforms its counterparts. It's difficult for a discriminator to distinguish between GPT-4 generated dialogues and human dialogues. In contrast, other LLMs struggle to generate multi-turn dialogues of satisfactory quality due to poor instruction-following capability, tendency to generate lengthy utterances, or limited general capability. All data and codes will be provided in https://github.com/open-compass/BotChat/ and we hope they can serve as a valuable resource for evaluating multi-turn chatting capabilities of LLMs.
Towards Deep Conversational Recommendations
There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale dataset consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a dataset consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms, and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior.
C3: A Bilingual Benchmark for Spoken Dialogue Models Exploring Challenges in Complex Conversations
Spoken Dialogue Models (SDMs) have recently attracted significant attention for their ability to generate voice responses directly to users' spoken queries. Despite their increasing popularity, there exists a gap in research focused on comprehensively understanding their practical effectiveness in comprehending and emulating human conversations. This is especially true compared to text-based Large Language Models (LLMs), which benefit from extensive benchmarking. Human voice interactions are inherently more complex than text due to characteristics unique to spoken dialogue. Ambiguity poses one challenge, stemming from semantic factors like polysemy, as well as phonological aspects such as heterograph, heteronyms, and stress patterns. Additionally, context-dependency, like omission, coreference, and multi-turn interaction, adds further complexity to human conversational dynamics. To illuminate the current state of SDM development and to address these challenges, we present a benchmark dataset in this paper, which comprises 1,079 instances in English and Chinese. Accompanied by an LLM-based evaluation method that closely aligns with human judgment, this dataset facilitates a comprehensive exploration of the performance of SDMs in tackling these practical challenges.
Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries
Few-shot dialogue state tracking (DST) with Large Language Models (LLM) relies on an effective and efficient conversation retriever to find similar in-context examples for prompt learning. Previous works use raw dialogue context as search keys and queries, and a retriever is fine-tuned with annotated dialogues to achieve superior performance. However, the approach is less suited for scaling to new domains or new annotation languages, where fine-tuning data is unavailable. To address this problem, we handle the task of conversation retrieval based on text summaries of the conversations. A LLM-based conversation summarizer is adopted for query and key generation, which enables effective maximum inner product search. To avoid the extra inference cost brought by LLM-based conversation summarization, we further distill a light-weight conversation encoder which produces query embeddings without decoding summaries for test conversations. We validate our retrieval approach on MultiWOZ datasets with GPT-Neo-2.7B and LLaMA-7B/30B. The experimental results show a significant improvement over relevant baselines in real few-shot DST settings.
Re^3Dial: Retrieve, Reorganize and Rescale Dialogue Corpus for Long-Turn Open-Domain Dialogue Pre-training
Large-scale open-domain dialogue data crawled from public social media has greatly improved the performance of dialogue models. However, long-turn dialogues are still highly scarce. Specifically, most dialogue sessions in existing corpora have less than three turns. To alleviate this issue, we propose the Retrieve, Reorganize and Rescale framework (Re^3Dial), which can automatically construct a billion-scale long-turn dialogue corpus from existing short-turn dialogue data. Re^3Dial first trains an Unsupervised Dense Session Retriever (UDSR) to capture semantic and discourse relationships within multi-turn dialogues for retrieving relevant and coherent sessions. It then reorganizes the short-turn dialogues into long-turn sessions via recursively retrieving and selecting the consecutive sessions with our proposed diversity sampling strategy. Extensive evaluations on multiple multi-turn dialogue benchmarks demonstrate that Re^3Dial consistently and significantly improves the dialogue model's ability to utilize long-term context for modeling multi-turn dialogues across different pre-training settings. Finally, we build a toolkit for efficiently rescaling dialogue corpus with Re^3Dial, which enables us to construct a corpus containing 1B Chinese dialogue sessions with 11.3 turns on average (5X longer than the original EVA corpus). We will release our UDSR model, toolkit, and data for public use.
OTTers: One-turn Topic Transitions for Open-Domain Dialogue
Mixed initiative in open-domain dialogue requires a system to pro-actively introduce new topics. The one-turn topic transition task explores how a system connects two topics in a cooperative and coherent manner. The goal of the task is to generate a "bridging" utterance connecting the new topic to the topic of the previous conversation turn. We are especially interested in commonsense explanations of how a new topic relates to what has been mentioned before. We first collect a new dataset of human one-turn topic transitions, which we call OTTers. We then explore different strategies used by humans when asked to complete such a task, and notice that the use of a bridging utterance to connect the two topics is the approach used the most. We finally show how existing state-of-the-art text generation models can be adapted to this task and examine the performance of these baselines on different splits of the OTTers data.
Open-Source Large Language Models as Multilingual Crowdworkers: Synthesizing Open-Domain Dialogues in Several Languages With No Examples in Targets and No Machine Translation
The prevailing paradigm in the domain of Open-Domain Dialogue agents predominantly focuses on the English language, encompassing both models and datasets. Furthermore, the financial and temporal investments required for crowdsourcing such datasets for finetuning are substantial, particularly when multiple languages are involved. Fortunately, advancements in Large Language Models (LLMs) have unveiled a plethora of possibilities across diverse tasks. Specifically, instruction-tuning has enabled LLMs to execute tasks based on natural language instructions, occasionally surpassing the performance of human crowdworkers. Additionally, these models possess the capability to function in various languages within a single thread. Consequently, to generate new samples in different languages, we propose leveraging these capabilities to replicate the data collection process. We introduce a pipeline for generating Open-Domain Dialogue data in multiple Target Languages using LLMs, with demonstrations provided in a unique Source Language. By eschewing explicit Machine Translation in this approach, we enhance the adherence to language-specific nuances. We apply this methodology to the PersonaChat dataset. To enhance the openness of generated dialogues and mimic real life scenarii, we added the notion of speech events corresponding to the type of conversation the speakers are involved in and also that of common ground which represents the premises of a conversation.
Voice Separation with an Unknown Number of Multiple Speakers
We present a new method for separating a mixed audio sequence, in which multiple voices speak simultaneously. The new method employs gated neural networks that are trained to separate the voices at multiple processing steps, while maintaining the speaker in each output channel fixed. A different model is trained for every number of possible speakers, and the model with the largest number of speakers is employed to select the actual number of speakers in a given sample. Our method greatly outperforms the current state of the art, which, as we show, is not competitive for more than two speakers.
The CHiME-7 Challenge: System Description and Performance of NeMo Team's DASR System
We present the NVIDIA NeMo team's multi-channel speech recognition system for the 7th CHiME Challenge Distant Automatic Speech Recognition (DASR) Task, focusing on the development of a multi-channel, multi-speaker speech recognition system tailored to transcribe speech from distributed microphones and microphone arrays. The system predominantly comprises of the following integral modules: the Speaker Diarization Module, Multi-channel Audio Front-End Processing Module, and the ASR Module. These components collectively establish a cascading system, meticulously processing multi-channel and multi-speaker audio input. Moreover, this paper highlights the comprehensive optimization process that significantly enhanced our system's performance. Our team's submission is largely based on NeMo toolkits and will be publicly available.
Single channel voice separation for unknown number of speakers under reverberant and noisy settings
We present a unified network for voice separation of an unknown number of speakers. The proposed approach is composed of several separation heads optimized together with a speaker classification branch. The separation is carried out in the time domain, together with parameter sharing between all separation heads. The classification branch estimates the number of speakers while each head is specialized in separating a different number of speakers. We evaluate the proposed model under both clean and noisy reverberant set-tings. Results suggest that the proposed approach is superior to the baseline model by a significant margin. Additionally, we present a new noisy and reverberant dataset of up to five different speakers speaking simultaneously.
nnSpeech: Speaker-Guided Conditional Variational Autoencoder for Zero-shot Multi-speaker Text-to-Speech
Multi-speaker text-to-speech (TTS) using a few adaption data is a challenge in practical applications. To address that, we propose a zero-shot multi-speaker TTS, named nnSpeech, that could synthesis a new speaker voice without fine-tuning and using only one adaption utterance. Compared with using a speaker representation module to extract the characteristics of new speakers, our method bases on a speaker-guided conditional variational autoencoder and can generate a variable Z, which contains both speaker characteristics and content information. The latent variable Z distribution is approximated by another variable conditioned on reference mel-spectrogram and phoneme. Experiments on the English corpus, Mandarin corpus, and cross-dataset proves that our model could generate natural and similar speech with only one adaption speech.
Enhancing Chat Language Models by Scaling High-quality Instructional Conversations
Fine-tuning on instruction data has been widely validated as an effective practice for implementing chat language models like ChatGPT. Scaling the diversity and quality of such data, although straightforward, stands a great chance of leading to improved performance. This paper aims to improve the upper bound of open-source models further. We first provide a systematically designed, diverse, informative, large-scale dataset of instructional conversations, UltraChat, which does not involve human queries. Our objective is to capture the breadth of interactions that a human might have with an AI assistant and employs a comprehensive framework to generate multi-turn conversation iteratively. UltraChat contains 1.5 million high-quality multi-turn dialogues and covers a wide range of topics and instructions. Our statistical analysis of UltraChat reveals its superiority in various key metrics, including scale, average length, diversity, coherence, etc., solidifying its position as a leading open-source dataset. Building upon UltraChat, we fine-tune a LLaMA model to create a powerful conversational model, UltraLLaMA. Our evaluations indicate that UltraLLaMA consistently outperforms other open-source models, including Vicuna, the previously recognized state-of-the-art open-source model. The dataset and the model will be publicly released\url{https://github.com/thunlp/UltraChat}.
Mind the Gap Between Conversations for Improved Long-Term Dialogue Generation
Knowing how to end and resume conversations over time is a natural part of communication, allowing for discussions to span weeks, months, or years. The duration of gaps between conversations dictates which topics are relevant and which questions to ask, and dialogue systems which do not explicitly model time may generate responses that are unnatural. In this work we explore the idea of making dialogue models aware of time, and present GapChat, a multi-session dialogue dataset in which the time between each session varies. While the dataset is constructed in real-time, progress on events in speakers' lives is simulated in order to create realistic dialogues occurring across a long timespan. We expose time information to the model and compare different representations of time and event progress. In human evaluation we show that time-aware models perform better in metrics that judge the relevance of the chosen topics and the information gained from the conversation.
There Is No Standard Answer: Knowledge-Grounded Dialogue Generation with Adversarial Activated Multi-Reference Learning
Knowledge-grounded conversation (KGC) shows excellent potential to deliver an engaging and informative response. However, existing approaches emphasize selecting one golden knowledge given a particular dialogue context, overlooking the one-to-many phenomenon in dialogue. As a result, the existing paradigm limits the diversity of knowledge selection and generation. To this end, we establish a multi-reference KGC dataset and propose a series of metrics to systematically assess the one-to-many efficacy of existing KGC models. Furthermore, to extend the hypothesis space of knowledge selection to enhance the mapping relationship between multiple knowledge and multiple responses, we devise a span-based variational model and optimize the model in a wake-sleep style with an ameliorated evidence lower bound objective to learn the one-to-many generalization. Both automatic and human evaluations demonstrate the efficacy of our approach.
DiPCo -- Dinner Party Corpus
We present a speech data corpus that simulates a "dinner party" scenario taking place in an everyday home environment. The corpus was created by recording multiple groups of four Amazon employee volunteers having a natural conversation in English around a dining table. The participants were recorded by a single-channel close-talk microphone and by five far-field 7-microphone array devices positioned at different locations in the recording room. The dataset contains the audio recordings and human labeled transcripts of a total of 10 sessions with a duration between 15 and 45 minutes. The corpus was created to advance in the field of noise robust and distant speech processing and is intended to serve as a public research and benchmarking data set.
Towards Human-like Multimodal Conversational Agent by Generating Engaging Speech
Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC
MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation
Responding with multi-modal content has been recognized as an essential capability for an intelligent conversational agent. In this paper, we introduce the MMDialog dataset to better facilitate multi-modal conversation. MMDialog is composed of a curated set of 1.08 million real-world dialogues with 1.53 million unique images across 4,184 topics. MMDialog has two main and unique advantages. First, it is the largest multi-modal conversation dataset by the number of dialogues by 88x. Second, it contains massive topics to generalize the open-domain. To build engaging dialogue system with this dataset, we propose and normalize two response producing tasks based on retrieval and generative scenarios. In addition, we build two baselines for above tasks with state-of-the-art techniques and report their experimental performance. We also propose a novel evaluation metric MM-Relevance to measure the multi-modal responses. Our dataset and scripts are available in https://github.com/victorsungo/MMDialog.
On the Way to LLM Personalization: Learning to Remember User Conversations
Large Language Models (LLMs) have quickly become an invaluable assistant for a variety of tasks. However, their effectiveness is constrained by their ability to tailor responses to human preferences and behaviors via personalization. Prior work in LLM personalization has largely focused on style transfer or incorporating small factoids about the user, as knowledge injection remains an open challenge. In this paper, we explore injecting knowledge of prior conversations into LLMs to enable future work on less redundant, personalized conversations. We identify two real-world constraints: (1) conversations are sequential in time and must be treated as such during training, and (2) per-user personalization is only viable in parameter-efficient settings. To this aim, we propose PLUM, a pipeline performing data augmentation for up-sampling conversations as question-answer pairs, that are then used to finetune a low-rank adaptation adapter with a weighted cross entropy loss. Even in this first exploration of the problem, we perform competitively with baselines such as RAG, attaining an accuracy of 81.5% across 100 conversations.
Let's Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation
In this paper, we introduce a novel Face-to-Face spoken dialogue model. It processes audio-visual speech from user input and generates audio-visual speech as the response, marking the initial step towards creating an avatar chatbot system without relying on intermediate text. To this end, we newly introduce MultiDialog, the first large-scale multimodal (i.e., audio and visual) spoken dialogue corpus containing 340 hours of approximately 9,000 dialogues, recorded based on the open domain dialogue dataset, TopicalChat. The MultiDialog contains parallel audio-visual recordings of conversation partners acting according to the given script with emotion annotations, which we expect to open up research opportunities in multimodal synthesis. Our Face-to-Face spoken dialogue model incorporates a textually pretrained large language model and adapts it into the audio-visual spoken dialogue domain by incorporating speech-text joint pretraining. Through extensive experiments, we validate the effectiveness of our model in facilitating a face-to-face conversation. Demo and data are available at https://multidialog.github.io and https://huggingface.co/datasets/IVLLab/MultiDialog, respectively.
AutoConv: Automatically Generating Information-seeking Conversations with Large Language Models
Information-seeking conversation, which aims to help users gather information through conversation, has achieved great progress in recent years. However, the research is still stymied by the scarcity of training data. To alleviate this problem, we propose AutoConv for synthetic conversation generation, which takes advantage of the few-shot learning ability and generation capacity of large language models (LLM). Specifically, we formulate the conversation generation problem as a language modeling task, then finetune an LLM with a few human conversations to capture the characteristics of the information-seeking process and use it for generating synthetic conversations with high quality. Experimental results on two frequently-used datasets verify that AutoConv has substantial improvements over strong baselines and alleviates the dependence on human annotation. In addition, we also provide several analysis studies to promote future research.
Advancing Large Language Models to Capture Varied Speaking Styles and Respond Properly in Spoken Conversations
In spoken dialogue, even if two current turns are the same sentence, their responses might still differ when they are spoken in different styles. The spoken styles, containing paralinguistic and prosodic information, mark the most significant difference between text and speech modality. When using text-only LLMs to model spoken dialogue, text-only LLMs cannot give different responses based on the speaking style of the current turn. In this paper, we focus on enabling LLMs to listen to the speaking styles and respond properly. Our goal is to teach the LLM that "even if the sentences are identical if they are spoken in different styles, their corresponding responses might be different". Since there is no suitable dataset for achieving this goal, we collect a speech-to-speech dataset, StyleTalk, with the following desired characteristics: when two current speeches have the same content but are spoken in different styles, their responses will be different. To teach LLMs to understand and respond properly to the speaking styles, we propose the Spoken-LLM framework that can model the linguistic content and the speaking styles. We train Spoken-LLM using the StyleTalk dataset and devise a two-stage training pipeline to help the Spoken-LLM better learn the speaking styles. Based on extensive experiments, we show that Spoken-LLM outperforms text-only baselines and prior speech LLMs methods.
DeepDialogue: A Multi-Turn Emotionally-Rich Spoken Dialogue Dataset
Recent advances in conversational AI have demonstrated impressive capabilities in single-turn responses, yet multi-turn dialogues remain challenging for even the most sophisticated language models. Current dialogue datasets are limited in their emotional range, domain diversity, turn depth, and are predominantly text-only, hindering progress in developing more human-like conversational systems across modalities. To address these limitations, we present DeepDialogue, a large-scale multimodal dataset containing 40,150 high-quality multi-turn dialogues spanning 41 domains and incorporating 20 distinct emotions with coherent emotional progressions. Our approach pairs 9 different language models (4B-72B parameters) to generate 65,600 initial conversations, which we then evaluate through a combination of human annotation and LLM-based quality filtering. The resulting dataset reveals fundamental insights: smaller models fail to maintain coherence beyond 6 dialogue turns; concrete domains (e.g., "cars," "travel") yield more meaningful conversations than abstract ones (e.g., "philosophy"); and cross-model interactions produce more coherent dialogues than same-model conversations. A key contribution of DeepDialogue is its speech component, where we synthesize emotion-consistent voices for all 40,150 dialogues, creating the first large-scale open-source multimodal dialogue dataset that faithfully preserves emotional context across multi-turn conversations.
Adaptive Multi-Agent Response Refinement in Conversational Systems
Large Language Models (LLMs) have demonstrated remarkable success in conversational systems by generating human-like responses. However, they can fall short, especially when required to account for personalization or specific knowledge. In real-life settings, it is impractical to rely on users to detect these errors and request a new response. One way to address this problem is to refine the response before returning it to the user. While existing approaches focus on refining responses within a single LLM, this method struggles to consider diverse aspects needed for effective conversations. In this work, we propose refining responses through a multi-agent framework, where each agent is assigned a specific role for each aspect. We focus on three key aspects crucial to conversational quality: factuality, personalization, and coherence. Each agent is responsible for reviewing and refining one of these aspects, and their feedback is then merged to improve the overall response. To enhance collaboration among them, we introduce a dynamic communication strategy. Instead of following a fixed sequence of agents, our approach adaptively selects and coordinates the most relevant agents based on the specific requirements of each query. We validate our framework on challenging conversational datasets, demonstrating that ours significantly outperforms relevant baselines, particularly in tasks involving knowledge or user's persona, or both.
The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems
This paper introduces the Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words. This provides a unique resource for research into building dialogue managers based on neural language models that can make use of large amounts of unlabeled data. The dataset has both the multi-turn property of conversations in the Dialog State Tracking Challenge datasets, and the unstructured nature of interactions from microblog services such as Twitter. We also describe two neural learning architectures suitable for analyzing this dataset, and provide benchmark performance on the task of selecting the best next response.
Does Your Voice Assistant Remember? Analyzing Conversational Context Recall and Utilization in Voice Interaction Models
Recent advancements in multi-turn voice interaction models have improved user-model communication. However, while closed-source models effectively retain and recall past utterances, whether open-source models share this ability remains unexplored. To fill this gap, we systematically evaluate how well open-source interaction models utilize past utterances using ContextDialog, a benchmark we proposed for this purpose. Our findings show that speech-based models have more difficulty than text-based ones, especially when recalling information conveyed in speech, and even with retrieval-augmented generation, models still struggle with questions about past utterances. These insights highlight key limitations in open-source models and suggest ways to improve memory retention and retrieval robustness.
Moshi: a speech-text foundation model for real-time dialogue
We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning -- such as emotion or non-speech sounds -- is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this "Inner Monologue" method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at https://github.com/kyutai-labs/moshi.
3D-Speaker: A Large-Scale Multi-Device, Multi-Distance, and Multi-Dialect Corpus for Speech Representation Disentanglement
Disentangling uncorrelated information in speech utterances is a crucial research topic within speech community. Different speech-related tasks focus on extracting distinct speech representations while minimizing the affects of other uncorrelated information. We present a large-scale speech corpus to facilitate the research of speech representation disentanglement. 3D-Speaker contains over 10,000 speakers, each of whom are simultaneously recorded by multiple Devices, locating at different Distances, and some speakers are speaking multiple Dialects. The controlled combinations of multi-dimensional audio data yield a matrix of a diverse blend of speech representation entanglement, thereby motivating intriguing methods to untangle them. The multi-domain nature of 3D-Speaker also makes it a suitable resource to evaluate large universal speech models and experiment methods of out-of-domain learning and self-supervised learning. https://3dspeaker.github.io/
NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction
Inspired by the impressive capabilities of GPT-4o, there is growing interest in enabling speech language models (SLMs) to engage in natural, fluid spoken interactions with humans. Recent advancements have led to the development of several SLMs that demonstrate promising results in this area. However, current approaches have yet to fully exploit dual-channel speech data, which inherently captures the structure and dynamics of human conversation. In this work, we systematically explore the use of dual-channel speech data in the context of modern large language models, and introduce a novel generative modeling paradigm, Next-Token-Pair Prediction (NTPP), to enable speaker-independent dual-channel spoken dialogue learning using decoder-only architectures for the first time. We evaluate our approach on standard benchmarks, and empirical results show that our proposed method, NTPP, significantly improves the conversational abilities of SLMs in terms of turn-taking prediction, response coherence, and naturalness. Moreover, compared to existing methods, NTPP achieves substantially lower inference latency, highlighting its practical efficiency for real-time applications.
Towards Building Large Scale Multimodal Domain-Aware Conversation Systems
While multimodal conversation agents are gaining importance in several domains such as retail, travel etc., deep learning research in this area has been limited primarily due to the lack of availability of large-scale, open chatlogs. To overcome this bottleneck, in this paper we introduce the task of multimodal, domain-aware conversations, and propose the MMD benchmark dataset. This dataset was gathered by working in close coordination with large number of domain experts in the retail domain. These experts suggested various conversations flows and dialog states which are typically seen in multimodal conversations in the fashion domain. Keeping these flows and states in mind, we created a dataset consisting of over 150K conversation sessions between shoppers and sales agents, with the help of in-house annotators using a semi-automated manually intense iterative process. With this dataset, we propose 5 new sub-tasks for multimodal conversations along with their evaluation methodology. We also propose two multimodal neural models in the encode-attend-decode paradigm and demonstrate their performance on two of the sub-tasks, namely text response generation and best image response selection. These experiments serve to establish baseline performance and open new research directions for each of these sub-tasks. Further, for each of the sub-tasks, we present a `per-state evaluation' of 9 most significant dialog states, which would enable more focused research into understanding the challenges and complexities involved in each of these states.
NanoVoice: Efficient Speaker-Adaptive Text-to-Speech for Multiple Speakers
We present NanoVoice, a personalized text-to-speech model that efficiently constructs voice adapters for multiple speakers simultaneously. NanoVoice introduces a batch-wise speaker adaptation technique capable of fine-tuning multiple references in parallel, significantly reducing training time. Beyond building separate adapters for each speaker, we also propose a parameter sharing technique that reduces the number of parameters used for speaker adaptation. By incorporating a novel trainable scale matrix, NanoVoice mitigates potential performance degradation during parameter sharing. NanoVoice achieves performance comparable to the baselines, while training 4 times faster and using 45 percent fewer parameters for speaker adaptation with 40 reference voices. Extensive ablation studies and analysis further validate the efficiency of our model.
Let's move on: Topic Change in Robot-Facilitated Group Discussions
Robot-moderated group discussions have the potential to facilitate engaging and productive interactions among human participants. Previous work on topic management in conversational agents has predominantly focused on human engagement and topic personalization, with the agent having an active role in the discussion. Also, studies have shown the usefulness of including robots in groups, yet further exploration is still needed for robots to learn when to change the topic while facilitating discussions. Accordingly, our work investigates the suitability of machine-learning models and audiovisual non-verbal features in predicting appropriate topic changes. We utilized interactions between a robot moderator and human participants, which we annotated and used for extracting acoustic and body language-related features. We provide a detailed analysis of the performance of machine learning approaches using sequential and non-sequential data with different sets of features. The results indicate promising performance in classifying inappropriate topic changes, outperforming rule-based approaches. Additionally, acoustic features exhibited comparable performance and robustness compared to the complete set of multimodal features. Our annotated data is publicly available at https://github.com/ghadj/topic-change-robot-discussions-data-2024.
Muse: A Multimodal Conversational Recommendation Dataset with Scenario-Grounded User Profiles
Current conversational recommendation systems focus predominantly on text. However, real-world recommendation settings are generally multimodal, causing a significant gap between existing research and practical applications. To address this issue, we propose Muse, the first multimodal conversational recommendation dataset. Muse comprises 83,148 utterances from 7,000 conversations centered around the Clothing domain. Each conversation contains comprehensive multimodal interactions, rich elements, and natural dialogues. Data in Muse are automatically synthesized by a multi-agent framework powered by multimodal large language models (MLLMs). It innovatively derives user profiles from real-world scenarios rather than depending on manual design and history data for better scalability, and then it fulfills conversation simulation and optimization. Both human and LLM evaluations demonstrate the high quality of conversations in Muse. Additionally, fine-tuning experiments on three MLLMs demonstrate Muse's learnable patterns for recommendations and responses, confirming its value for multimodal conversational recommendation. Our dataset and codes are available at https://anonymous.4open.science/r/Muse-0086.
MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large Language Models
Large language models (LLMs) are increasingly relied upon for complex multi-turn conversations across diverse real-world applications. However, existing benchmarks predominantly focus on single-turn evaluations, overlooking the models' capabilities in multi-turn interactions. To address this gap, we introduce MT-Eval, a comprehensive benchmark designed to evaluate multi-turn conversational abilities. By analyzing human-LLM conversations, we categorize interaction patterns into four types: recollection, expansion, refinement, and follow-up. We construct multi-turn queries for each category either by augmenting existing datasets or by creating new examples with GPT-4 to avoid data leakage. To study the factors impacting multi-turn abilities, we create single-turn versions of the 1170 multi-turn queries and compare performance. Our evaluation of 11 well-known LLMs shows that while closed-source models generally surpass open-source ones, certain open-source models exceed GPT-3.5-Turbo in specific tasks. We observe significant performance degradation in multi-turn settings compared to single-turn settings in most models, which is not correlated with the models' fundamental capabilities. Moreover, we identify the distance to relevant content and susceptibility to error propagation as the key factors influencing multi-turn performance. MT-Eval is released publicly to encourage future research towards more robust conversational models.
A Dataset for Document Grounded Conversations
This paper introduces a document grounded dataset for text conversations. We define "Document Grounded Conversations" as conversations that are about the contents of a specified document. In this dataset the specified documents were Wikipedia articles about popular movies. The dataset contains 4112 conversations with an average of 21.43 turns per conversation. This positions this dataset to not only provide a relevant chat history while generating responses but also provide a source of information that the models could use. We describe two neural architectures that provide benchmark performance on the task of generating the next response. We also evaluate our models for engagement and fluency, and find that the information from the document helps in generating more engaging and fluent responses.
Modeling Multi-turn Conversation with Deep Utterance Aggregation
Multi-turn conversation understanding is a major challenge for building intelligent dialogue systems. This work focuses on retrieval-based response matching for multi-turn conversation whose related work simply concatenates the conversation utterances, ignoring the interactions among previous utterances for context modeling. In this paper, we formulate previous utterances into context using a proposed deep utterance aggregation model to form a fine-grained context representation. In detail, a self-matching attention is first introduced to route the vital information in each utterance. Then the model matches a response with each refined utterance and the final matching score is obtained after attentive turns aggregation. Experimental results show our model outperforms the state-of-the-art methods on three multi-turn conversation benchmarks, including a newly introduced e-commerce dialogue corpus.
Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models
Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs.
LibriheavyMix: A 20,000-Hour Dataset for Single-Channel Reverberant Multi-Talker Speech Separation, ASR and Speaker Diarization
The evolving speech processing landscape is increasingly focused on complex scenarios like meetings or cocktail parties with multiple simultaneous speakers and far-field conditions. Existing methodologies for addressing these challenges fall into two categories: multi-channel and single-channel solutions. Single-channel approaches, notable for their generality and convenience, do not require specific information about microphone arrays. This paper presents a large-scale far-field overlapping speech dataset, crafted to advance research in speech separation, recognition, and speaker diarization. This dataset is a critical resource for decoding ``Who said What and When'' in multi-talker, reverberant environments, a daunting challenge in the field. Additionally, we introduce a pipeline system encompassing speech separation, recognition, and diarization as a foundational benchmark. Evaluations on the WHAMR! dataset validate the broad applicability of the proposed data.
ConvCounsel: A Conversational Dataset for Student Counseling
Student mental health is a sensitive issue that necessitates special attention. A primary concern is the student-to-counselor ratio, which surpasses the recommended standard of 250:1 in most universities. This imbalance results in extended waiting periods for in-person consultations, which cause suboptimal treatment. Significant efforts have been directed toward developing mental health dialogue systems utilizing the existing open-source mental health-related datasets. However, currently available datasets either discuss general topics or various strategies that may not be viable for direct application due to numerous ethical constraints inherent in this research domain. To address this issue, this paper introduces a specialized mental health dataset that emphasizes the active listening strategy employed in conversation for counseling, also named as ConvCounsel. This dataset comprises both speech and text data, which can facilitate the development of a reliable pipeline for mental health dialogue systems. To demonstrate the utility of the proposed dataset, this paper also presents the NYCUKA, a spoken mental health dialogue system that is designed by using the ConvCounsel dataset. The results show the merit of using this dataset.
Towards a Japanese Full-duplex Spoken Dialogue System
Full-duplex spoken dialogue systems, which can model simultaneous bidirectional features of human conversations such as speech overlaps and backchannels, have attracted significant attention recently. However, the study of full-duplex spoken dialogue systems for the Japanese language has been limited, and the research on their development in Japanese remains scarce. In this paper, we present the first publicly available full-duplex spoken dialogue model in Japanese, which is built upon Moshi, a full-duplex dialogue model in English. Our model is trained through a two-stage process: pre-training on a large-scale spoken dialogue data in Japanese, followed by fine-tuning on high-quality stereo spoken dialogue data. We further enhance the model's performance by incorporating synthetic dialogue data generated by a multi-stream text-to-speech system. Evaluation experiments demonstrate that the trained model outperforms Japanese baseline models in both naturalness and meaningfulness.
Multi-Party Conversational Agents: A Survey
Multi-party Conversational Agents (MPCAs) are systems designed to engage in dialogue with more than two participants simultaneously. Unlike traditional two-party agents, designing MPCAs faces additional challenges due to the need to interpret both utterance semantics and social dynamics. This survey explores recent progress in MPCAs by addressing three key questions: 1) Can agents model each participants' mental states? (State of Mind Modeling); 2) Can they properly understand the dialogue content? (Semantic Understanding); and 3) Can they reason about and predict future conversation flow? (Agent Action Modeling). We review methods ranging from classical machine learning to Large Language Models (LLMs) and multi-modal systems. Our analysis underscores Theory of Mind (ToM) as essential for building intelligent MPCAs and highlights multi-modal understanding as a promising yet underexplored direction. Finally, this survey offers guidance to future researchers on developing more capable MPCAs.
End-to-end speaker segmentation for overlap-aware resegmentation
Speaker segmentation consists in partitioning a conversation between one or more speakers into speaker turns. Usually addressed as the late combination of three sub-tasks (voice activity detection, speaker change detection, and overlapped speech detection), we propose to train an end-to-end segmentation model that does it directly. Inspired by the original end-to-end neural speaker diarization approach (EEND), the task is modeled as a multi-label classification problem using permutation-invariant training. The main difference is that our model operates on short audio chunks (5 seconds) but at a much higher temporal resolution (every 16ms). Experiments on multiple speaker diarization datasets conclude that our model can be used with great success on both voice activity detection and overlapped speech detection. Our proposed model can also be used as a post-processing step, to detect and correctly assign overlapped speech regions. Relative diarization error rate improvement over the best considered baseline (VBx) reaches 17% on AMI, 13% on DIHARD 3, and 13% on VoxConverse.
BlendX: Complex Multi-Intent Detection with Blended Patterns
Task-oriented dialogue (TOD) systems are commonly designed with the presumption that each utterance represents a single intent. However, this assumption may not accurately reflect real-world situations, where users frequently express multiple intents within a single utterance. While there is an emerging interest in multi-intent detection (MID), existing in-domain datasets such as MixATIS and MixSNIPS have limitations in their formulation. To address these issues, we present BlendX, a suite of refined datasets featuring more diverse patterns than their predecessors, elevating both its complexity and diversity. For dataset construction, we utilize both rule-based heuristics as well as a generative tool -- OpenAI's ChatGPT -- which is augmented with a similarity-driven strategy for utterance selection. To ensure the quality of the proposed datasets, we also introduce three novel metrics that assess the statistical properties of an utterance related to word count, conjunction use, and pronoun usage. Extensive experiments on BlendX reveal that state-of-the-art MID models struggle with the challenges posed by the new datasets, highlighting the need to reexamine the current state of the MID field. The dataset is available at https://github.com/HYU-NLP/BlendX.
MultiWOZ 2.1: A Consolidated Multi-Domain Dialogue Dataset with State Corrections and State Tracking Baselines
MultiWOZ 2.0 (Budzianowski et al., 2018) is a recently released multi-domain dialogue dataset spanning 7 distinct domains and containing over 10,000 dialogues. Though immensely useful and one of the largest resources of its kind to-date, MultiWOZ 2.0 has a few shortcomings. Firstly, there is substantial noise in the dialogue state annotations and dialogue utterances which negatively impact the performance of state-tracking models. Secondly, follow-up work (Lee et al., 2019) has augmented the original dataset with user dialogue acts. This leads to multiple co-existent versions of the same dataset with minor modifications. In this work we tackle the aforementioned issues by introducing MultiWOZ 2.1. To fix the noisy state annotations, we use crowdsourced workers to re-annotate state and utterances based on the original utterances in the dataset. This correction process results in changes to over 32% of state annotations across 40% of the dialogue turns. In addition, we fix 146 dialogue utterances by canonicalizing slot values in the utterances to the values in the dataset ontology. To address the second problem, we combined the contributions of the follow-up works into MultiWOZ 2.1. Hence, our dataset also includes user dialogue acts as well as multiple slot descriptions per dialogue state slot. We then benchmark a number of state-of-the-art dialogue state tracking models on the MultiWOZ 2.1 dataset and show the joint state tracking performance on the corrected state annotations. We are publicly releasing MultiWOZ 2.1 to the community, hoping that this dataset resource will allow for more effective models across various dialogue subproblems to be built in the future.
LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues
Multi-turn dialogues are essential in many real-world applications of large language models, such as chatbots and virtual assistants. As conversation histories become longer, existing large language models face increasing computational and memory challenges, which hinder their ability to provide efficient and responsive interactions. Most current acceleration methods either compress the context or optimize key value caching, but they often rely on fixed or position-based heuristics that do not adapt well to the dynamic and unpredictable patterns found in actual multi-turn conversations. In this paper, we present LoopServe, an adaptive dual-phase inference acceleration framework for large language models in multi-turn dialogues. LoopServe introduces two main innovations. First, it performs online sparsification during the prefilling phase by dynamically selecting the most important parts of the attention matrix for each new input. Second, it uses progressive key value compression during decoding by adaptively maintaining a relevant and efficient cache based on the most recently generated output tokens. We also propose a https://huggingface.co/datasets/TreeAILab/Multi-turn_Long-context_Benchmark_for_LLMs{new benchmark} with eleven multi-turn datasets that reflect realistic query positions and conversational dependencies. Extensive experiments demonstrate that LoopServe consistently achieves superior effectiveness compared to existing baselines and significantly accelerates LLM inference across a wide range of long-context dialogue tasks.
Hi-Fi Multi-Speaker English TTS Dataset
This paper introduces a new multi-speaker English dataset for training text-to-speech models. The dataset is based on LibriVox audiobooks and Project Gutenberg texts, both in the public domain. The new dataset contains about 292 hours of speech from 10 speakers with at least 17 hours per speaker sampled at 44.1 kHz. To select speech samples with high quality, we considered audio recordings with a signal bandwidth of at least 13 kHz and a signal-to-noise ratio (SNR) of at least 32 dB. The dataset is publicly released at http://www.openslr.org/109/ .
RAD-Bench: Evaluating Large Language Models Capabilities in Retrieval Augmented Dialogues
In real-world applications with Large Language Models (LLMs), external retrieval mechanisms - such as Search-Augmented Generation (SAG), tool utilization, and Retrieval-Augmented Generation (RAG) - are often employed to enhance the quality of augmented generations in dialogues. These approaches often come with multi-turn dialogue, where each interaction is enriched by relevant information retrieved from external sources. Existing benchmarks either assess LLMs' chat abilities in multi-turn dialogues or their use of retrieval for augmented responses in single-turn settings. However, there is a gap in evaluating LLMs' ability to leverage retrieval for more precise responses across multiple turns. To address this limitation, we introduce RAD-Bench (Retrieval Augmented Dialogue), a benchmark designed to evaluate LLMs' capabilities in multi-turn dialogues following retrievals, essential for their deployment in context-rich applications. RAD-Bench evaluates two key abilities of LLMs: Retrieval Synthesis and Retrieval Reasoning. These are measured using discriminative questions and retrieved contexts, and corresponding reference answers, assessing how effectively LLMs integrate and reason with context to maintain and enhance conversation quality over multiple turns. Our evaluation results on commonly used LLMs reveal that model performance deteriorates as additional layers of conditions or constraints are applied across conversation turns, even when accurate retrieved contexts are provided. The data and code are available at https://github.com/mtkresearch/RAD-Bench
AV-Dialog: Spoken Dialogue Models with Audio-Visual Input
Dialogue models falter in noisy, multi-speaker environments, often producing irrelevant responses and awkward turn-taking. We present AV-Dialog, the first multimodal dialog framework that uses both audio and visual cues to track the target speaker, predict turn-taking, and generate coherent responses. By combining acoustic tokenization with multi-task, multi-stage training on monadic, synthetic, and real audio-visual dialogue datasets, AV-Dialog achieves robust streaming transcription, semantically grounded turn-boundary detection and accurate responses, resulting in a natural conversational flow. Experiments show that AV-Dialog outperforms audio-only models under interference, reducing transcription errors, improving turn-taking prediction, and enhancing human-rated dialogue quality. These results highlight the power of seeing as well as hearing for speaker-aware interaction, paving the way for {spoken} dialogue agents that perform {robustly} in real-world, noisy environments.
MemoChat: Tuning LLMs to Use Memos for Consistent Long-Range Open-Domain Conversation
We propose MemoChat, a pipeline for refining instructions that enables large language models (LLMs) to effectively employ self-composed memos for maintaining consistent long-range open-domain conversations. We demonstrate a long-range open-domain conversation through iterative "memorization-retrieval-response" cycles. This requires us to carefully design tailored tuning instructions for each distinct stage. The instructions are reconstructed from a collection of public datasets to teach the LLMs to memorize and retrieve past dialogues with structured memos, leading to enhanced consistency when participating in future conversations. We invite experts to manually annotate a test set designed to evaluate the consistency of long-range conversations questions. Experiments on three testing scenarios involving both open-source and API-accessible chatbots at scale verify the efficacy of MemoChat, which outperforms strong baselines. Our codes, data and models are available here: https://github.com/LuJunru/MemoChat.
Identifying Personality Traits Using Overlap Dynamics in Multiparty Dialogue
Research on human spoken language has shown that speech plays an important role in identifying speaker personality traits. In this work, we propose an approach for identifying speaker personality traits using overlap dynamics in multiparty spoken dialogues. We first define a set of novel features representing the overlap dynamics of each speaker. We then investigate the impact of speaker personality traits on these features using ANOVA tests. We find that features of overlap dynamics significantly vary for speakers with different levels of both Extraversion and Conscientiousness. Finally, we find that classifiers using only overlap dynamics features outperform random guessing in identifying Extraversion and Agreeableness, and that the improvements are statistically significant.
SeniorTalk: A Chinese Conversation Dataset with Rich Annotations for Super-Aged Seniors
While voice technologies increasingly serve aging populations, current systems exhibit significant performance gaps due to inadequate training data capturing elderly-specific vocal characteristics like presbyphonia and dialectal variations. The limited data available on super-aged individuals in existing elderly speech datasets, coupled with overly simple recording styles and annotation dimensions, exacerbates this issue. To address the critical scarcity of speech data from individuals aged 75 and above, we introduce SeniorTalk, a carefully annotated Chinese spoken dialogue dataset. This dataset contains 55.53 hours of speech from 101 natural conversations involving 202 participants, ensuring a strategic balance across gender, region, and age. Through detailed annotation across multiple dimensions, it can support a wide range of speech tasks. We perform extensive experiments on speaker verification, speaker diarization, speech recognition, and speech editing tasks, offering crucial insights for the development of speech technologies targeting this age group.
Meeting Transcription Using Virtual Microphone Arrays
We describe a system that generates speaker-annotated transcripts of meetings by using a virtual microphone array, a set of spatially distributed asynchronous recording devices such as laptops and mobile phones. The system is composed of continuous audio stream alignment, blind beamforming, speech recognition, speaker diarization using prior speaker information, and system combination. When utilizing seven input audio streams, our system achieves a word error rate (WER) of 22.3% and comes within 3% of the close-talking microphone WER on the non-overlapping speech segments. The speaker-attributed WER (SAWER) is 26.7%. The relative gains in SAWER over the single-device system are 14.8%, 20.3%, and 22.4% for three, five, and seven microphones, respectively. The presented system achieves a 13.6% diarization error rate when 10% of the speech duration contains more than one speaker. The contribution of each component to the overall performance is also investigated, and we validate the system with experiments on the NIST RT-07 conference meeting test set.
Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence Modeling Utilized on Long Short-Term Dialogue Planning
Inspired by the curvature of space-time (Einstein, 1921), we introduce Curved Contrastive Learning (CCL), a novel representation learning technique for learning the relative turn distance between utterance pairs in multi-turn dialogues. The resulting bi-encoder models can guide transformers as a response ranking model towards a goal in a zero-shot fashion by projecting the goal utterance and the corresponding reply candidates into a latent space. Here the cosine similarity indicates the distance/reachability of a candidate utterance toward the corresponding goal. Furthermore, we explore how these forward-entailing language representations can be utilized for assessing the likelihood of sequences by the entailment strength i.e. through the cosine similarity of its individual members (encoded separately) as an emergent property in the curved space. These non-local properties allow us to imagine the likelihood of future patterns in dialogues, specifically by ordering/identifying future goal utterances that are multiple turns away, given a dialogue context. As part of our analysis, we investigate characteristics that make conversations (un)plannable and find strong evidence of planning capability over multiple turns (in 61.56% over 3 turns) in conversations from the DailyDialog (Li et al., 2017) dataset. Finally, we show how we achieve higher efficiency in sequence modeling tasks compared to previous work thanks to our relativistic approach, where only the last utterance needs to be encoded and computed during inference.
Towards Exploiting Background Knowledge for Building Conversation Systems
Existing dialog datasets contain a sequence of utterances and responses without any explicit background knowledge associated with them. This has resulted in the development of models which treat conversation as a sequence-to-sequence generation task i.e, given a sequence of utterances generate the response sequence). This is not only an overly simplistic view of conversation but it is also emphatically different from the way humans converse by heavily relying on their background knowledge about the topic (as opposed to simply relying on the previous sequence of utterances). For example, it is common for humans to (involuntarily) produce utterances which are copied or suitably modified from background articles they have read about the topic. To facilitate the development of such natural conversation models which mimic the human process of conversing, we create a new dataset containing movie chats wherein each response is explicitly generated by copying and/or modifying sentences from unstructured background knowledge such as plots, comments and reviews about the movie. We establish baseline results on this dataset (90K utterances from 9K conversations) using three different models: (i) pure generation based models which ignore the background knowledge (ii) generation based models which learn to copy information from the background knowledge when required and (iii) span prediction based models which predict the appropriate response span in the background knowledge.
From Simulated Mixtures to Simulated Conversations as Training Data for End-to-End Neural Diarization
End-to-end neural diarization (EEND) is nowadays one of the most prominent research topics in speaker diarization. EEND presents an attractive alternative to standard cascaded diarization systems since a single system is trained at once to deal with the whole diarization problem. Several EEND variants and approaches are being proposed, however, all these models require large amounts of annotated data for training but available annotated data are scarce. Thus, EEND works have used mostly simulated mixtures for training. However, simulated mixtures do not resemble real conversations in many aspects. In this work we present an alternative method for creating synthetic conversations that resemble real ones by using statistics about distributions of pauses and overlaps estimated on genuine conversations. Furthermore, we analyze the effect of the source of the statistics, different augmentations and amounts of data. We demonstrate that our approach performs substantially better than the original one, while reducing the dependence on the fine-tuning stage. Experiments are carried out on 2-speaker telephone conversations of Callhome and DIHARD 3. Together with this publication, we release our implementations of EEND and the method for creating simulated conversations.
MultiVerse: A Multi-Turn Conversation Benchmark for Evaluating Large Vision and Language Models
Vision-and-Language Models (VLMs) have shown impressive capabilities on single-turn benchmarks, yet real-world applications often demand more intricate multi-turn dialogues. Existing multi-turn datasets (e.g, MMDU, ConvBench) only partially capture the breadth and depth of conversational scenarios encountered by users. In this work, we introduce MultiVerse, a novel multi-turn conversation benchmark featuring 647 dialogues - each averaging four turns - derived from a diverse set of 12 popular VLM evaluation benchmarks. With 484 tasks and 484 interaction goals, MultiVerse covers a wide range of topics, from factual knowledge and perception to advanced reasoning tasks such as mathematics and coding. To facilitate robust assessment, we propose a checklist-based evaluation method that leverages GPT-4o as the automated evaluator, measuring performance across 37 key aspects, including perceptual accuracy, linguistic clarity, and factual correctness. We evaluate 18 VLMs on MultiVerse, revealing that even the strongest models (e.g., GPT-4o) achieve only a 50% success rate in complex multi-turn conversations, highlighting the dataset's challenging nature. Notably, we find that providing full dialogue context significantly enhances performance for smaller or weaker models, emphasizing the importance of in-context learning. We believe MultiVerse is a landscape of evaluating multi-turn interaction abilities for VLMs.
CNN-based MultiChannel End-to-End Speech Recognition for everyday home environments
Casual conversations involving multiple speakers and noises from surrounding devices are common in everyday environments, which degrades the performances of automatic speech recognition systems. These challenging characteristics of environments are the target of the CHiME-5 challenge. By employing a convolutional neural network (CNN)-based multichannel end-to-end speech recognition system, this study attempts to overcome the presents difficulties in everyday environments. The system comprises of an attention-based encoder-decoder neural network that directly generates a text as an output from a sound input. The multichannel CNN encoder, which uses residual connections and batch renormalization, is trained with augmented data, including white noise injection. The experimental results show that the word error rate is reduced by 8.5% and 0.6% absolute from a single channel end-to-end and the best baseline (LF-MMI TDNN) on the CHiME-5 corpus, respectively.
