Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLearning to Generate Reviews and Discovering Sentiment
We explore the properties of byte-level recurrent language models. When given sufficient amounts of capacity, training data, and compute time, the representations learned by these models include disentangled features corresponding to high-level concepts. Specifically, we find a single unit which performs sentiment analysis. These representations, learned in an unsupervised manner, achieve state of the art on the binary subset of the Stanford Sentiment Treebank. They are also very data efficient. When using only a handful of labeled examples, our approach matches the performance of strong baselines trained on full datasets. We also demonstrate the sentiment unit has a direct influence on the generative process of the model. Simply fixing its value to be positive or negative generates samples with the corresponding positive or negative sentiment.
Understanding Environmental Posts: Sentiment and Emotion Analysis of Social Media Data
Social media is now the predominant source of information due to the availability of immediate public response. As a result, social media data has become a valuable resource for comprehending public sentiments. Studies have shown that it can amplify ideas and influence public sentiments. This study analyzes the public perception of climate change and the environment over a decade from 2014 to 2023. Using the Pointwise Mutual Information (PMI) algorithm, we identify sentiment and explore prevailing emotions expressed within environmental tweets across various social media platforms, namely Twitter, Reddit, and YouTube. Accuracy on a human-annotated dataset was 0.65, higher than Vader score but lower than that of an expert rater (0.90). Our findings suggest that negative environmental tweets are far more common than positive or neutral ones. Climate change, air quality, emissions, plastic, and recycling are the most discussed topics on all social media platforms, highlighting its huge global concern. The most common emotions in environmental tweets are fear, trust, and anticipation, demonstrating public reactions wide and complex nature. By identifying patterns and trends in opinions related to the environment, we hope to provide insights that can help raise awareness regarding environmental issues, inform the development of interventions, and adapt further actions to meet environmental challenges.
LLM Use for Mental Health: Crowdsourcing Users' Sentiment-based Perspectives and Values from Social Discussions
Large language models (LLMs) chatbots like ChatGPT are increasingly used for mental health support. They offer accessible, therapeutic support but also raise concerns about misinformation, over-reliance, and risks in high-stakes contexts of mental health. We crowdsource large-scale users' posts from six major social media platforms to examine how people discuss their interactions with LLM chatbots across different mental health conditions. Through an LLM-assisted pipeline grounded in Value-Sensitive Design (VSD), we mapped the relationships across user-reported sentiments, mental health conditions, perspectives, and values. Our results reveal that the use of LLM chatbots is condition-specific. Users with neurodivergent conditions (e.g., ADHD, ASD) report strong positive sentiments and instrumental or appraisal support, whereas higher-risk disorders (e.g., schizophrenia, bipolar disorder) show more negative sentiments. We further uncover how user perspectives co-occur with underlying values, such as identity, autonomy, and privacy. Finally, we discuss shifting from "one-size-fits-all" chatbot design toward condition-specific, value-sensitive LLM design.
Motamot: A Dataset for Revealing the Supremacy of Large Language Models over Transformer Models in Bengali Political Sentiment Analysis
Sentiment analysis is the process of identifying and categorizing people's emotions or opinions regarding various topics. Analyzing political sentiment is critical for understanding the complexities of public opinion processes, especially during election seasons. It gives significant information on voter preferences, attitudes, and current trends. In this study, we investigate political sentiment analysis during Bangladeshi elections, specifically examining how effectively Pre-trained Language Models (PLMs) and Large Language Models (LLMs) capture complex sentiment characteristics. Our study centers on the creation of the "Motamot" dataset, comprising 7,058 instances annotated with positive and negative sentiments, sourced from diverse online newspaper portals, forming a comprehensive resource for political sentiment analysis. We meticulously evaluate the performance of various PLMs including BanglaBERT, Bangla BERT Base, XLM-RoBERTa, mBERT, and sahajBERT, alongside LLMs such as Gemini 1.5 Pro and GPT 3.5 Turbo. Moreover, we explore zero-shot and few-shot learning strategies to enhance our understanding of political sentiment analysis methodologies. Our findings underscore BanglaBERT's commendable accuracy of 88.10% among PLMs. However, the exploration into LLMs reveals even more promising results. Through the adept application of Few-Shot learning techniques, Gemini 1.5 Pro achieves an impressive accuracy of 96.33%, surpassing the remarkable performance of GPT 3.5 Turbo, which stands at 94%. This underscores Gemini 1.5 Pro's status as the superior performer in this comparison.
BanglishRev: A Large-Scale Bangla-English and Code-mixed Dataset of Product Reviews in E-Commerce
This work presents the BanglishRev Dataset, the largest e-commerce product review dataset to date for reviews written in Bengali, English, a mixture of both and Banglish, Bengali words written with English alphabets. The dataset comprises of 1.74 million written reviews from 3.2 million ratings information collected from a total of 128k products being sold in online e-commerce platforms targeting the Bengali population. It includes an extensive array of related metadata for each of the reviews including the rating given by the reviewer, date the review was posted and date of purchase, number of likes, dislikes, response from the seller, images associated with the review etc. With sentiment analysis being the most prominent usage of review datasets, experimentation with a binary sentiment analysis model with the review rating serving as an indicator of positive or negative sentiment was conducted to evaluate the effectiveness of the large amount of data presented in BanglishRev for sentiment analysis tasks. A BanglishBERT model is trained on the data from BanglishRev with reviews being considered labeled positive if the rating is greater than 3 and negative if the rating is less than or equal to 3. The model is evaluated by being testing against a previously published manually annotated dataset for e-commerce reviews written in a mixture of Bangla, English and Banglish. The experimental model achieved an exceptional accuracy of 94\% and F1 score of 0.94, demonstrating the dataset's efficacy for sentiment analysis. Some of the intriguing patterns and observations seen within the dataset and future research directions where the dataset can be utilized is also discussed and explored. The dataset can be accessed through https://huggingface.co/datasets/BanglishRev/bangla-english-and-code-mixed-ecommerce-review-dataset.
Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models
LLMs are increasingly powerful and widely used to assist users in a variety of tasks. This use risks the introduction of LLM biases to consequential decisions such as job hiring, human performance evaluation, and criminal sentencing. Bias in NLP systems along the lines of gender and ethnicity has been widely studied, especially for specific stereotypes (e.g., Asians are good at math). In this paper, we investigate bias along less-studied but still consequential, dimensions, such as age and beauty, measuring subtler correlated decisions that LLMs make between social groups and unrelated positive and negative attributes. We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the ``what is beautiful is good'' bias found in people in experimental psychology. We introduce a template-generated dataset of sentence completion tasks that asks the model to select the most appropriate attribute to complete an evaluative statement about a person described as a member of a specific social group. We also reverse the completion task to select the social group based on an attribute. We report the correlations that we find for 4 cutting-edge LLMs. This dataset can be used as a benchmark to evaluate progress in more generalized biases and the templating technique can be used to expand the benchmark with minimal additional human annotation.
Quark: Controllable Text Generation with Reinforced Unlearning
Large-scale language models often learn behaviors that are misaligned with user expectations. Generated text may contain offensive or toxic language, contain significant repetition, or be of a different sentiment than desired by the user. We consider the task of unlearning these misalignments by fine-tuning the language model on signals of what not to do. We introduce Quantized Reward Konditioning (Quark), an algorithm for optimizing a reward function that quantifies an (un)wanted property, while not straying too far from the original model. Quark alternates between (i) collecting samples with the current language model, (ii) sorting them into quantiles based on reward, with each quantile identified by a reward token prepended to the language model's input, and (iii) using a standard language modeling loss on samples from each quantile conditioned on its reward token, while remaining nearby the original language model via a KL-divergence penalty. By conditioning on a high-reward token at generation time, the model generates text that exhibits less of the unwanted property. For unlearning toxicity, negative sentiment, and repetition, our experiments show that Quark outperforms both strong baselines and state-of-the-art reinforcement learning methods like PPO (Schulman et al. 2017), while relying only on standard language modeling primitives.
Fabricator: An Open Source Toolkit for Generating Labeled Training Data with Teacher LLMs
Most NLP tasks are modeled as supervised learning and thus require labeled training data to train effective models. However, manually producing such data at sufficient quality and quantity is known to be costly and time-intensive. Current research addresses this bottleneck by exploring a novel paradigm called zero-shot learning via dataset generation. Here, a powerful LLM is prompted with a task description to generate labeled data that can be used to train a downstream NLP model. For instance, an LLM might be prompted to "generate 500 movie reviews with positive overall sentiment, and another 500 with negative sentiment." The generated data could then be used to train a binary sentiment classifier, effectively leveraging an LLM as a teacher to a smaller student model. With this demo, we introduce Fabricator, an open-source Python toolkit for dataset generation. Fabricator implements common dataset generation workflows, supports a wide range of downstream NLP tasks (such as text classification, question answering, and entity recognition), and is integrated with well-known libraries to facilitate quick experimentation. With Fabricator, we aim to support researchers in conducting reproducible dataset generation experiments using LLMs and help practitioners apply this approach to train models for downstream tasks.
Symbol tuning improves in-context learning in language models
We present symbol tuning - finetuning language models on in-context input-label pairs where natural language labels (e.g., "positive/negative sentiment") are replaced with arbitrary symbols (e.g., "foo/bar"). Symbol tuning leverages the intuition that when a model cannot use instructions or natural language labels to figure out a task, it must instead do so by learning the input-label mappings. We experiment with symbol tuning across Flan-PaLM models up to 540B parameters and observe benefits across various settings. First, symbol tuning boosts performance on unseen in-context learning tasks and is much more robust to underspecified prompts, such as those without instructions or without natural language labels. Second, symbol-tuned models are much stronger at algorithmic reasoning tasks, with up to 18.2% better performance on the List Functions benchmark and up to 15.3% better performance on the Simple Turing Concepts benchmark. Finally, symbol-tuned models show large improvements in following flipped-labels presented in-context, meaning that they are more capable of using in-context information to override prior semantic knowledge.
Beyond One-Size-Fits-All: Personalized Harmful Content Detection with In-Context Learning
The proliferation of harmful online content--e.g., toxicity, spam, and negative sentiment--demands robust and adaptable moderation systems. However, prevailing moderation systems are centralized and task-specific, offering limited transparency and neglecting diverse user preferences--an approach ill-suited for privacy-sensitive or decentralized environments. We propose a novel framework that leverages in-context learning (ICL) with foundation models to unify the detection of toxicity, spam, and negative sentiment across binary, multi-class, and multi-label settings. Crucially, our approach enables lightweight personalization, allowing users to easily block new categories, unblock existing ones, or extend detection to semantic variations through simple prompt-based interventions--all without model retraining. Extensive experiments on public benchmarks (TextDetox, UCI SMS, SST2) and a new, annotated Mastodon dataset reveal that: (i) foundation models achieve strong cross-task generalization, often matching or surpassing task-specific fine-tuned models; (ii) effective personalization is achievable with as few as one user-provided example or definition; and (iii) augmenting prompts with label definitions or rationales significantly enhances robustness to noisy, real-world data. Our work demonstrates a definitive shift beyond one-size-fits-all moderation, establishing ICL as a practical, privacy-preserving, and highly adaptable pathway for the next generation of user-centric content safety systems. To foster reproducibility and facilitate future research, we publicly release our code on GitHub and the annotated Mastodon dataset on Hugging Face.
ReviewGuard: Enhancing Deficient Peer Review Detection via LLM-Driven Data Augmentation
Peer review serves as the gatekeeper of science, yet the surge in submissions and widespread adoption of large language models (LLMs) in scholarly evaluation present unprecedented challenges. Recent work has focused on using LLMs to improve review efficiency or generate insightful review content. However, unchecked deficient reviews from both human experts and AI systems threaten to systematically undermine the peer review ecosystem and compromise academic integrity. To address this critical issue, we introduce ReviewGuard, an automated system for detecting and categorizing deficient reviews. ReviewGuard employs a comprehensive four-stage LLM-driven framework that: (1) collects ICLR and NeurIPS papers with their corresponding reviews from OpenReview; (2) annotates review types using GPT-4.1 with human validation; (3) addresses class imbalance and data scarcity through LLM-driven synthetic data augmentation, producing a final corpus of 6,634 papers, 24,657 real reviews, and 46,438 synthetic reviews; and (4) fine-tunes both encoder-based models and open source LLMs. We perform comprehensive feature analysis of the structure and quality of the review text. Compared to sufficient reviews, deficient reviews demonstrate lower rating scores, higher self-reported confidence, reduced structural complexity, and a higher proportion of negative sentiment. AI-generated text detection reveals that, since ChatGPT's emergence, AI-generated reviews have increased dramatically. In the evaluation of deficient review detection models, mixed training with synthetic and real review data provides substantial enhancements to recall and F1 scores on the binary task. This study presents the first LLM-driven system for detecting deficient peer reviews, providing evidence to inform AI governance in peer review while offering valuable insights into human-AI collaboration to maintain academic integrity.
Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
DynaSent: A Dynamic Benchmark for Sentiment Analysis
We introduce DynaSent ('Dynamic Sentiment'), a new English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis. DynaSent combines naturally occurring sentences with sentences created using the open-source Dynabench Platform, which facilities human-and-model-in-the-loop dataset creation. DynaSent has a total of 121,634 sentences, each validated by five crowdworkers, and its development and test splits are designed to produce chance performance for even the best models we have been able to develop; when future models solve this task, we will use them to create DynaSent version 2, continuing the dynamic evolution of this benchmark. Here, we report on the dataset creation effort, focusing on the steps we took to increase quality and reduce artifacts. We also present evidence that DynaSent's Neutral category is more coherent than the comparable category in other benchmarks, and we motivate training models from scratch for each round over successive fine-tuning.
CATs are Fuzzy PETs: A Corpus and Analysis of Potentially Euphemistic Terms
Euphemisms have not received much attention in natural language processing, despite being an important element of polite and figurative language. Euphemisms prove to be a difficult topic, not only because they are subject to language change, but also because humans may not agree on what is a euphemism and what is not. Nevertheless, the first step to tackling the issue is to collect and analyze examples of euphemisms. We present a corpus of potentially euphemistic terms (PETs) along with example texts from the GloWbE corpus. Additionally, we present a subcorpus of texts where these PETs are not being used euphemistically, which may be useful for future applications. We also discuss the results of multiple analyses run on the corpus. Firstly, we find that sentiment analysis on the euphemistic texts supports that PETs generally decrease negative and offensive sentiment. Secondly, we observe cases of disagreement in an annotation task, where humans are asked to label PETs as euphemistic or not in a subset of our corpus text examples. We attribute the disagreement to a variety of potential reasons, including if the PET was a commonly accepted term (CAT).
Instruction-following Evaluation through Verbalizer Manipulation
While instruction-tuned models have shown remarkable success in various natural language processing tasks, accurately evaluating their ability to follow instructions remains challenging. Existing benchmarks primarily focus on common instructions that align well with what the model learned during training. However, proficiency in responding to these instructions does not necessarily imply strong ability in instruction following. In this paper, we propose a novel instruction-following evaluation protocol called verbalizer manipulation. It instructs the model to verbalize the task label with words aligning with model priors to different extents, adopting verbalizers from highly aligned (e.g., outputting ``postive'' for positive sentiment), to minimally aligned (e.g., outputting ``negative'' for positive sentiment). Verbalizer manipulation can be seamlessly integrated with any classification benchmark to examine the model's reliance on priors and its ability to override them to accurately follow the instructions. We conduct a comprehensive evaluation of four major model families across nine datasets, employing twelve sets of verbalizers for each of them. We observe that the instruction-following abilities of models, across different families and scales, are significantly distinguished by their performance on less natural verbalizers. Even the strongest GPT-4 model struggles to perform better than random guessing on the most challenging verbalizer, emphasizing the need for continued advancements to improve their instruction-following abilities.
EmotionTalk: An Interactive Chinese Multimodal Emotion Dataset With Rich Annotations
In recent years, emotion recognition plays a critical role in applications such as human-computer interaction, mental health monitoring, and sentiment analysis. While datasets for emotion analysis in languages such as English have proliferated, there remains a pressing need for high-quality, comprehensive datasets tailored to the unique linguistic, cultural, and multimodal characteristics of Chinese. In this work, we propose EmotionTalk, an interactive Chinese multimodal emotion dataset with rich annotations. This dataset provides multimodal information from 19 actors participating in dyadic conversational settings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours of speech (19,250 utterances), annotations for 7 utterance-level emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-dimensional speech captions (speaker, speaking style, emotion and overall). The dataset is well-suited for research on unimodal and multimodal emotion recognition, missing modality challenges, and speech captioning tasks. To our knowledge, it represents the first high-quality and versatile Chinese dialogue multimodal emotion dataset, which is a valuable contribution to research on cross-cultural emotion analysis and recognition. Additionally, we conduct experiments on EmotionTalk to demonstrate the effectiveness and quality of the dataset. It will be open-source and freely available for all academic purposes. The dataset and codes will be made available at: https://github.com/NKU-HLT/EmotionTalk.
An Innovative CGL-MHA Model for Sarcasm Sentiment Recognition Using the MindSpore Framework
The pervasive use of the Internet and social media introduces significant challenges to automated sentiment analysis, particularly for sarcastic expressions in user-generated content. Sarcasm conveys negative emotions through ostensibly positive or exaggerated language, complicating its detection within natural language processing tasks. To address this, we propose an innovative sarcasm detection model integrating Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM), and Multi-Head Attention mechanisms. The CNN component captures local n-gram features, while GRU and LSTM layers model sequential dependencies and contextual information. Multi-Head Attention enhances the model's focus on relevant parts of the input, improving interpretability. Experiments on two sarcasm detection datasets, Headlines and Riloff, demonstrate that the model achieves an accuracy of 81.20% and an F1 score of 80.77% on Headlines, and an accuracy of 79.72% with an F1 score of 61.39% on Riloff, outperforming traditional models. These results validate the effectiveness of our hybrid approach for sarcasm detection in social media texts.
Balancing the Style-Content Trade-Off in Sentiment Transfer Using Polarity-Aware Denoising
Text sentiment transfer aims to flip the sentiment polarity of a sentence (positive to negative or vice versa) while preserving its sentiment-independent content. Although current models show good results at changing the sentiment, content preservation in transferred sentences is insufficient. In this paper, we present a sentiment transfer model based on polarity-aware denoising, which accurately controls the sentiment attributes in generated text, preserving the content to a great extent and helping to balance the style-content trade-off. Our proposed model is structured around two key stages in the sentiment transfer process: better representation learning using a shared encoder and sentiment-controlled generation using separate sentiment-specific decoders. Empirical results show that our methods outperforms state-of-the-art baselines in terms of content preservation while staying competitive in terms of style transfer accuracy and fluency.
RuSentNE-2023: Evaluating Entity-Oriented Sentiment Analysis on Russian News Texts
The paper describes the RuSentNE-2023 evaluation devoted to targeted sentiment analysis in Russian news texts. The task is to predict sentiment towards a named entity in a single sentence. The dataset for RuSentNE-2023 evaluation is based on the Russian news corpus RuSentNE having rich sentiment-related annotation. The corpus is annotated with named entities and sentiments towards these entities, along with related effects and emotional states. The evaluation was organized using the CodaLab competition framework. The main evaluation measure was macro-averaged measure of positive and negative classes. The best results achieved were of 66% Macro F-measure (Positive+Negative classes). We also tested ChatGPT on the test set from our evaluation and found that the zero-shot answers provided by ChatGPT reached 60% of the F-measure, which corresponds to 4th place in the evaluation. ChatGPT also provided detailed explanations of its conclusion. This can be considered as quite high for zero-shot application.
A Labelled Dataset for Sentiment Analysis of Videos on YouTube, TikTok, and Other Sources about the 2024 Outbreak of Measles
The work of this paper presents a dataset that contains the data of 4011 videos about the ongoing outbreak of measles published on 264 websites on the internet between January 1, 2024, and May 31, 2024. The dataset is available at https://dx.doi.org/10.21227/40s8-xf63. These websites primarily include YouTube and TikTok, which account for 48.6% and 15.2% of the videos, respectively. The remainder of the websites include Instagram and Facebook as well as the websites of various global and local news organizations. For each of these videos, the URL of the video, title of the post, description of the post, and the date of publication of the video are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis (using VADER), subjectivity analysis (using TextBlob), and fine-grain sentiment analysis (using DistilRoBERTa-base) of the video titles and video descriptions were performed. This included classifying each video title and video description into (i) one of the sentiment classes i.e. positive, negative, or neutral, (ii) one of the subjectivity classes i.e. highly opinionated, neutral opinionated, or least opinionated, and (iii) one of the fine-grain sentiment classes i.e. fear, surprise, joy, sadness, anger, disgust, or neutral. These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for performing sentiment analysis or subjectivity analysis in this field as well as for other applications. Finally, this paper also presents a list of open research questions that may be investigated using this dataset.
AlbMoRe: A Corpus of Movie Reviews for Sentiment Analysis in Albanian
Lack of available resources such as text corpora for low-resource languages seriously hinders research on natural language processing and computational linguistics. This paper presents AlbMoRe, a corpus of 800 sentiment annotated movie reviews in Albanian. Each text is labeled as positive or negative and can be used for sentiment analysis research. Preliminary results based on traditional machine learning classifiers trained with the AlbMoRe samples are also reported. They can serve as comparison baselines for future research experiments.
L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset
Sentiment analysis is one of the most fundamental tasks in Natural Language Processing. Popular languages like English, Arabic, Russian, Mandarin, and also Indian languages such as Hindi, Bengali, Tamil have seen a significant amount of work in this area. However, the Marathi language which is the third most popular language in India still lags behind due to the absence of proper datasets. In this paper, we present the first major publicly available Marathi Sentiment Analysis Dataset - L3CubeMahaSent. It is curated using tweets extracted from various Maharashtrian personalities' Twitter accounts. Our dataset consists of ~16,000 distinct tweets classified in three broad classes viz. positive, negative, and neutral. We also present the guidelines using which we annotated the tweets. Finally, we present the statistics of our dataset and baseline classification results using CNN, LSTM, ULMFiT, and BERT-based deep learning models.
InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis
In this paper, we present InstructABSA, Aspect-Based Sentiment Analysis (ABSA) using instruction learning paradigm for all ABSA subtasks: Aspect Term Extraction (ATE), Aspect Term Sentiment Classification (ATSC), and Joint Task modeling. Our method introduces positive, negative, and neutral examples to each training sample, and instruction tunes the model (Tk-Instruct Base) for each ABSA subtask, yielding significant performance improvements. Experimental results on the Sem Eval 2014 dataset demonstrate that InstructABSA outperforms the previous state-of-the-art (SOTA) approaches on all three ABSA subtasks (ATE, ATSC, and Joint Task) by a significant margin, outperforming 7x larger models. In particular, InstructABSA surpasses the SOTA on the restaurant ATE subtask by 7.31% points and on the Laptop Joint Task by 8.63% points. Our results also suggest a strong generalization ability to unseen tasks across all three subtasks.
Recent Surge in Public Interest in Transportation: Sentiment Analysis of Baidu Apollo Go Using Weibo Data
Urban mobility and transportation systems have been profoundly transformed by the advancement of autonomous vehicle technologies. Baidu Apollo Go, a pioneer robotaxi service from the Chinese tech giant Baidu, has recently been widely deployed in major cities like Beijing and Wuhan, sparking increased conversation and offering a glimpse into the future of urban mobility. This study investigates public attitudes towards Apollo Go across China using Sentiment Analysis with a hybrid BERT model on 36,096 Weibo posts from January to July 2024. The analysis shows that 89.56\% of posts related to Apollo Go are clustered in July. From January to July, public sentiment was mostly positive, but negative comments began to rise after it became a hot topic on July 21. Spatial analysis indicates a strong correlation between provinces with high discussion intensity and those where Apollo Go operates. Initially, Hubei and Guangdong dominated online posting volume, but by July, Guangdong, Beijing, and international regions had overtaken Hubei. Attitudes varied significantly among provinces, with Xinjiang and Qinghai showing optimism and Tibet and Gansu expressing concerns about the impact on traditional taxi services. Sentiment analysis revealed that positive comments focused on technology applications and personal experiences, while negative comments centered on job displacement and safety concerns. In summary, this study highlights the divergence in public perceptions of autonomous ride-hailing services, providing valuable insights for planners, policymakers, and service providers. The model is published on Hugging Face at https://huggingface.co/wsqstar/bert-finetuned-weibo-luobokuaipao and the repository on GitHub at https://github.com/GIStudio/trb2024.
Building a Sentiment Corpus of Tweets in Brazilian Portuguese
The large amount of data available in social media, forums and websites motivates researches in several areas of Natural Language Processing, such as sentiment analysis. The popularity of the area due to its subjective and semantic characteristics motivates research on novel methods and approaches for classification. Hence, there is a high demand for datasets on different domains and different languages. This paper introduces TweetSentBR, a sentiment corpora for Brazilian Portuguese manually annotated with 15.000 sentences on TV show domain. The sentences were labeled in three classes (positive, neutral and negative) by seven annotators, following literature guidelines for ensuring reliability on the annotation. We also ran baseline experiments on polarity classification using three machine learning methods, reaching 80.99% on F-Measure and 82.06% on accuracy in binary classification, and 59.85% F-Measure and 64.62% on accuracy on three point classification.
Sentiment Polarity Detection for Software Development
The role of sentiment analysis is increasingly emerging to study software developers' emotions by mining crowd-generated content within social software engineering tools. However, off-the-shelf sentiment analysis tools have been trained on non-technical domains and general-purpose social media, thus resulting in misclassifications of technical jargon and problem reports. Here, we present Senti4SD, a classifier specifically trained to support sentiment analysis in developers' communication channels. Senti4SD is trained and validated using a gold standard of Stack Overflow questions, answers, and comments manually annotated for sentiment polarity. It exploits a suite of both lexicon- and keyword-based features, as well as semantic features based on word embedding. With respect to a mainstream off-the-shelf tool, which we use as a baseline, Senti4SD reduces the misclassifications of neutral and positive posts as emotionally negative. To encourage replications, we release a lab package including the classifier, the word embedding space, and the gold standard with annotation guidelines.
weighted CapsuleNet networks for Persian multi-domain sentiment analysis
Sentiment classification is a fundamental task in natural language processing, assigning one of the three classes, positive, negative, or neutral, to free texts. However, sentiment classification models are highly domain dependent; the classifier may perform classification with reasonable accuracy in one domain but not in another due to the Semantic multiplicity of words getting poor accuracy. This article presents a new Persian/Arabic multi-domain sentiment analysis method using the cumulative weighted capsule networks approach. Weighted capsule ensemble consists of training separate capsule networks for each domain and a weighting measure called domain belonging degree (DBD). This criterion consists of TF and IDF, which calculates the dependency of each document for each domain separately; this value is multiplied by the possible output that each capsule creates. In the end, the sum of these multiplications is the title of the final output, and is used to determine the polarity. And the most dependent domain is considered the final output for each domain. The proposed method was evaluated using the Digikala dataset and obtained acceptable accuracy compared to the existing approaches. It achieved an accuracy of 0.89 on detecting the domain of belonging and 0.99 on detecting the polarity. Also, for the problem of dealing with unbalanced classes, a cost-sensitive function was used. This function was able to achieve 0.0162 improvements in accuracy for sentiment classification. This approach on Amazon Arabic data can achieve 0.9695 accuracies in domain classification.
Attention-Based Neural Networks for Sentiment Attitude Extraction using Distant Supervision
In the sentiment attitude extraction task, the aim is to identify <<attitudes>> -- sentiment relations between entities mentioned in text. In this paper, we provide a study on attention-based context encoders in the sentiment attitude extraction task. For this task, we adapt attentive context encoders of two types: (1) feature-based; (2) self-based. In our study, we utilize the corpus of Russian analytical texts RuSentRel and automatically constructed news collection RuAttitudes for enriching the training set. We consider the problem of attitude extraction as two-class (positive, negative) and three-class (positive, negative, neutral) classification tasks for whole documents. Our experiments with the RuSentRel corpus show that the three-class classification models, which employ the RuAttitudes corpus for training, result in 10% increase and extra 3% by F1, when model architectures include the attention mechanism. We also provide the analysis of attention weight distributions in dependence on the term type.
Sentiment Frames for Attitude Extraction in Russian
Texts can convey several types of inter-related information concerning opinions and attitudes. Such information includes the author's attitude towards mentioned entities, attitudes of the entities towards each other, positive and negative effects on the entities in the described situations. In this paper, we described the lexicon RuSentiFrames for Russian, where predicate words and expressions are collected and linked to so-called sentiment frames conveying several types of presupposed information on attitudes and effects. We applied the created frames in the task of extracting attitudes from a large news collection.
Sentiment Analysis of Typhoon Related Tweets using Standard and Bidirectional Recurrent Neural Networks
The Philippines is a common ground to natural calamities like typhoons, floods, volcanic eruptions and earthquakes. With Twitter as one of the most used social media platform in the Philippines, a total of 39,867 preprocessed tweets were obtained given a time frame starting from November 1, 2013 to January 31, 2014. Sentiment analysis determines the underlying emotion given a series of words. The main purpose of this study is to identify the sentiments expressed in the tweets sent by the Filipino people before, during, and after Typhoon Yolanda using two variations of Recurrent Neural Networks; standard and bidirectional. The best generated models after training with various hyperparameters achieved a high accuracy of 81.79% for fine-grained classification using standard RNN and 87.69% for binary classification using bidirectional RNN. Findings revealed that 51.1% of the tweets sent were positive expressing support, love, and words of courage to the victims; 19.8% were negative stating sadness and despair for the loss of lives and hate for corrupt officials; while the other 29% were neutral tweets from local news stations, announcements of relief operations, donation drives, and observations by citizens.
CC30k: A Citation Contexts Dataset for Reproducibility-Oriented Sentiment Analysis
Sentiments about the reproducibility of cited papers in downstream literature offer community perspectives and have shown as a promising signal of the actual reproducibility of published findings. To train effective models to effectively predict reproducibility-oriented sentiments and further systematically study their correlation with reproducibility, we introduce the CC30k dataset, comprising a total of 30,734 citation contexts in machine learning papers. Each citation context is labeled with one of three reproducibility-oriented sentiment labels: Positive, Negative, or Neutral, reflecting the cited paper's perceived reproducibility or replicability. Of these, 25,829 are labeled through crowdsourcing, supplemented with negatives generated through a controlled pipeline to counter the scarcity of negative labels. Unlike traditional sentiment analysis datasets, CC30k focuses on reproducibility-oriented sentiments, addressing a research gap in resources for computational reproducibility studies. The dataset was created through a pipeline that includes robust data cleansing, careful crowd selection, and thorough validation. The resulting dataset achieves a labeling accuracy of 94%. We then demonstrated that the performance of three large language models significantly improves on the reproducibility-oriented sentiment classification after fine-tuning using our dataset. The dataset lays the foundation for large-scale assessments of the reproducibility of machine learning papers. The CC30k dataset and the Jupyter notebooks used to produce and analyze the dataset are publicly available at https://github.com/lamps-lab/CC30k .
Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps?
We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation.
L3Cube-MahaSent-MD: A Multi-domain Marathi Sentiment Analysis Dataset and Transformer Models
The exploration of sentiment analysis in low-resource languages, such as Marathi, has been limited due to the availability of suitable datasets. In this work, we present L3Cube-MahaSent-MD, a multi-domain Marathi sentiment analysis dataset, with four different domains - movie reviews, general tweets, TV show subtitles, and political tweets. The dataset consists of around 60,000 manually tagged samples covering 3 distinct sentiments - positive, negative, and neutral. We create a sub-dataset for each domain comprising 15k samples. The MahaSent-MD is the first comprehensive multi-domain sentiment analysis dataset within the Indic sentiment landscape. We fine-tune different monolingual and multilingual BERT models on these datasets and report the best accuracy with the MahaBERT model. We also present an extensive in-domain and cross-domain analysis thus highlighting the need for low-resource multi-domain datasets. The data and models are available at https://github.com/l3cube-pune/MarathiNLP .
BanglaBook: A Large-scale Bangla Dataset for Sentiment Analysis from Book Reviews
The analysis of consumer sentiment, as expressed through reviews, can provide a wealth of insight regarding the quality of a product. While the study of sentiment analysis has been widely explored in many popular languages, relatively less attention has been given to the Bangla language, mostly due to a lack of relevant data and cross-domain adaptability. To address this limitation, we present BanglaBook, a large-scale dataset of Bangla book reviews consisting of 158,065 samples classified into three broad categories: positive, negative, and neutral. We provide a detailed statistical analysis of the dataset and employ a range of machine learning models to establish baselines including SVM, LSTM, and Bangla-BERT. Our findings demonstrate a substantial performance advantage of pre-trained models over models that rely on manually crafted features, emphasizing the necessity for additional training resources in this domain. Additionally, we conduct an in-depth error analysis by examining sentiment unigrams, which may provide insight into common classification errors in under-resourced languages like Bangla. Our codes and data are publicly available at https://github.com/mohsinulkabir14/BanglaBook.
SentiGOLD: A Large Bangla Gold Standard Multi-Domain Sentiment Analysis Dataset and its Evaluation
This study introduces SentiGOLD, a Bangla multi-domain sentiment analysis dataset. Comprising 70,000 samples, it was created from diverse sources and annotated by a gender-balanced team of linguists. SentiGOLD adheres to established linguistic conventions agreed upon by the Government of Bangladesh and a Bangla linguistics committee. Unlike English and other languages, Bangla lacks standard sentiment analysis datasets due to the absence of a national linguistics framework. The dataset incorporates data from online video comments, social media posts, blogs, news, and other sources while maintaining domain and class distribution rigorously. It spans 30 domains (e.g., politics, entertainment, sports) and includes 5 sentiment classes (strongly negative, weakly negative, neutral, and strongly positive). The annotation scheme, approved by the national linguistics committee, ensures a robust Inter Annotator Agreement (IAA) with a Fleiss' kappa score of 0.88. Intra- and cross-dataset evaluation protocols are applied to establish a standard classification system. Cross-dataset evaluation on the noisy SentNoB dataset presents a challenging test scenario. Additionally, zero-shot experiments demonstrate the generalizability of SentiGOLD. The top model achieves a macro f1 score of 0.62 (intra-dataset) across 5 classes, setting a benchmark, and 0.61 (cross-dataset from SentNoB) across 3 classes, comparable to the state-of-the-art. Fine-tuned sentiment analysis model can be accessed at https://sentiment.bangla.gov.bd.
Reducing Spurious Correlations for Aspect-Based Sentiment Analysis with Variational Information Bottleneck and Contrastive Learning
Deep learning techniques have dominated the literature on aspect-based sentiment analysis (ABSA), yielding state-of-the-art results. However, these deep models generally suffer from spurious correlation problems between input features and output labels, which creates significant barriers to robustness and generalization capability. In this paper, we propose a novel Contrastive Variational Information Bottleneck framework (called CVIB) to reduce spurious correlations for ABSA. The proposed CVIB framework is composed of an original network and a self-pruned network, and these two networks are optimized simultaneously via contrastive learning. Concretely, we employ the Variational Information Bottleneck (VIB) principle to learn an informative and compressed network (self-pruned network) from the original network, which discards the superfluous patterns or spurious correlations between input features and prediction labels. Then, self-pruning contrastive learning is devised to pull together semantically similar positive pairs and push away dissimilar pairs, where the representations of the anchor learned by the original and self-pruned networks respectively are regarded as a positive pair while the representations of two different sentences within a mini-batch are treated as a negative pair. To verify the effectiveness of our CVIB method, we conduct extensive experiments on five benchmark ABSA datasets and the experimental results show that our approach achieves better performance than the strong competitors in terms of overall prediction performance, robustness, and generalization.
ASAD: A Twitter-based Benchmark Arabic Sentiment Analysis Dataset
This paper provides a detailed description of a new Twitter-based benchmark dataset for Arabic Sentiment Analysis (ASAD), which is launched in a competition3, sponsored by KAUST for awarding 10000 USD, 5000 USD and 2000 USD to the first, second and third place winners, respectively. Compared to other publicly released Arabic datasets, ASAD is a large, high-quality annotated dataset(including 95K tweets), with three-class sentiment labels (positive, negative and neutral). We presents the details of the data collection process and annotation process. In addition, we implement several baseline models for the competition task and report the results as a reference for the participants to the competition.
Unveiling User Perceptions in the Generative AI Era: A Sentiment-Driven Evaluation of AI Educational Apps' Role in Digital Transformation of e-Teaching
The rapid integration of generative artificial intelligence into education has driven digital transformation in e-teaching, yet user perceptions of AI educational apps remain underexplored. This study performs a sentiment-driven evaluation of user reviews from top AI ed-apps on the Google Play Store to assess efficacy, challenges, and pedagogical implications. Our pipeline involved scraping app data and reviews, RoBERTa for binary sentiment classification, GPT-4o for key point extraction, and GPT-5 for synthesizing top positive/negative themes. Apps were categorized into seven types (e.g., homework helpers, math solvers, language tools), with overlaps reflecting multifunctional designs. Results indicate predominantly positive sentiments, with homework apps like Edu AI (95.9% positive) and Answer.AI (92.7%) leading in accuracy, speed, and personalization, while language/LMS apps (e.g., Teacher AI at 21.8% positive) lag due to instability and limited features. Positives emphasize efficiency in brainstorming, problem-solving, and engagement; negatives center on paywalls, inaccuracies, ads, and glitches. Trends show that homework helpers outperform specialized tools, highlighting AI's democratizing potential amid risks of dependency and inequity. The discussion proposes future ecosystems with hybrid AI-human models, VR/AR for immersive learning, and a roadmap for developers (adaptive personalization) and policymakers (monetization regulation for inclusivity). This underscores generative AI's role in advancing e-teaching by enabling ethical refinements that foster equitable, innovative environments. The full dataset is available here(https://github.com/erfan-nourbakhsh/GenAI-EdSent).
A Semi-supervised Approach for a Better Translation of Sentiment in Dialectical Arabic UGT
In the online world, Machine Translation (MT) systems are extensively used to translate User-Generated Text (UGT) such as reviews, tweets, and social media posts, where the main message is often the author's positive or negative attitude towards the topic of the text. However, MT systems still lack accuracy in some low-resource languages and sometimes make critical translation errors that completely flip the sentiment polarity of the target word or phrase and hence delivers a wrong affect message. This is particularly noticeable in texts that do not follow common lexico-grammatical standards such as the dialectical Arabic (DA) used on online platforms. In this research, we aim to improve the translation of sentiment in UGT written in the dialectical versions of the Arabic language to English. Given the scarcity of gold-standard parallel data for DA-EN in the UGT domain, we introduce a semi-supervised approach that exploits both monolingual and parallel data for training an NMT system initialised by a cross-lingual language model trained with supervised and unsupervised modeling objectives. We assess the accuracy of sentiment translation by our proposed system through a numerical 'sentiment-closeness' measure as well as human evaluation. We will show that our semi-supervised MT system can significantly help with correcting sentiment errors detected in the online translation of dialectical Arabic UGT.
Statistical Analysis on E-Commerce Reviews, with Sentiment Classification using Bidirectional Recurrent Neural Network (RNN)
Understanding customer sentiments is of paramount importance in marketing strategies today. Not only will it give companies an insight as to how customers perceive their products and/or services, but it will also give them an idea on how to improve their offers. This paper attempts to understand the correlation of different variables in customer reviews on a women clothing e-commerce, and to classify each review whether it recommends the reviewed product or not and whether it consists of positive, negative, or neutral sentiment. To achieve these goals, we employed univariate and multivariate analyses on dataset features except for review titles and review texts, and we implemented a bidirectional recurrent neural network (RNN) with long-short term memory unit (LSTM) for recommendation and sentiment classification. Results have shown that a recommendation is a strong indicator of a positive sentiment score, and vice-versa. On the other hand, ratings in product reviews are fuzzy indicators of sentiment scores. We also found out that the bidirectional LSTM was able to reach an F1-score of 0.88 for recommendation classification, and 0.93 for sentiment classification.
Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer
We consider the task of text attribute transfer: transforming a sentence to alter a specific attribute (e.g., sentiment) while preserving its attribute-independent content (e.g., changing "screen is just the right size" to "screen is too small"). Our training data includes only sentences labeled with their attribute (e.g., positive or negative), but not pairs of sentences that differ only in their attributes, so we must learn to disentangle attributes from attribute-independent content in an unsupervised way. Previous work using adversarial methods has struggled to produce high-quality outputs. In this paper, we propose simpler methods motivated by the observation that text attributes are often marked by distinctive phrases (e.g., "too small"). Our strongest method extracts content words by deleting phrases associated with the sentence's original attribute value, retrieves new phrases associated with the target attribute, and uses a neural model to fluently combine these into a final output. On human evaluation, our best method generates grammatical and appropriate responses on 22% more inputs than the best previous system, averaged over three attribute transfer datasets: altering sentiment of reviews on Yelp, altering sentiment of reviews on Amazon, and altering image captions to be more romantic or humorous.
Clustering Word Embeddings with Self-Organizing Maps. Application on LaRoSeDa -- A Large Romanian Sentiment Data Set
Romanian is one of the understudied languages in computational linguistics, with few resources available for the development of natural language processing tools. In this paper, we introduce LaRoSeDa, a Large Romanian Sentiment Data Set, which is composed of 15,000 positive and negative reviews collected from one of the largest Romanian e-commerce platforms. We employ two sentiment classification methods as baselines for our new data set, one based on low-level features (character n-grams) and one based on high-level features (bag-of-word-embeddings generated by clustering word embeddings with k-means). As an additional contribution, we replace the k-means clustering algorithm with self-organizing maps (SOMs), obtaining better results because the generated clusters of word embeddings are closer to the Zipf's law distribution, which is known to govern natural language. We also demonstrate the generalization capacity of using SOMs for the clustering of word embeddings on another recently-introduced Romanian data set, for text categorization by topic.
User Guide for KOTE: Korean Online Comments Emotions Dataset
Sentiment analysis that classifies data into positive or negative has been dominantly used to recognize emotional aspects of texts, despite the deficit of thorough examination of emotional meanings. Recently, corpora labeled with more than just valence are built to exceed this limit. However, most Korean emotion corpora are small in the number of instances and cover a limited range of emotions. We introduce KOTE dataset. KOTE contains 50k (250k cases) Korean online comments, each of which is manually labeled for 43 emotion labels or one special label (NO EMOTION) by crowdsourcing (Ps = 3,048). The emotion taxonomy of the 43 emotions is systematically established by cluster analysis of Korean emotion concepts expressed on word embedding space. After explaining how KOTE is developed, we also discuss the results of finetuning and analysis for social discrimination in the corpus.
Positive Text Reframing under Multi-strategy Optimization
Differing from sentiment transfer, positive reframing seeks to substitute negative perspectives with positive expressions while preserving the original meaning. With the emergence of pre-trained language models (PLMs), it is possible to achieve acceptable results by fine-tuning PLMs. Nevertheless, generating fluent, diverse and task-constrained reframing text remains a significant challenge. To tackle this issue, a multi-strategy optimization framework (MSOF) is proposed in this paper. Starting from the objective of positive reframing, we first design positive sentiment reward and content preservation reward to encourage the model to transform the negative expressions of the original text while ensuring the integrity and consistency of the semantics. Then, different decoding optimization approaches are introduced to improve the quality of text generation. Finally, based on the modeling formula of positive reframing, we propose a multi-dimensional re-ranking method that further selects candidate sentences from three dimensions: strategy consistency, text similarity and fluency. Extensive experiments on two Seq2Seq PLMs, BART and T5, demonstrate our framework achieves significant improvements on unconstrained and controlled positive reframing tasks.
Analysis of the Evolution of Advanced Transformer-Based Language Models: Experiments on Opinion Mining
Opinion mining, also known as sentiment analysis, is a subfield of natural language processing (NLP) that focuses on identifying and extracting subjective information in textual material. This can include determining the overall sentiment of a piece of text (e.g., positive or negative), as well as identifying specific emotions or opinions expressed in the text, that involves the use of advanced machine and deep learning techniques. Recently, transformer-based language models make this task of human emotion analysis intuitive, thanks to the attention mechanism and parallel computation. These advantages make such models very powerful on linguistic tasks, unlike recurrent neural networks that spend a lot of time on sequential processing, making them prone to fail when it comes to processing long text. The scope of our paper aims to study the behaviour of the cutting-edge Transformer-based language models on opinion mining and provide a high-level comparison between them to highlight their key particularities. Additionally, our comparative study shows leads and paves the way for production engineers regarding the approach to focus on and is useful for researchers as it provides guidelines for future research subjects.
Can Large Language Models (or Humans) Distill Text?
We investigate the potential of large language models (LLMs) to distill text: to remove the textual traces of an undesired forbidden variable. We employ a range of LLMs with varying architectures and training approaches to distill text by identifying and removing information about the target variable while preserving other relevant signals. Our findings shed light on the strengths and limitations of LLMs in addressing the distillation and provide insights into the strategies for leveraging these models in computational social science investigations involving text data. In particular, we show that in the strong test of removing sentiment, the statistical association between the processed text and sentiment is still clearly detectable to machine learning classifiers post-LLM-distillation. Furthermore, we find that human annotators also struggle to distill sentiment while preserving other semantic content. This suggests there may be limited separability between concept variables in some text contexts, highlighting limitations of methods relying on text-level transformations and also raising questions about the robustness of distillation methods that achieve statistical independence in representation space if this is difficult for human coders operating on raw text to attain.
Fine-Tuned LLMs are "Time Capsules" for Tracking Societal Bias Through Books
Books, while often rich in cultural insights, can also mirror societal biases of their eras - biases that Large Language Models (LLMs) may learn and perpetuate during training. We introduce a novel method to trace and quantify these biases using fine-tuned LLMs. We develop BookPAGE, a corpus comprising 593 fictional books across seven decades (1950-2019), to track bias evolution. By fine-tuning LLMs on books from each decade and using targeted prompts, we examine shifts in biases related to gender, sexual orientation, race, and religion. Our findings indicate that LLMs trained on decade-specific books manifest biases reflective of their times, with both gradual trends and notable shifts. For example, model responses showed a progressive increase in the portrayal of women in leadership roles (from 8% to 22%) from the 1950s to 2010s, with a significant uptick in the 1990s (from 4% to 12%), possibly aligning with third-wave feminism. Same-sex relationship references increased markedly from the 1980s to 2000s (from 0% to 10%), mirroring growing LGBTQ+ visibility. Concerningly, negative portrayals of Islam rose sharply in the 2000s (26% to 38%), likely reflecting post-9/11 sentiments. Importantly, we demonstrate that these biases stem mainly from the books' content and not the models' architecture or initial training. Our study offers a new perspective on societal bias trends by bridging AI, literary studies, and social science research.
TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning
In the field of deep learning, Graph Neural Networks (GNNs) and Graph Transformer models, with their outstanding performance and flexible architectural designs, have become leading technologies for processing structured data, especially graph data. Traditional GNNs often face challenges in capturing information from distant vertices effectively. In contrast, Graph Transformer models are particularly adept at managing long-distance node relationships. Despite these advantages, Graph Transformer models still encounter issues with computational and storage efficiency when scaled to large graph datasets. To address these challenges, we propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component, effectively enhancing the model's ability to aggregate relevant information from both local and extended neighborhoods at each layer. This method not only improves computational efficiency but also enriches the node features, facilitating a deeper analysis of complex graph structures. Additionally, to assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field. Accordingly, we constructed a dedicated citation network, ArXivNet. In this dataset, we specifically annotated the sentiment polarity of the citations (positive, neutral, negative) to enable in-depth sentiment analysis. Our approach has shown superior performance across a variety of tasks including vertex classification, link prediction, sentiment prediction, graph regression, and visualization. It outperforms existing methods in terms of effectiveness, as demonstrated by experimental results on multiple datasets.
WildFrame: Comparing Framing in Humans and LLMs on Naturally Occurring Texts
Humans are influenced by how information is presented, a phenomenon known as the framing effect. Previous work has shown that LLMs may also be susceptible to framing but has done so on synthetic data and did not compare to human behavior. We introduce WildFrame, a dataset for evaluating LLM responses to positive and negative framing, in naturally-occurring sentences, and compare humans on the same data. WildFrame consists of 1,000 texts, first selecting real-world statements with clear sentiment, then reframing them in either positive or negative light, and lastly, collecting human sentiment annotations. By evaluating eight state-of-the-art LLMs on WildFrame, we find that all models exhibit framing effects similar to humans (rgeq0.57), with both humans and models being more influenced by positive rather than negative reframing. Our findings benefit model developers, who can either harness framing or mitigate its effects, depending on the downstream application.
Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation
Recent research on explainable recommendation generally frames the task as a standard text generation problem, and evaluates models simply based on the textual similarity between the predicted and ground-truth explanations. However, this approach fails to consider one crucial aspect of the systems: whether their outputs accurately reflect the users' (post-purchase) sentiments, i.e., whether and why they would like and/or dislike the recommended items. To shed light on this issue, we introduce new datasets and evaluation methods that focus on the users' sentiments. Specifically, we construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews using an LLM, and propose to evaluate systems based on whether the generated explanations 1) align well with the users' sentiments, and 2) accurately identify both positive and negative opinions of users on the target items. We benchmark several recent models on our datasets and demonstrate that achieving strong performance on existing metrics does not ensure that the generated explanations align well with the users' sentiments. Lastly, we find that existing models can provide more sentiment-aware explanations when the users' (predicted) ratings for the target items are directly fed into the models as input. We will release our code and datasets upon acceptance.
Evaluate Bias without Manual Test Sets: A Concept Representation Perspective for LLMs
Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.
Best-of-Venom: Attacking RLHF by Injecting Poisoned Preference Data
Reinforcement Learning from Human Feedback (RLHF) is a popular method for aligning Language Models (LM) with human values and preferences. RLHF requires a large number of preference pairs as training data, which are often used in both the Supervised Fine-Tuning and Reward Model training and therefore publicly available datasets are commonly used. In this work, we study to what extent a malicious actor can manipulate the LMs generations by poisoning the preferences, i.e., injecting poisonous preference pairs into these datasets and the RLHF training process. We propose strategies to build poisonous preference pairs and test their performance by poisoning two widely used preference datasets. Our results show that preference poisoning is highly effective: injecting a small amount of poisonous data (1-5\% of the original dataset), we can effectively manipulate the LM to generate a target entity in a target sentiment (positive or negative). The findings from our experiments also shed light on strategies to defend against the preference poisoning attack.
