- Kohn-Luttinger mechanism driven exotic topological superconductivity on the Penrose lattice The Kohn-Luttinger mechanism for unconventional superconductivity (SC) driven by weak repulsive electron-electron interactions on a periodic lattice is generalized to the quasicrystal (QC) via a real-space perturbative approach. The repulsive Hubbard model on the Penrose lattice is studied as an example, on which a classification of the pairing symmetries is performed and a pairing phase diagram is obtained. Two remarkable properties of these pairing states are revealed, due to the combination of the presence of the point-group symmetry and the lack of translation symmetry on this lattice. Firstly, the spin and spacial angular momenta of a Cooper pair is de-correlated: for each pairing symmetry, both spin-singlet and spin-triplet pairings are possible even in the weak-pairing limit. Secondly, the pairing states belonging to the 2D irreducible representations of the D_5 point group can be time-reversal-symmetry-breaking topological SCs carrying spontaneous bulk super current and spontaneous vortices. These two remarkable properties are general for the SCs on all QCs, and are rare on periodic lattices. Our work starts the new area of unconventional SCs driven by repulsive interactions on the QC. 6 authors · Jan 20, 2020
- Gauge Invariant and Anyonic Symmetric Transformer and RNN Quantum States for Quantum Lattice Models Symmetries such as gauge invariance and anyonic symmetry play a crucial role in quantum many-body physics. We develop a general approach to constructing gauge invariant or anyonic symmetric autoregressive neural network quantum states, including a wide range of architectures such as Transformer and recurrent neural network (RNN), for quantum lattice models. These networks can be efficiently sampled and explicitly obey gauge symmetries or anyonic constraint. We prove that our methods can provide exact representation for the ground and excited states of the 2D and 3D toric codes, and the X-cube fracton model. We variationally optimize our symmetry incorporated autoregressive neural networks for ground states as well as real-time dynamics for a variety of models. We simulate the dynamics and the ground states of the quantum link model of U(1) lattice gauge theory, obtain the phase diagram for the 2D Z_2 gauge theory, determine the phase transition and the central charge of the SU(2)_3 anyonic chain, and also compute the ground state energy of the SU(2) invariant Heisenberg spin chain. Our approach provides powerful tools for exploring condensed matter physics, high energy physics and quantum information science. 6 authors · Jan 18, 2021
- Improving Convergence and Generalization Using Parameter Symmetries In many neural networks, different values of the parameters may result in the same loss value. Parameter space symmetries are loss-invariant transformations that change the model parameters. Teleportation applies such transformations to accelerate optimization. However, the exact mechanism behind this algorithm's success is not well understood. In this paper, we show that teleportation not only speeds up optimization in the short-term, but gives overall faster time to convergence. Additionally, teleporting to minima with different curvatures improves generalization, which suggests a connection between the curvature of the minimum and generalization ability. Finally, we show that integrating teleportation into a wide range of optimization algorithms and optimization-based meta-learning improves convergence. Our results showcase the versatility of teleportation and demonstrate the potential of incorporating symmetry in optimization. 4 authors · May 22, 2023
- Regularizing Towards Soft Equivariance Under Mixed Symmetries Datasets often have their intrinsic symmetries, and particular deep-learning models called equivariant or invariant models have been developed to exploit these symmetries. However, if some or all of these symmetries are only approximate, which frequently happens in practice, these models may be suboptimal due to the architectural restrictions imposed on them. We tackle this issue of approximate symmetries in a setup where symmetries are mixed, i.e., they are symmetries of not single but multiple different types and the degree of approximation varies across these types. Instead of proposing a new architectural restriction as in most of the previous approaches, we present a regularizer-based method for building a model for a dataset with mixed approximate symmetries. The key component of our method is what we call equivariance regularizer for a given type of symmetries, which measures how much a model is equivariant with respect to the symmetries of the type. Our method is trained with these regularizers, one per each symmetry type, and the strength of the regularizers is automatically tuned during training, leading to the discovery of the approximation levels of some candidate symmetry types without explicit supervision. Using synthetic function approximation and motion forecasting tasks, we demonstrate that our method achieves better accuracy than prior approaches while discovering the approximate symmetry levels correctly. 4 authors · Jun 1, 2023
- Group Equivariant Fourier Neural Operators for Partial Differential Equations We consider solving partial differential equations (PDEs) with Fourier neural operators (FNOs), which operate in the frequency domain. Since the laws of physics do not depend on the coordinate system used to describe them, it is desirable to encode such symmetries in the neural operator architecture for better performance and easier learning. While encoding symmetries in the physical domain using group theory has been studied extensively, how to capture symmetries in the frequency domain is under-explored. In this work, we extend group convolutions to the frequency domain and design Fourier layers that are equivariant to rotations, translations, and reflections by leveraging the equivariance property of the Fourier transform. The resulting G-FNO architecture generalizes well across input resolutions and performs well in settings with varying levels of symmetry. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS). 6 authors · Jun 9, 2023
- Generative Adversarial Symmetry Discovery Despite the success of equivariant neural networks in scientific applications, they require knowing the symmetry group a priori. However, it may be difficult to know which symmetry to use as an inductive bias in practice. Enforcing the wrong symmetry could even hurt the performance. In this paper, we propose a framework, LieGAN, to automatically discover equivariances from a dataset using a paradigm akin to generative adversarial training. Specifically, a generator learns a group of transformations applied to the data, which preserve the original distribution and fool the discriminator. LieGAN represents symmetry as interpretable Lie algebra basis and can discover various symmetries such as the rotation group SO(n), restricted Lorentz group SO(1,3)^+ in trajectory prediction and top-quark tagging tasks. The learned symmetry can also be readily used in several existing equivariant neural networks to improve accuracy and generalization in prediction. 4 authors · Jan 31, 2023
- Lie Group Decompositions for Equivariant Neural Networks Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals. 2 authors · Oct 17, 2023
- Symmetries and Asymptotically Flat Space The construction of a theory of quantum gravity is an outstanding problem that can benefit from better understanding the laws of nature that are expected to hold in regimes currently inaccessible to experiment. Such fundamental laws can be found by considering the classical counterparts of a quantum theory. For example, conservation laws in a quantum theory often stem from conservation laws of the corresponding classical theory. In order to construct such laws, this thesis is concerned with the interplay between symmetries and conservation laws of classical field theories and their application to asymptotically flat spacetimes. This work begins with an explanation of symmetries in field theories with a focus on variational symmetries and their associated conservation laws. Boundary conditions for general relativity are then formulated on three-dimensional asymptotically flat spacetimes at null infinity using the method of conformal completion. Conserved quantities related to asymptotic symmetry transformations are derived and their properties are studied. This is done in a manifestly coordinate independent manner. In a separate step a coordinate system is introduced, such that the results can be compared to existing literature. Next, asymptotically flat spacetimes which contain both future as well as past null infinity are considered. Asymptotic symmetries occurring at these disjoint regions of three-dimensional asymptotically flat spacetimes are linked and the corresponding conserved quantities are matched. Finally, it is shown how asymptotic symmetries lead to the notion of distinct Minkowski spaces that can be differentiated by conserved quantities. 1 authors · Mar 16, 2020
- Enhancing the Sensitivity for Triple Higgs Boson Searches with Deep Learning Techniques Using two benchmark models containing extended scalar sectors beyond the Standard Model, we study deep learning techniques to enhance the sensitivity of resonant triple Higgs boson searches in the fully hadronic 6b channel, which suffers from the combinatorial challenge of reconstructing the Higgs bosons correctly from the multiple b-jets. More specifically, we employ the framework of Symmetry Preserving Attention Network (Spa-Net), which takes into account the permutational symmetry when a correct pairing of b-jets is achieved, to tackle both jet pairing and event classification. Significantly improved efficiency is achieved in signal and background discrimination. When comparing with the conventional Dense Neural Networks, Spa-Net results in up to 40\% more stringent limits on resonant production cross-sections. These results highlight the potential of using advanced machine learning techniques to significantly improve the sensitivity of triple Higgs boson searches in the fully hadronic channel. 5 authors · Oct 2, 2025
- On the hardness of learning under symmetries We study the problem of learning equivariant neural networks via gradient descent. The incorporation of known symmetries ("equivariance") into neural nets has empirically improved the performance of learning pipelines, in domains ranging from biology to computer vision. However, a rich yet separate line of learning theoretic research has demonstrated that actually learning shallow, fully-connected (i.e. non-symmetric) networks has exponential complexity in the correlational statistical query (CSQ) model, a framework encompassing gradient descent. In this work, we ask: are known problem symmetries sufficient to alleviate the fundamental hardness of learning neural nets with gradient descent? We answer this question in the negative. In particular, we give lower bounds for shallow graph neural networks, convolutional networks, invariant polynomials, and frame-averaged networks for permutation subgroups, which all scale either superpolynomially or exponentially in the relevant input dimension. Therefore, in spite of the significant inductive bias imparted via symmetry, actually learning the complete classes of functions represented by equivariant neural networks via gradient descent remains hard. 5 authors · Jan 3, 2024
- Multi-Agent MDP Homomorphic Networks This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information, yet is able to share experience between global symmetries in the joint state-action space of cooperative multi-agent systems. In cooperative multi-agent systems, complex symmetries arise between different configurations of the agents and their local observations. For example, consider a group of agents navigating: rotating the state globally results in a permutation of the optimal joint policy. Existing work on symmetries in single agent reinforcement learning can only be generalized to the fully centralized setting, because such approaches rely on the global symmetry in the full state-action spaces, and these can result in correspondences across agents. To encode such symmetries while still allowing distributed execution we propose a factorization that decomposes global symmetries into local transformations. Our proposed factorization allows for distributing the computation that enforces global symmetries over local agents and local interactions. We introduce a multi-agent equivariant policy network based on this factorization. We show empirically on symmetric multi-agent problems that globally symmetric distributable policies improve data efficiency compared to non-equivariant baselines. 4 authors · Oct 9, 2021
- On two problems about isogenies of elliptic curves over finite fields Isogenies occur throughout the theory of elliptic curves. Recently, the cryptographic protocols based on isogenies are considered as candidates of quantum-resistant cryptographic protocols. Given two elliptic curves E_1, E_2 defined over a finite field k with the same trace, there is a nonconstant isogeny beta from E_2 to E_1 defined over k. This study gives out the index of Hom_{it k}(it E_{rm 1},E_{rm 2})beta as a left ideal in End_{it k}(it E_{rm 2}) and figures out the correspondence between isogenies and kernel ideals. In addition, some results about the non-trivial minimal degree of isogenies between the two elliptic curves are also provided. 3 authors · Dec 31, 2019
- Iterative SE(3)-Transformers When manipulating three-dimensional data, it is possible to ensure that rotational and translational symmetries are respected by applying so-called SE(3)-equivariant models. Protein structure prediction is a prominent example of a task which displays these symmetries. Recent work in this area has successfully made use of an SE(3)-equivariant model, applying an iterative SE(3)-equivariant attention mechanism. Motivated by this application, we implement an iterative version of the SE(3)-Transformer, an SE(3)-equivariant attention-based model for graph data. We address the additional complications which arise when applying the SE(3)-Transformer in an iterative fashion, compare the iterative and single-pass versions on a toy problem, and consider why an iterative model may be beneficial in some problem settings. We make the code for our implementation available to the community. 4 authors · Feb 26, 2021 1
- Frame Averaging for Invariant and Equivariant Network Design Many machine learning tasks involve learning functions that are known to be invariant or equivariant to certain symmetries of the input data. However, it is often challenging to design neural network architectures that respect these symmetries while being expressive and computationally efficient. For example, Euclidean motion invariant/equivariant graph or point cloud neural networks. We introduce Frame Averaging (FA), a general purpose and systematic framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types. Our framework builds on the well known group averaging operator that guarantees invariance or equivariance but is intractable. In contrast, we observe that for many important classes of symmetries, this operator can be replaced with an averaging operator over a small subset of the group elements, called a frame. We show that averaging over a frame guarantees exact invariance or equivariance while often being much simpler to compute than averaging over the entire group. Furthermore, we prove that FA-based models have maximal expressive power in a broad setting and in general preserve the expressive power of their backbone architectures. Using frame averaging, we propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs. We demonstrate the practical effectiveness of FA on several applications including point cloud normal estimation, beyond 2-WL graph separation, and n-body dynamics prediction, achieving state-of-the-art results in all of these benchmarks. 7 authors · Oct 7, 2021
2 Symmetry-Aware Robot Design with Structured Subgroups Robot design aims at learning to create robots that can be easily controlled and perform tasks efficiently. Previous works on robot design have proven its ability to generate robots for various tasks. However, these works searched the robots directly from the vast design space and ignored common structures, resulting in abnormal robots and poor performance. To tackle this problem, we propose a Symmetry-Aware Robot Design (SARD) framework that exploits the structure of the design space by incorporating symmetry searching into the robot design process. Specifically, we represent symmetries with the subgroups of the dihedral group and search for the optimal symmetry in structured subgroups. Then robots are designed under the searched symmetry. In this way, SARD can design efficient symmetric robots while covering the original design space, which is theoretically analyzed. We further empirically evaluate SARD on various tasks, and the results show its superior efficiency and generalizability. 4 authors · May 31, 2023
- The Empirical Impact of Reducing Symmetries on the Performance of Deep Ensembles and MoE Recent studies have shown that reducing symmetries in neural networks enhances linear mode connectivity between networks without requiring parameter space alignment, leading to improved performance in linearly interpolated neural networks. However, in practical applications, neural network interpolation is rarely used; instead, ensembles of networks are more common. In this paper, we empirically investigate the impact of reducing symmetries on the performance of deep ensembles and Mixture of Experts (MoE) across five datasets. Additionally, to explore deeper linear mode connectivity, we introduce the Mixture of Interpolated Experts (MoIE). Our results show that deep ensembles built on asymmetric neural networks achieve significantly better performance as ensemble size increases compared to their symmetric counterparts. In contrast, our experiments do not provide conclusive evidence on whether reducing symmetries affects both MoE and MoIE architectures. 2 authors · Feb 24, 2025
- Connecting Permutation Equivariant Neural Networks and Partition Diagrams We show how the Schur-Weyl duality that exists between the partition algebra and the symmetric group results in a stronger theoretical foundation for characterising all of the possible permutation equivariant neural networks whose layers are some tensor power of the permutation representation M_n of the symmetric group S_n. In doing so, we unify two separate bodies of literature, and we correct some of the major results that are now widely quoted by the machine learning community. In particular, we find a basis of matrices for the learnable, linear, permutation equivariant layer functions between such tensor power spaces in the standard basis of M_n by using an elegant graphical representation of a basis of set partitions for the partition algebra and its related vector spaces. Also, we show how we can calculate the number of weights that must appear in these layer functions by looking at certain paths through the McKay quiver for M_n. Finally, we describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries. 1 authors · Dec 16, 2022
1 All you need is spin: SU(2) equivariant variational quantum circuits based on spin networks Variational algorithms require architectures that naturally constrain the optimisation space to run efficiently. In geometric quantum machine learning, one achieves this by encoding group structure into parameterised quantum circuits to include the symmetries of a problem as an inductive bias. However, constructing such circuits is challenging as a concrete guiding principle has yet to emerge. In this paper, we propose the use of spin networks, a form of directed tensor network invariant under a group transformation, to devise SU(2) equivariant quantum circuit ans\"atze -- circuits possessing spin rotation symmetry. By changing to the basis that block diagonalises SU(2) group action, these networks provide a natural building block for constructing parameterised equivariant quantum circuits. We prove that our construction is mathematically equivalent to other known constructions, such as those based on twirling and generalised permutations, but more direct to implement on quantum hardware. The efficacy of our constructed circuits is tested by solving the ground state problem of SU(2) symmetric Heisenberg models on the one-dimensional triangular lattice and on the Kagome lattice. Our results highlight that our equivariant circuits boost the performance of quantum variational algorithms, indicating broader applicability to other real-world problems. 3 authors · Sep 13, 2023
- FAENet: Frame Averaging Equivariant GNN for Materials Modeling Applications of machine learning techniques for materials modeling typically involve functions known to be equivariant or invariant to specific symmetries. While graph neural networks (GNNs) have proven successful in such tasks, they enforce symmetries via the model architecture, which often reduces their expressivity, scalability and comprehensibility. In this paper, we introduce (1) a flexible framework relying on stochastic frame-averaging (SFA) to make any model E(3)-equivariant or invariant through data transformations. (2) FAENet: a simple, fast and expressive GNN, optimized for SFA, that processes geometric information without any symmetrypreserving design constraints. We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X). A package implementation is available at https://faenet.readthedocs.io. 7 authors · Apr 28, 2023 1
- Einstein-Maxwell-Dilaton theories with a Liouville potential We find and analyse solutions of Einstein's equations in arbitrary d dimensions and in the presence of a scalar field with a Liouville potential coupled to a Maxwell field. We consider spacetimes of cylindrical symmetry or again subspaces of dimension d-2 with constant curvature and analyse in detail the field equations and manifest their symmetries. The field equations of the full system are shown to reduce to a single or couple of ODE's which can be used to solve analytically or numerically the theory for the symmetry at hand. Further solutions can also be generated by a solution generating technique akin to the EM duality in the absence of a cosmological constant. We then find and analyse explicit solutions including black holes and gravitating solitons for the case of four dimensional relativity and the higher-dimensional oxydised 5-dimensional spacetime. The general solution is obtained for a certain relation between couplings in the case of cylindrical symmetry. 3 authors · May 20, 2009
- Wyckoff Transformer: Generation of Symmetric Crystals Crystal symmetry plays a fundamental role in determining its physical, chemical, and electronic properties such as electrical and thermal conductivity, optical and polarization behavior, and mechanical strength. Almost all known crystalline materials have internal symmetry. However, this is often inadequately addressed by existing generative models, making the consistent generation of stable and symmetrically valid crystal structures a significant challenge. We introduce WyFormer, a generative model that directly tackles this by formally conditioning on space group symmetry. It achieves this by using Wyckoff positions as the basis for an elegant, compressed, and discrete structure representation. To model the distribution, we develop a permutation-invariant autoregressive model based on the Transformer encoder and an absence of positional encoding. Extensive experimentation demonstrates WyFormer's compelling combination of attributes: it achieves best-in-class symmetry-conditioned generation, incorporates a physics-motivated inductive bias, produces structures with competitive stability, predicts material properties with competitive accuracy even without atomic coordinates, and exhibits unparalleled inference speed. 7 authors · Mar 4, 2025
1 Learning Symmetrization for Equivariance with Orbit Distance Minimization We present a general framework for symmetrizing an arbitrary neural-network architecture and making it equivariant with respect to a given group. We build upon the proposals of Kim et al. (2023); Kaba et al. (2023) for symmetrization, and improve them by replacing their conversion of neural features into group representations, with an optimization whose loss intuitively measures the distance between group orbits. This change makes our approach applicable to a broader range of matrix groups, such as the Lorentz group O(1, 3), than these two proposals. We experimentally show our method's competitiveness on the SO(2) image classification task, and also its increased generality on the task with O(1, 3). Our implementation will be made accessible at https://github.com/tiendatnguyen-vision/Orbit-symmetrize. 4 authors · Nov 13, 2023
- Bosonisation Cohomology: Spin Structure Summation in Every Dimension Gauging fermion parity and summing over spin structures are subtly distinct operations. We introduce 'bosonisation cohomology' groups H_B^{d+2}(X) to capture this difference, for theories in spacetime dimension d equipped with maps to some X. Non-trivial classes in H_B^{d+2}(X) contain theories for which (-1)^F is anomaly-free, but spin structure summation is anomalous. We formulate a sequence of cobordism groups whose failure to be exact is measured by H_B^{d+2}(X), and from here we compute it for X=pt. The result is non-trivial only in dimensions din 4Z+2, being due to the presence of gravitational anomalies. The first few are H_B^4=Z_2, probed by a theory of 8 Majorana-Weyl fermions in d=2, then H_B^8=Z_8, H_B^{12}=Z_{16}times Z_2. We rigorously derive a general formula extending this to every spacetime dimension. Along the way, we compile many general facts about (fermionic and bosonic) anomaly polynomials, and about spin and pin^- (co)bordism generators, that we hope might serve as a useful reference for physicists working with these objects. We briefly discuss some physics applications, including how the H_B^{12} class is trivialised in supergravity. Despite the name, and notation, we make no claim that H_B^bullet(X) actually defines a cohomology theory (in the Eilenberg-Steenrod sense). 2 authors · Nov 17, 2025
- Particle-Hole Symmetry in the Fermion-Chern-Simons and Dirac Descriptions of a Half-Filled Landau Level It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy is large compared to the interaction strength, so one can ignore mixing between Landau levels. This symmetry is explicit in the description of a half-filled Landau level recently introduced by D. T. Son, using Dirac fermions, but it was thought to be absent in the older fermion-Chern- Simons approach, developed by Halperin, Lee, and Read and subsequent authors. We show here, however, that when properly evaluated, the Halperin, Lee, Read (HLR) theory gives results for long-wavelength low-energy physical properties, including the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra for fractional quantized Hall states close to half-filling, that are identical to predictions of the Dirac formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half filling, even when the cyclotron energy is finite. 4 authors · Dec 30, 2016
- Constructing Invariant and Equivariant Operations by Symmetric Tensor Network Design of neural networks that incorporate symmetry is crucial for geometric deep learning. Central to this effort is the development of invariant and equivariant operations. This works presents a systematic method for constructing valid invariant and equivariant operations. It can handle inputs and outputs in the form of Cartesian tensors with different rank, as well as spherical tensors with different types. In addition, our method features a graphical representation utilizing the symmetric tensor network, which simplifies both the proofs and constructions related to invariant and equivariant functions. We also apply this approach to design the equivariant interaction message for the geometry graph neural network, and equivariant machine learning model to learn the constitutive law of materials. 5 authors · Aug 17, 2025
- Fault-tolerant simulation of Lattice Gauge Theories with gauge covariant codes We show in this paper that a strong and easy connection exists between quantum error correction and Lattice Gauge Theories (LGT) by using the Gauge symmetry to construct an efficient error-correcting code for Abelian LGTs. We identify the logical operations on this gauge covariant code and show that the corresponding Hamiltonian can be expressed in terms of these logical operations while preserving the locality of the interactions. Furthermore, we demonstrate that these substitutions actually give a new way of writing the LGT as an equivalent hardcore boson model. Finally we demonstrate a method to perform fault-tolerant time evolution of the Hamiltonian within the gauge covariant code using both product formulas and qubitization approaches. This opens up the possibility of inexpensive end to end dynamical simulations that save physical qubits by blurring the lines between simulation algorithms and quantum error correcting codes. 3 authors · May 29, 2024
- On the generation of periodic discrete structures with identical two-point correlation Strategies for the generation of periodic discrete structures with identical two-point correlation are developed. Starting from a pair of root structures, which are not related by translation, phase inversion or axis reflections, child structures of arbitrary resolution (i.e., pixel or voxel numbers) and number of phases (i.e., material phases/species) can be generated by means of trivial embedding based phase extension, application of kernels and/or phase coalescence, such that the generated structures inherit the two-point-correlation equivalence. Proofs of the inheritance property are provided by means of the Discrete Fourier Transform theory. A Python 3 implementation of the results is offered by the authors through the Github repository https://github.com/DataAnalyticsEngineering/EQ2PC in order to make the provided results reproducible and useful for all interested readers. Examples for the generation of structures are demonstrated, together with applications in the homogenization theory of periodic media. 2 authors · Feb 4, 2020
- Topological Quantum Compilation Using Mixed-Integer Programming We introduce the Mixed-Integer Quadratically Constrained Quadratic Programming framework for the quantum compilation problem and apply it in the context of topological quantum computing. In this setting, quantum gates are realized by sequences of elementary braids of quasiparticles with exotic fractional statistics in certain two-dimensional topological condensed matter systems, described by effective topological quantum field theories. We specifically focus on a non-semisimple version of topological field theory, which provides a foundation for an extended theory of Ising anyons and which has recently been shown by Iulianelli et al., Nature Communications {\bf 16}, 6408 (2025), to permit universal quantum computation. While the proofs of this pioneering result are existential in nature, the mixed integer programming provides an approach to explicitly construct quantum gates in topological systems. We demonstrate this by focusing specifically on the entangling controlled-NOT operation, and its local equivalence class, using braiding operations in the non-semisimple Ising system. This illustrates the utility of the Mixed-Integer Quadratically Constrained Quadratic Programming for topological quantum compilation. 5 authors · Nov 12, 2025
- Enhancing T_{c} in a composite superconductor/metal bilayer system: a dynamical cluster approximation study It has been proposed that the superconducting transition temperature T_{c} of an unconventional superconductor with a large pairing scale but strong phase fluctuations can be enhanced by coupling it to a metal. However, the general efficacy of this approach across different parameter regimes remains an open question. Using the dynamical cluster approximation, we study this question in a system composed of an attractive Hubbard layer in the intermediate coupling regime, where the magnitude of the attractive Coulomb interaction |U| is slightly larger than the bandwidth W, hybridized with a noninteracting metallic layer. We find that while the superconducting transition becomes more mean-field-like with increasing interlayer hopping, the superconducting transition temperature T_{c} exhibits a nonmonotonic dependence on the strength of the hybridization t_{perp}. This behavior arises from a reduction of the effective pairing interaction in the correlated layer that out-competes the growth in the intrinsic pair-field susceptibility induced by the coupling to the metallic layer. We find that the largest T_{c} inferred here for the composite system is below the maximum value currently estimated for the isolated negative-U Hubbard model. 3 authors · Mar 10, 2022
- On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/{hbar} and across the charge-transfer energy gap E, generate 'superexchange' spin-spin interactions of energy Japprox4t^4/E^3 in an antiferromagnetic correlated-insulator state. However, Hole doping the CuO2 plane converts this into a very high temperature superconducting state whose electron-pairing is exceptional. A leading proposal for the mechanism of this intense electron-pairing is that, while hole doping destroys magnetic order it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale E. To explore this hypothesis directly at atomic-scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of E and the electron-pair density nP in {Bi_2Sr_2CaCu_2O_{8+x}}. The responses of both E and nP to alterations in the distance {\delta} between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations, indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive {Bi_2Sr_2CaCu_2O_{8+x}}. 9 authors · Aug 8, 2021
- Pair State Transfer Let L denote the Laplacian matrix of a graph G. We study continuous quantum walks on G defined by the transition matrix U(t)=expleft(itLright). The initial state is of the pair state form, e_a-e_b with a,b being any two vertices of G. We provide two ways to construct infinite families of graphs that have perfect pair transfer. We study a "transitivity" phenomenon which cannot occur in vertex state transfer. We characterize perfect pair state transfer on paths and cycles. We also study the case when quantum walks are generated by the unsigned Laplacians of underlying graphs and the initial states are of the plus state form, e_a+e_b. When the underlying graphs are bipartite, plus state transfer is equivalent to pair state transfer. 2 authors · Jun 4, 2019
- Generating functions for some series of characters of classical Lie groups There exist a number of well known multiplicative generating functions for series of Schur functions. Amongst these are some related to the dual Cauchy identity whose expansion coefficients are rather simple, and in some cases periodic in parameters specifying the Schur functions. More recently similar identities have been found involving expansions in terms of characters of the symplectic group. Here these results are extended and generalised to all classical Lie groups. This is done through the derivation of explicit recurrence relations for the expansion coefficients based on the action of the Weyl groups of both the symplectic and orthogonal groups. Copious results are tabulated in the form of explicit values of the expansion coefficients as functions of highest weight parameters. An alternative approach is then based on dual pairs of symplectic and/or orthogonal groups. A byproduct of this approach is that expansions in terms of spin orthogonal group characters can always be recovered from non-spin cases. 1 authors · Mar 1, 2023
- Universal Neural Functionals A challenging problem in many modern machine learning tasks is to process weight-space features, i.e., to transform or extract information from the weights and gradients of a neural network. Recent works have developed promising weight-space models that are equivariant to the permutation symmetries of simple feedforward networks. However, they are not applicable to general architectures, since the permutation symmetries of a weight space can be complicated by recurrence or residual connections. This work proposes an algorithm that automatically constructs permutation equivariant models, which we refer to as universal neural functionals (UNFs), for any weight space. Among other applications, we demonstrate how UNFs can be substituted into existing learned optimizer designs, and find promising improvements over prior methods when optimizing small image classifiers and language models. Our results suggest that learned optimizers can benefit from considering the (symmetry) structure of the weight space they optimize. We open-source our library for constructing UNFs at https://github.com/AllanYangZhou/universal_neural_functional. 3 authors · Feb 7, 2024
- Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries Deep ensembles (DE) have been successful in improving model performance by learning diverse members via the stochasticity of random initialization. While recent works have attempted to promote further diversity in DE via hyperparameters or regularizing loss functions, these methods primarily still rely on a stochastic approach to explore the hypothesis space. In this work, we present Multi-Symmetry Ensembles (MSE), a framework for constructing diverse ensembles by capturing the multiplicity of hypotheses along symmetry axes, which explore the hypothesis space beyond stochastic perturbations of model weights and hyperparameters. We leverage recent advances in contrastive representation learning to create models that separately capture opposing hypotheses of invariant and equivariant functional classes and present a simple ensembling approach to efficiently combine appropriate hypotheses for a given task. We show that MSE effectively captures the multiplicity of conflicting hypotheses that is often required in large, diverse datasets like ImageNet. As a result of their inherent diversity, MSE improves classification performance, uncertainty quantification, and generalization across a series of transfer tasks. 8 authors · Mar 4, 2023
- Symmetry-invariant quantum machine learning force fields Machine learning techniques are essential tools to compute efficient, yet accurate, force fields for atomistic simulations. This approach has recently been extended to incorporate quantum computational methods, making use of variational quantum learning models to predict potential energy surfaces and atomic forces from ab initio training data. However, the trainability and scalability of such models are still limited, due to both theoretical and practical barriers. Inspired by recent developments in geometric classical and quantum machine learning, here we design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries. We find that our invariant quantum learning models outperform their more generic counterparts on individual molecules of growing complexity. Furthermore, we study a water dimer as a minimal example of a system with multiple components, showcasing the versatility of our proposed approach and opening the way towards larger simulations. Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning, and that chemical systems represent, in fact, an interesting and rich playground for the development and application of advanced quantum machine learning tools. 5 authors · Nov 19, 2023
- A Complete Guide to Spherical Equivariant Graph Transformers Spherical equivariant graph neural networks (EGNNs) provide a principled framework for learning on three-dimensional molecular and biomolecular systems, where predictions must respect the rotational symmetries inherent in physics. These models extend traditional message-passing GNNs and Transformers by representing node and edge features as spherical tensors that transform under irreducible representations of the rotation group SO(3), ensuring that predictions change in physically meaningful ways under rotations of the input. This guide develops a complete, intuitive foundation for spherical equivariant modeling - from group representations and spherical harmonics, to tensor products, Clebsch-Gordan decomposition, and the construction of SO(3)-equivariant kernels. Building on this foundation, we construct the Tensor Field Network and SE(3)-Transformer architectures and explain how they perform equivariant message-passing and attention on geometric graphs. Through clear mathematical derivations and annotated code excerpts, this guide serves as a self-contained introduction for researchers and learners seeking to understand or implement spherical EGNNs for applications in chemistry, molecular property prediction, protein structure modeling, and generative modeling. 1 authors · Dec 15, 2025
- Condensed matter and AdS/CFT I review two classes of strong coupling problems in condensed matter physics, and describe insights gained by application of the AdS/CFT correspondence. The first class concerns non-zero temperature dynamics and transport in the vicinity of quantum critical points described by relativistic field theories. I describe how relativistic structures arise in models of physical interest, present results for their quantum critical crossover functions and magneto-thermoelectric hydrodynamics. The second class concerns symmetry breaking transitions of two-dimensional systems in the presence of gapless electronic excitations at isolated points or along lines (i.e. Fermi surfaces) in the Brillouin zone. I describe the scaling structure of a recent theory of the Ising-nematic transition in metals, and discuss its possible connection to theories of Fermi surfaces obtained from simple AdS duals. 1 authors · Feb 16, 2010
- Rapidly rotating hot nuclear and hypernuclear compact stars: integral parameters and universal relations In this work, we investigate hot, isentropic compact stars in the limiting cases of static and maximally rotating configurations, focusing on how variations in the symmetry energy of the equation of state derived from covariant density functional theory affect stellar properties. We consider both nucleonic and hyperonic matter with systematically varied symmetry energy slopes, fixed entropies per baryon s / k_B=1 and 3, and electron fractions Y_e=0.1 and Y_e=0.4, representative of conditions in binary neutron star mergers and proto-neutron stars. We compute and analyze mass--radius and moment--of--inertia--mass relations, as well as the dependence of the Keplerian (mass-shedding) frequency on mass, angular momentum, and the ratio of kinetic to gravitational energy. Furthermore, we show that several universal relations between global properties remain valid across both nucleonic and hyperonic equations of state with varying symmetry energy, both in the static and Keplerian limit, and for various combinations of the fixed entropy and electron fraction. 3 authors · Oct 17, 2025
- Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian We consider the prediction of the Hamiltonian matrix, which finds use in quantum chemistry and condensed matter physics. Efficiency and equivariance are two important, but conflicting factors. In this work, we propose a SE(3)-equivariant network, named QHNet, that achieves efficiency and equivariance. Our key advance lies at the innovative design of QHNet architecture, which not only obeys the underlying symmetries, but also enables the reduction of number of tensor products by 92\%. In addition, QHNet prevents the exponential growth of channel dimension when more atom types are involved. We perform experiments on MD17 datasets, including four molecular systems. Experimental results show that our QHNet can achieve comparable performance to the state of the art methods at a significantly faster speed. Besides, our QHNet consumes 50\% less memory due to its streamlined architecture. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS). 5 authors · Jun 7, 2023
- Next highest weight and other lower SU(3) irreducible representations with proxy-SU(4) symmetry for nuclei with 32 le Z,N le 46 In the applications of proxy-SU(3) model in the context of determining (beta,gamma) values for nuclei across the periodic table, for understanding the preponderance of triaxial shapes in nuclei with Z ge 30, it is seen that one needs not only the highest weight (hw) or leading SU(3) irreducible representation (irrep) (lambda_H, mu_H) but also the lower SU(3) irreps (lambda ,mu) such that 2lambda + mu =2lambda_H + mu_H-3r with r=0,1 and 2 [Bonatsos et al., Symmetry {\bf 16}, 1625 (2024)]. These give the next highest weight (nhw) irrep, next-to-next highest irrep (nnhw) and so on. Recently, it is shown that for nuclei with 32 le Z,N le 46, there will be not only proxy-SU(3) but also proxy-SU(4) symmetry [Kota and Sahu, Physica Scripta {\bf 99}, 065306 (2024)]. Following these developments, presented in this paper are the SU(3) irreps (lambda ,mu) with 2lambda + mu =2lambda_H + mu_H-3r, r=0,1,2 for various isotopes of Ge, Se, Kr, Sr, Zr, Mo, Ru and Pd (with 32 le N le 46) assuming good proxy-SU(4) symmetry. A simple method for obtaining the SU(3) irreps is described and applied. The tabulations for proxy-SU(3) irreps provided in this paper will be useful in further investigations of triaxial shapes in these nuclei. 1 authors · Oct 1, 2025
- Strong pairing and symmetric pseudogap metal in double Kondo lattice model: from nickelate superconductor to tetralayer optical lattice In this work, we propose and study a double Kondo lattice model which hosts robust superconductivity. The system consists of two identical Kondo lattice model, each with Kondo coupling J_K within each layer, while the localized spin moments are coupled together via an inter-layer on-site antiferromagnetic spin coupling J_perp. We consider the strong J_perp limit, wherein the local moments tend to form rung singlets and are thus gapped. However, the Kondo coupling J_K transmits the inter-layer entanglement between the local moments to the itinerant electrons. Consequently, the itinerant electrons experience a strong inter-layer antiferromangetic spin coupling and form strong inter-layer pairing, which is confirmed through numerical simulation in one dimensional system. Experimentally, the J_K rightarrow -infty limits of the model describes the recently found bilayer nickelate La_3Ni_2O_7, while the J_K>0 side can be realized in tetralayer optical lattice of cold atoms. Two extreme limits, J_K rightarrow -infty and J_K rightarrow +infty limit are shown to be simplified to a bilayer type II t-J model and a bilayer one-orbital t-J model, respectively. Thus, our double Kondo lattice model offers a unified framework for nickelate superconductor and tetralayer optical lattice quantum simulator upon changing the sign of J_K. We highlight both the qualitative similarity and the quantitative difference in the two sides of J_K. Finally, we discuss the possibility of a symmetric Kondo breakdown transition in the model with a symmetric pseudogap metal corresponding to the usual heavy Fermi liquid. 3 authors · Aug 2, 2024
- Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions R^3, position and orientations R^3 {times} S^2, and the group SE(3) itself. Among these, R^3 {times} S^2 is an optimal choice due to the ability to represent directional information, which R^3 methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE(3) group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models. 5 authors · Oct 4, 2023
- Beyond Symmetries : Anomalies in Transverse Ward--Takahashi Identities Anomalies in transverse Ward--Takahashi identities are studied, allowing discussion of the feasibility of anomalies arising in general non-symmetry Ward--Takahashi identities. We adopt the popular Fujikawa's method and rigorous dimensional renormalization to verify the existence of transverse anomalies to one-loop order and any loop order, respectively. The arbitrariness of coefficients of transverse anomalies is revealed, and a way out is also proposed after relating transverse anomalies to Schwinger terms and comparing symmetry and non-symmetry anomalies. Papers that claim the non-existence of transverse anomalies are reviewed to find anomalies hidden in their approaches. The role played by transverse anomalies is discussed. 2 authors · Dec 31, 2019
- Generalized chiral instabilities, linking numbers, and non-invertible symmetries We demonstrate a universal mechanism of a class of instabilities in infrared regions for massless Abelian p-form gauge theories with topological interactions, which we call generalized chiral instabilities. Such instabilities occur in the presence of initial electric fields for the p-form gauge fields. We show that the dynamically generated magnetic fields tend to decrease the initial electric fields and result in configurations with linking numbers, which can be characterized by non-invertible global symmetries. The so-called chiral plasma instability and instabilities of the axion electrodynamics and (4+1)-dimensional Maxwell-Chern-Simons theory in electric fields can be described by the generalized chiral instabilities in a unified manner. We also illustrate this mechanism in the (2+1)-dimensional Goldstone-Maxwell model in electric field. 2 authors · May 2, 2023
2 Flow Equivariant Recurrent Neural Networks Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of `flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us. 1 authors · Jul 19, 2025 1
- An Algorithm for Computing with Brauer's Group Equivariant Neural Network Layers The learnable, linear neural network layers between tensor power spaces of R^{n} that are equivariant to the orthogonal group, O(n), the special orthogonal group, SO(n), and the symplectic group, Sp(n), were characterised in arXiv:2212.08630. We present an algorithm for multiplying a vector by any weight matrix for each of these groups, using category theoretic constructions to implement the procedure. We achieve a significant reduction in computational cost compared with a naive implementation by making use of Kronecker product matrices to perform the multiplication. We show that our approach extends to the symmetric group, S_n, recovering the algorithm of arXiv:2303.06208 in the process. 1 authors · Apr 27, 2023
- EquiHGNN: Scalable Rotationally Equivariant Hypergraph Neural Networks Molecular interactions often involve high-order relationships that cannot be fully captured by traditional graph-based models limited to pairwise connections. Hypergraphs naturally extend graphs by enabling multi-way interactions, making them well-suited for modeling complex molecular systems. In this work, we introduce EquiHGNN, an Equivariant HyperGraph Neural Network framework that integrates symmetry-aware representations to improve molecular modeling. By enforcing the equivariance under relevant transformation groups, our approach preserves geometric and topological properties, leading to more robust and physically meaningful representations. We examine a range of equivariant architectures and demonstrate that integrating symmetry constraints leads to notable performance gains on large-scale molecular datasets. Experiments on both small and large molecules show that high-order interactions offer limited benefits for small molecules but consistently outperform 2D graphs on larger ones. Adding geometric features to these high-order structures further improves the performance, emphasizing the value of spatial information in molecular learning. Our source code is available at https://github.com/HySonLab/EquiHGNN/ 2 authors · May 8, 2025
- Equivariance with Learned Canonicalization Functions Symmetry-based neural networks often constrain the architecture in order to achieve invariance or equivariance to a group of transformations. In this paper, we propose an alternative that avoids this architectural constraint by learning to produce a canonical representation of the data. These canonicalization functions can readily be plugged into non-equivariant backbone architectures. We offer explicit ways to implement them for many groups of interest. We show that this approach enjoys universality while providing interpretable insights. Our main hypothesis is that learning a neural network to perform canonicalization is better than using predefined heuristics. Our results show that learning the canonicalization function indeed leads to better results and that the approach achieves excellent performance in practice. 5 authors · Nov 11, 2022
- Strongly-Interacting Bosons in a Two-Dimensional Quasicrystal Lattice Quasicrystals exhibit exotic properties inherited from the self-similarity of their long-range ordered, yet aperiodic, structure. The recent realization of optical quasicrystal lattices paves the way to the study of correlated Bose fluids in such structures, but the regime of strong interactions remains largely unexplored, both theoretically and experimentally. Here, we determine the quantum phase diagram of two-dimensional correlated bosons in an eightfold quasicrystal potential. Using large-scale quantum Monte Carlo calculations, we demonstrate a superfluid-to-Bose glass transition and determine the critical line. Moreover, we show that strong interactions stabilize Mott insulator phases, some of which have spontaneously broken eightfold symmetry. Our results are directly relevant to current generation experiments and, in particular, drive prospects to the observation of the still elusive Bose glass phase in two dimensions and exotic Mott phases. 3 authors · Oct 15, 2020
- Mass corrections to the DGLAP equations We propose a mass-dependent MOM scheme to renormalize UV divergence of unpolarized PDFs at one-loop order. This approach which is based on a once subtracted dispersion relation does not need any regulator. The overall counterterms are obtained from the imaginary part of large transverse momentum region in loop integrals. The mass-dependent characteristic of the scheme yields to mass-dependent splitting functions for the DGLAP evolution equations. While the flavor number is fixed at any renormalization scale, the decoupling theorem is automatically imposed by the mass-dependent splitting functions. The required symmetries are also automatically respected by our prescription. 2 authors · Dec 13, 2020
- Measuring a Parity Violation Signature in the Early Universe via Ground-based Laser Interferometers We show that pairs of widely separated interferometers are advantageous for measuring the Stokes parameter V of a stochastic background of gravitational waves. This parameter characterizes asymmetry of amplitudes of right- and left-handed waves and generation of the asymmetry is closely related to parity violation in the early universe. The advantageous pairs include LIGO(Livingston)-LCGT and AIGO-Virgo that are relatively insensitive to Omega_GW (the simple intensity of the background). Using at least three detectors, information of the intensity Omega_GW and the degree of asymmetry V can be separately measured. 2 authors · Jul 4, 2007
- Linking Past and Future Null Infinity in Three Dimensions We provide a mapping between past null and future null infinity in three-dimensional flat space, using symmetry considerations. From this we derive a mapping between the corresponding asymptotic symmetry groups. By studying the metric at asymptotic regions, we find that the mapping is energy preserving and yields an infinite number of conservation laws. 3 authors · Jan 23, 2017
- Single replica spin-glass phase detection using field variation and machine learning The Sherrington-Kirkpatrick spin-glass model used the replica symmetry method to find the phase transition of the system. In 1979-1980, Parisi proposed a solution based on replica symmetry breaking (RSB), which allowed him to identify the underlying phases of complex systems such as spin-glasses. Regardless of the method used for detection, the intrinsic phase of a system exists whether or not replicas are considered. We introduce a single replica method of spin-glass phase detection using the field's variation experienced by each spin in a system configuration. This method focuses on a single replica with quenched random couplings. Each spin inevitably observes a different field from the others. Our results show that the mean and variance of fields named "Spontaneous Configurational Field" experienced by spins are suitable indicators to explore different ferromagnetic, paramagnetic, and mixed phases. To classify different phases of the system with defined indicators we have developed an algorithm based on machine learning to analyze the desired samples. 4 authors · Nov 7, 2024
- Crystal Structure Prediction by Joint Equivariant Diffusion Crystal Structure Prediction (CSP) is crucial in various scientific disciplines. While CSP can be addressed by employing currently-prevailing generative models (e.g. diffusion models), this task encounters unique challenges owing to the symmetric geometry of crystal structures -- the invariance of translation, rotation, and periodicity. To incorporate the above symmetries, this paper proposes DiffCSP, a novel diffusion model to learn the structure distribution from stable crystals. To be specific, DiffCSP jointly generates the lattice and atom coordinates for each crystal by employing a periodic-E(3)-equivariant denoising model, to better model the crystal geometry. Notably, different from related equivariant generative approaches, DiffCSP leverages fractional coordinates other than Cartesian coordinates to represent crystals, remarkably promoting the diffusion and the generation process of atom positions. Extensive experiments verify that our DiffCSP significantly outperforms existing CSP methods, with a much lower computation cost in contrast to DFT-based methods. Moreover, the superiority of DiffCSP is also observed when it is extended for ab initio crystal generation. 7 authors · Jul 30, 2023
- Geometric Algebra Attention Networks for Small Point Clouds Much of the success of deep learning is drawn from building architectures that properly respect underlying symmetry and structure in the data on which they operate - a set of considerations that have been united under the banner of geometric deep learning. Often problems in the physical sciences deal with relatively small sets of points in two- or three-dimensional space wherein translation, rotation, and permutation equivariance are important or even vital for models to be useful in practice. In this work, we present rotation- and permutation-equivariant architectures for deep learning on these small point clouds, composed of a set of products of terms from the geometric algebra and reductions over those products using an attention mechanism. The geometric algebra provides valuable mathematical structure by which to combine vector, scalar, and other types of geometric inputs in a systematic way to account for rotation invariance or covariance, while attention yields a powerful way to impose permutation equivariance. We demonstrate the usefulness of these architectures by training models to solve sample problems relevant to physics, chemistry, and biology. 1 authors · Oct 5, 2021
- FlowMM: Generating Materials with Riemannian Flow Matching Crystalline materials are a fundamental component in next-generation technologies, yet modeling their distribution presents unique computational challenges. Of the plausible arrangements of atoms in a periodic lattice only a vanishingly small percentage are thermodynamically stable, which is a key indicator of the materials that can be experimentally realized. Two fundamental tasks in this area are to (a) predict the stable crystal structure of a known composition of elements and (b) propose novel compositions along with their stable structures. We present FlowMM, a pair of generative models that achieve state-of-the-art performance on both tasks while being more efficient and more flexible than competing methods. We generalize Riemannian Flow Matching to suit the symmetries inherent to crystals: translation, rotation, permutation, and periodic boundary conditions. Our framework enables the freedom to choose the flow base distributions, drastically simplifying the problem of learning crystal structures compared with diffusion models. In addition to standard benchmarks, we validate FlowMM's generated structures with quantum chemistry calculations, demonstrating that it is about 3x more efficient, in terms of integration steps, at finding stable materials compared to previous open methods. 4 authors · Jun 7, 2024
- A Multimessenger Strategy for Downselecting the Orientations of Galactic Close White Dwarf Binaries The planned space-based gravitational wave detector, LISA, will provide a fundamentally new means of studying the orbital alignment of close white dwarf binaries. However, due to the inherent symmetry of their gravitational wave signals, a fourfold degeneracy arises in the transverse projections of their angular momentum vectors. In this paper, we demonstrate that by incorporating timing information from electromagnetic observations, such as radial velocity modulations and light curves, this degeneracy can be reduced to twofold. 1 authors · Jul 1, 2025
1 Metrological detection of multipartite entanglement through dynamical symmetries Multipartite entanglement, characterized by the quantum Fisher information (QFI), plays a central role in quantum-enhanced metrology and understanding quantum many-body physics. With a dynamical generalization of the Mazur-Suzuki relations, we provide a rigorous lower bound on the QFI for the thermal Gibbs states in terms of dynamical symmetries, i.e., operators with periodic time dependence. We demonstrate that this bound can be saturated when considering a complete set of dynamical symmetries. Moreover, this lower bound with dynamical symmetries can be generalized to the QFI matrix and to the QFI for the thermal pure states, predicted by the eigenstate thermalization hypothesis. Our results reveal a new perspective to detect multipartite entanglement and other generalized variances in an equilibrium system, from its nonstationary dynamical properties, and is promising for studying emergent nonequilibrium many-body physics. 2 authors · Apr 2, 2023
- WyckoffDiff -- A Generative Diffusion Model for Crystal Symmetry Crystalline materials often exhibit a high level of symmetry. However, most generative models do not account for symmetry, but rather model each atom without any constraints on its position or element. We propose a generative model, Wyckoff Diffusion (WyckoffDiff), which generates symmetry-based descriptions of crystals. This is enabled by considering a crystal structure representation that encodes all symmetry, and we design a novel neural network architecture which enables using this representation inside a discrete generative model framework. In addition to respecting symmetry by construction, the discrete nature of our model enables fast generation. We additionally present a new metric, Fr\'echet Wrenformer Distance, which captures the symmetry aspects of the materials generated, and we benchmark WyckoffDiff against recently proposed generative models for crystal generation. Code is available online at https://github.com/httk/wyckoffdiff 6 authors · Feb 10, 2025
1 Positive Geometries and Canonical Forms Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes. 3 authors · Mar 13, 2017
1 Hidden symmetries of ReLU networks The parameter space for any fixed architecture of feedforward ReLU neural networks serves as a proxy during training for the associated class of functions - but how faithful is this representation? It is known that many different parameter settings can determine the same function. Moreover, the degree of this redundancy is inhomogeneous: for some networks, the only symmetries are permutation of neurons in a layer and positive scaling of parameters at a neuron, while other networks admit additional hidden symmetries. In this work, we prove that, for any network architecture where no layer is narrower than the input, there exist parameter settings with no hidden symmetries. We also describe a number of mechanisms through which hidden symmetries can arise, and empirically approximate the functional dimension of different network architectures at initialization. These experiments indicate that the probability that a network has no hidden symmetries decreases towards 0 as depth increases, while increasing towards 1 as width and input dimension increase. 3 authors · Jun 9, 2023
- Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations SO(3)-equivariant networks are the dominant models for machine learning interatomic potentials (MLIPs). The key operation of such networks is the Clebsch-Gordan (CG) tensor product, which is computationally expensive. To accelerate the computation, we develop tensor decomposition networks (TDNs) as a class of approximately equivariant networks in which CG tensor products are replaced by low-rank tensor decompositions, such as the CANDECOMP/PARAFAC (CP) decomposition. With the CP decomposition, we prove (i) a uniform bound on the induced error of SO(3)-equivariance, and (ii) the universality of approximating any equivariant bilinear map. To further reduce the number of parameters, we propose path-weight sharing that ties all multiplicity-space weights across the O(L^3) CG paths into a single shared parameter set without compromising equivariance, where L is the maximum angular degree. The resulting layer acts as a plug-and-play replacement for tensor products in existing networks, and the computational complexity of tensor products is reduced from O(L^6) to O(L^4). We evaluate TDNs on PubChemQCR, a newly curated molecular relaxation dataset containing 105 million DFT-calculated snapshots. We also use existing datasets, including OC20, and OC22. Results show that TDNs achieve competitive performance with dramatic speedup in computations. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS/tree/main/OpenMol/TDN{https://github.com/divelab/AIRS/}). 9 authors · Jul 1, 2025
- Green functions of Energized complexes If h is a ring-valued function on a simplicial complex G we can define two matrices L and g, where the matrix entries are the h energy of homoclinic intersections. We know that the sum over all h values on G is equal to the sum of the Green matrix entries g(x,y). We also have already seen that that the determinants of L or g are both the product of the h(x). In the case where h(x) is the parity of dimension, the sum of the energy values was the standard Euler characteristic and the determinant was a unit. If h(x) was the unit in the ring then L,g are integral quadratic forms which are isospectral and inverse matrices of each other. We prove here that the quadratic energy expression summing over all pairs h(x)^* h(y) of intersecting sets is a signed sum of squares of Green function entries. The quadratic energy expression is Wu characteristic in the case when h is dimension parity. For general h, the quadratic energy expression resembles an Ising Heisenberg type interaction. The conjugate of g is the inverse of L if h takes unit values in a normed ring or in the group of unitary operators in an operator algebra. 1 authors · Oct 18, 2020
- Group equivariant neural posterior estimation Simulation-based inference with conditional neural density estimators is a powerful approach to solving inverse problems in science. However, these methods typically treat the underlying forward model as a black box, with no way to exploit geometric properties such as equivariances. Equivariances are common in scientific models, however integrating them directly into expressive inference networks (such as normalizing flows) is not straightforward. We here describe an alternative method to incorporate equivariances under joint transformations of parameters and data. Our method -- called group equivariant neural posterior estimation (GNPE) -- is based on self-consistently standardizing the "pose" of the data while estimating the posterior over parameters. It is architecture-independent, and applies both to exact and approximate equivariances. As a real-world application, we use GNPE for amortized inference of astrophysical binary black hole systems from gravitational-wave observations. We show that GNPE achieves state-of-the-art accuracy while reducing inference times by three orders of magnitude. 6 authors · Nov 25, 2021
- Graph Metanetworks for Processing Diverse Neural Architectures Neural networks efficiently encode learned information within their parameters. Consequently, many tasks can be unified by treating neural networks themselves as input data. When doing so, recent studies demonstrated the importance of accounting for the symmetries and geometry of parameter spaces. However, those works developed architectures tailored to specific networks such as MLPs and CNNs without normalization layers, and generalizing such architectures to other types of networks can be challenging. In this work, we overcome these challenges by building new metanetworks - neural networks that take weights from other neural networks as input. Put simply, we carefully build graphs representing the input neural networks and process the graphs using graph neural networks. Our approach, Graph Metanetworks (GMNs), generalizes to neural architectures where competing methods struggle, such as multi-head attention layers, normalization layers, convolutional layers, ResNet blocks, and group-equivariant linear layers. We prove that GMNs are expressive and equivariant to parameter permutation symmetries that leave the input neural network functions unchanged. We validate the effectiveness of our method on several metanetwork tasks over diverse neural network architectures. 5 authors · Dec 7, 2023
- Neural Fourier Transform: A General Approach to Equivariant Representation Learning Symmetry learning has proven to be an effective approach for extracting the hidden structure of data, with the concept of equivariance relation playing the central role. However, most of the current studies are built on architectural theory and corresponding assumptions on the form of data. We propose Neural Fourier Transform (NFT), a general framework of learning the latent linear action of the group without assuming explicit knowledge of how the group acts on data. We present the theoretical foundations of NFT and show that the existence of a linear equivariant feature, which has been assumed ubiquitously in equivariance learning, is equivalent to the existence of a group invariant kernel on the dataspace. We also provide experimental results to demonstrate the application of NFT in typical scenarios with varying levels of knowledge about the acting group. 4 authors · May 29, 2023
1 LieTransformer: Equivariant self-attention for Lie Groups Group equivariant neural networks are used as building blocks of group invariant neural networks, which have been shown to improve generalisation performance and data efficiency through principled parameter sharing. Such works have mostly focused on group equivariant convolutions, building on the result that group equivariant linear maps are necessarily convolutions. In this work, we extend the scope of the literature to self-attention, that is emerging as a prominent building block of deep learning models. We propose the LieTransformer, an architecture composed of LieSelfAttention layers that are equivariant to arbitrary Lie groups and their discrete subgroups. We demonstrate the generality of our approach by showing experimental results that are competitive to baseline methods on a wide range of tasks: shape counting on point clouds, molecular property regression and modelling particle trajectories under Hamiltonian dynamics. 6 authors · Dec 20, 2020
- Deep Learning without Weight Symmetry Backpropagation (BP), a foundational algorithm for training artificial neural networks, predominates in contemporary deep learning. Although highly successful, it is often considered biologically implausible. A significant limitation arises from the need for precise symmetry between connections in the backward and forward pathways to backpropagate gradient signals accurately, which is not observed in biological brains. Researchers have proposed several algorithms to alleviate this symmetry constraint, such as feedback alignment and direct feedback alignment. However, their divergence from backpropagation dynamics presents challenges, particularly in deeper networks and convolutional layers. Here we introduce the Product Feedback Alignment (PFA) algorithm. Our findings demonstrate that PFA closely approximates BP and achieves comparable performance in deep convolutional networks while avoiding explicit weight symmetry. Our results offer a novel solution to the longstanding weight symmetry problem, leading to more biologically plausible learning in deep convolutional networks compared to earlier methods. 2 authors · May 30, 2024
- Holographic Superconductors It has been shown that a gravitational dual to a superconductor can be obtained by coupling anti-de Sitter gravity to a Maxwell field and charged scalar. We review our earlier analysis of this theory and extend it in two directions. First, we consider all values for the charge of the scalar field. Away from the large charge limit, backreaction on the spacetime metric is important. While the qualitative behaviour of the dual superconductor is found to be similar for all charges, in the limit of arbitrarily small charge a new type of black hole instability is found. We go on to add a perpendicular magnetic field B and obtain the London equation and magnetic penetration depth. We show that these holographic superconductors are Type II, i.e., starting in a normal phase at large B and low temperatures, they develop superconducting droplets as B is reduced. 3 authors · Oct 8, 2008
- Replica symmetry breaking in dense neural networks Understanding the glassy nature of neural networks is pivotal both for theoretical and computational advances in Machine Learning and Theoretical Artificial Intelligence. Keeping the focus on dense associative Hebbian neural networks, the purpose of this paper is two-fold: at first we develop rigorous mathematical approaches to address properly a statistical mechanical picture of the phenomenon of {\em replica symmetry breaking} (RSB) in these networks, then -- deepening results stemmed via these routes -- we aim to inspect the {\em glassiness} that they hide. In particular, regarding the methodology, we provide two techniques: the former is an adaptation of the transport PDE to the case, while the latter is an extension of Guerra's interpolation breakthrough. Beyond coherence among the results, either in replica symmetric and in the one-step replica symmetry breaking level of description, we prove the Gardner's picture and we identify the maximal storage capacity by a ground-state analysis in the Baldi-Venkatesh high-storage regime. In the second part of the paper we investigate the glassy structure of these networks: in contrast with the replica symmetric scenario (RS), RSB actually stabilizes the spin-glass phase. We report huge differences w.r.t. the standard pairwise Hopfield limit: in particular, it is known that it is possible to express the free energy of the Hopfield neural network as a linear combination of the free energies of an hard spin glass (i.e. the Sherrington-Kirkpatrick model) and a soft spin glass (the Gaussian or "spherical" model). This is no longer true when interactions are more than pairwise (whatever the level of description, RS or RSB): for dense networks solely the free energy of the hard spin glass survives, proving a huge diversity in the underlying glassiness of associative neural networks. 4 authors · Nov 25, 2021
- Equivariant Architectures for Learning in Deep Weight Spaces Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this goal, we present here a novel network architecture for learning in deep weight spaces. It takes as input a concatenation of weights and biases of a pre-trained MLP and processes it using a composition of layers that are equivariant to the natural permutation symmetry of the MLP's weights: Changing the order of neurons in intermediate layers of the MLP does not affect the function it represents. We provide a full characterization of all affine equivariant and invariant layers for these symmetries and show how these layers can be implemented using three basic operations: pooling, broadcasting, and fully connected layers applied to the input in an appropriate manner. We demonstrate the effectiveness of our architecture and its advantages over natural baselines in a variety of learning tasks. 6 authors · Jan 30, 2023
- A Characterization Theorem for Equivariant Networks with Point-wise Activations Equivariant neural networks have shown improved performance, expressiveness and sample complexity on symmetrical domains. But for some specific symmetries, representations, and choice of coordinates, the most common point-wise activations, such as ReLU, are not equivariant, hence they cannot be employed in the design of equivariant neural networks. The theorem we present in this paper describes all possible combinations of finite-dimensional representations, choice of coordinates and point-wise activations to obtain an exactly equivariant layer, generalizing and strengthening existing characterizations. Notable cases of practical relevance are discussed as corollaries. Indeed, we prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups. Then, we discuss implications of our findings when applied to important instances of exactly equivariant networks. First, we completely characterize permutation equivariant networks such as Invariant Graph Networks with point-wise nonlinearities and their geometric counterparts, highlighting a plethora of models whose expressive power and performance are still unknown. Second, we show that feature spaces of disentangled steerable convolutional neural networks are trivial representations. 4 authors · Jan 17, 2024
- Evaluating the Robustness of Interpretability Methods through Explanation Invariance and Equivariance Interpretability methods are valuable only if their explanations faithfully describe the explained model. In this work, we consider neural networks whose predictions are invariant under a specific symmetry group. This includes popular architectures, ranging from convolutional to graph neural networks. Any explanation that faithfully explains this type of model needs to be in agreement with this invariance property. We formalize this intuition through the notion of explanation invariance and equivariance by leveraging the formalism from geometric deep learning. Through this rigorous formalism, we derive (1) two metrics to measure the robustness of any interpretability method with respect to the model symmetry group; (2) theoretical robustness guarantees for some popular interpretability methods and (3) a systematic approach to increase the invariance of any interpretability method with respect to a symmetry group. By empirically measuring our metrics for explanations of models associated with various modalities and symmetry groups, we derive a set of 5 guidelines to allow users and developers of interpretability methods to produce robust explanations. 2 authors · Apr 13, 2023
- Learning Inter-Atomic Potentials without Explicit Equivariance Accurate and scalable machine-learned inter-atomic potentials (MLIPs) are essential for molecular simulations ranging from drug discovery to new material design. Current state-of-the-art models enforce roto-translational symmetries through equivariant neural network architectures, a hard-wired inductive bias that can often lead to reduced flexibility, computational efficiency, and scalability. In this work, we introduce TransIP: Transformer-based Inter-Atomic Potentials, a novel training paradigm for interatomic potentials achieving symmetry compliance without explicit architectural constraints. Our approach guides a generic non-equivariant Transformer-based model to learn SO(3)-equivariance by optimizing its representations in the embedding space. Trained on the recent Open Molecules (OMol25) collection, a large and diverse molecular dataset built specifically for MLIPs and covering different types of molecules (including small organics, biomolecular fragments, and electrolyte-like species), TransIP attains comparable performance in machine-learning force fields versus state-of-the-art equivariant baselines. Further, compared to a data augmentation baseline, TransIP achieves 40% to 60% improvement in performance across varying OMol25 dataset sizes. More broadly, our work shows that learned equivariance can be a powerful and efficient alternative to equivariant or augmentation-based MLIP models. 6 authors · Sep 25, 2025
1 On the Expressive Power of Geometric Graph Neural Networks The expressive power of Graph Neural Networks (GNNs) has been studied extensively through the Weisfeiler-Leman (WL) graph isomorphism test. However, standard GNNs and the WL framework are inapplicable for geometric graphs embedded in Euclidean space, such as biomolecules, materials, and other physical systems. In this work, we propose a geometric version of the WL test (GWL) for discriminating geometric graphs while respecting the underlying physical symmetries: permutations, rotation, reflection, and translation. We use GWL to characterise the expressive power of geometric GNNs that are invariant or equivariant to physical symmetries in terms of distinguishing geometric graphs. GWL unpacks how key design choices influence geometric GNN expressivity: (1) Invariant layers have limited expressivity as they cannot distinguish one-hop identical geometric graphs; (2) Equivariant layers distinguish a larger class of graphs by propagating geometric information beyond local neighbourhoods; (3) Higher order tensors and scalarisation enable maximally powerful geometric GNNs; and (4) GWL's discrimination-based perspective is equivalent to universal approximation. Synthetic experiments supplementing our results are available at https://github.com/chaitjo/geometric-gnn-dojo 5 authors · Jan 23, 2023
- Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach. 3 authors · Jan 18, 2024
- Improving equilibrium propagation without weight symmetry through Jacobian homeostasis Equilibrium propagation (EP) is a compelling alternative to the backpropagation of error algorithm (BP) for computing gradients of neural networks on biological or analog neuromorphic substrates. Still, the algorithm requires weight symmetry and infinitesimal equilibrium perturbations, i.e., nudges, to estimate unbiased gradients efficiently. Both requirements are challenging to implement in physical systems. Yet, whether and how weight asymmetry affects its applicability is unknown because, in practice, it may be masked by biases introduced through the finite nudge. To address this question, we study generalized EP, which can be formulated without weight symmetry, and analytically isolate the two sources of bias. For complex-differentiable non-symmetric networks, we show that the finite nudge does not pose a problem, as exact derivatives can still be estimated via a Cauchy integral. In contrast, weight asymmetry introduces bias resulting in low task performance due to poor alignment of EP's neuronal error vectors compared to BP. To mitigate this issue, we present a new homeostatic objective that directly penalizes functional asymmetries of the Jacobian at the network's fixed point. This homeostatic objective dramatically improves the network's ability to solve complex tasks such as ImageNet 32x32. Our results lay the theoretical groundwork for studying and mitigating the adverse effects of imperfections of physical networks on learning algorithms that rely on the substrate's relaxation dynamics. 2 authors · Sep 5, 2023
- Elliptic genera of two-dimensional N=2 gauge theories with rank-one gauge groups We compute the elliptic genera of two-dimensional N=(2,2) and N=(0,2) gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabi-Yau, N=(2,2) SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2) model. 4 authors · May 2, 2013
1 Exact Coset Sampling for Quantum Lattice Algorithms We give a simple, fully correct, and assumption-light replacement for the contested "domain-extension" in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows~chen2024quantum. The published Step~9 suffers from a periodicity/support mismatch. We present a pair-shift difference construction that coherently cancels all unknown offsets, produces an exact uniform CRT-coset state over Z_{P}, and then uses the QFT to enforce the intended modular linear relation. The unitary is reversible, uses poly(log M_2) gates, and preserves the algorithm's asymptotics. Project Page: https://github.com/yifanzhang-pro/quantum-lattice. 1 authors · Sep 15, 2025 2
- Equilibrium of Charges and Differential Equations Solved by Polynomials II We continue study of equilibrium of two species of 2d coulomb charges (or point vortices in 2d ideal fluid) started in Lv. Although for two species of vortices with circulation ratio -1 the relationship between the equilibria and the factorization/Darboux transformation of the Schrodinger operator was established a long ago, the question about similar relationship for the ratio -2 remained unanswered. Here we present the answer. 2 authors · Oct 2, 2024
1 Unveiling Real Triple Degeneracies in Crystals: Exploring Link and Compound Structures With their non-Abelian topological charges, real multi-bandgap systems challenge the conventional topological phase classifications. As the minimal sector of multi-bandgap systems, real triple degeneracies (RTPs), which serve as real 'Weyl points', lay the foundation for the research on real topological phases. However, experimental demonstration of physical systems with global band configurations consisting of multiple RTPs in crystals has not been reported. Here we present experimental evidence of RTPs in photonic meta-crystals, characterizing them using the Euler number, and establishing their connection with both Abelian and non-Abelian charges. By considering RTPs as the basic elements, we further propose the concept of a topological compound, akin to a chemical compound, where we find that certain phases are not topologically allowed. The topological classification of RTPs in crystals demonstrated in our work plays a similar role as the 'no-go' theorem in Weyl systems. 4 authors · Jul 3, 2023
- Brauer's Group Equivariant Neural Networks We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of R^{n} for three symmetry groups that are missing from the machine learning literature: O(n), the orthogonal group; SO(n), the special orthogonal group; and Sp(n), the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of R^{n} when the group is O(n) or SO(n), and in the symplectic basis of R^{n} when the group is Sp(n). 1 authors · Dec 16, 2022
- Einstein metrics on aligned homogeneous spaces with two factors Given two homogeneous spaces of the form G_1/K and G_2/K, where G_1 and G_2 are compact simple Lie groups, we study the existence problem for G_1xG_2-invariant Einstein metrics on the homogeneous space M=G_1xG_2/K. For the large subclass C of spaces having three pairwise inequivalent isotropy irreducible summands (12 infinite families and 70 sporadic examples), we obtain that existence is equivalent to the existence of a real root for certain quartic polynomial depending on the dimensions and two Killing constants, which allows a full classification and the possibility to weigh the existence and non-existence pieces of C. 2 authors · Aug 1, 2024
- GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras We propose, implement, and compare with competitors a new architecture of equivariant neural networks based on geometric (Clifford) algebras: Generalized Lipschitz Group Equivariant Neural Networks (GLGENN). These networks are equivariant to all pseudo-orthogonal transformations, including rotations and reflections, of a vector space with any non-degenerate or degenerate symmetric bilinear form. We propose a weight-sharing parametrization technique that takes into account the fundamental structures and operations of geometric algebras. Due to this technique, GLGENN architecture is parameter-light and has less tendency to overfitting than baseline equivariant models. GLGENN outperforms or matches competitors on several benchmarking equivariant tasks, including estimation of an equivariant function and a convex hull experiment, while using significantly fewer optimizable parameters. 2 authors · Jun 11, 2025
- EqMotion: Equivariant Multi-agent Motion Prediction with Invariant Interaction Reasoning Learning to predict agent motions with relationship reasoning is important for many applications. In motion prediction tasks, maintaining motion equivariance under Euclidean geometric transformations and invariance of agent interaction is a critical and fundamental principle. However, such equivariance and invariance properties are overlooked by most existing methods. To fill this gap, we propose EqMotion, an efficient equivariant motion prediction model with invariant interaction reasoning. To achieve motion equivariance, we propose an equivariant geometric feature learning module to learn a Euclidean transformable feature through dedicated designs of equivariant operations. To reason agent's interactions, we propose an invariant interaction reasoning module to achieve a more stable interaction modeling. To further promote more comprehensive motion features, we propose an invariant pattern feature learning module to learn an invariant pattern feature, which cooperates with the equivariant geometric feature to enhance network expressiveness. We conduct experiments for the proposed model on four distinct scenarios: particle dynamics, molecule dynamics, human skeleton motion prediction and pedestrian trajectory prediction. Experimental results show that our method is not only generally applicable, but also achieves state-of-the-art prediction performances on all the four tasks, improving by 24.0/30.1/8.6/9.2%. Code is available at https://github.com/MediaBrain-SJTU/EqMotion. 7 authors · Mar 20, 2023
- SO(N) singlet-projection model on the pyrochlore lattice We present an extensive quantum Monte Carlo study of a nearest-neighbor, singlet-projection model on the pyrochlore lattice that exhibits SO(N) symmetry and is sign-problem-free. We find that in contrast to the previously studied two-dimensional variations of this model that harbor critical points between their ground state phases, the non-bipartite pyrochlore lattice in three spatial dimensions appears to exhibit a first-order transition between a magnetically-ordered phase and some, as yet uncharacterized, paramagnetic phase. We also observe that the magnetically-ordered phase survives to a relatively large value of N=8, and that it is gone for N=9. 2 authors · Jun 5, 2024
- Anatomy of singlet-doublet dark matter relic: annihilation, co-annihilation, co-scattering, and freeze-in The singlet-doublet vector-like fermion dark matter model has been extensively studied in the literature over the past decade. An important parameter in this model is the singlet-doublet mixing angle (sintheta). All the previous studies have primarily focused on annihilation and co-annihilation processes for obtaining the correct dark matter relic density, assuming that the singlet and doublet components decouple at the same epoch. In this work, we demonstrate that this assumption holds only for larger mixing angles with a dependency on the mass of the dark matter. However, it badly fails for the mixing angle sintheta<0.05. We present a systematic study of the parameter space of the singlet-doublet dark matter relic, incorporating annihilation, co-annihilation, and, for the first time, co-scattering processes. Additionally, the freeze-in parameter space is also explored. We found that due to the inclusion of co-scattering processes, the correct relic density parameter space is shifted towards the detection sensitivity range of the LHC and MATHUSLA via displaced vertex signatures. 3 authors · Dec 3, 2024
- 6D (2,0) Bootstrap with soft-Actor-Critic We study numerically the 6D (2,0) superconformal bootstrap using the soft-Actor-Critic (SAC) algorithm as a stochastic optimizer. We focus on the four-point functions of scalar superconformal primaries in the energy-momentum multiplet. Starting from the supergravity limit, we perform searches for adiabatically varied central charges and derive two curves for a collection of 80 CFT data (70 of these data correspond to unprotected long multiplets and 10 to protected short multiplets). We conjecture that the two curves capture the A- and D-series (2,0) theories. Our results are competitive when compared to the existing bounds coming from standard numerical bootstrap methods, and data obtained using the OPE inversion formula. With this paper we are also releasing our Python implementation of the SAC algorithm, BootSTOP. The paper discusses the main functionality features of this package. 4 authors · Sep 6, 2022
2 From thermodynamics to protein design: Diffusion models for biomolecule generation towards autonomous protein engineering Protein design with desirable properties has been a significant challenge for many decades. Generative artificial intelligence is a promising approach and has achieved great success in various protein generation tasks. Notably, diffusion models stand out for their robust mathematical foundations and impressive generative capabilities, offering unique advantages in certain applications such as protein design. In this review, we first give the definition and characteristics of diffusion models and then focus on two strategies: Denoising Diffusion Probabilistic Models and Score-based Generative Models, where DDPM is the discrete form of SGM. Furthermore, we discuss their applications in protein design, peptide generation, drug discovery, and protein-ligand interaction. Finally, we outline the future perspectives of diffusion models to advance autonomous protein design and engineering. The E(3) group consists of all rotations, reflections, and translations in three-dimensions. The equivariance on the E(3) group can keep the physical stability of the frame of each amino acid as much as possible, and we reflect on how to keep the diffusion model E(3) equivariant for protein generation. 9 authors · Jan 5, 2025
- On the Higgs spectra of the 3-3-1 model with the sextet of scalars engendering the type II seesaw mechanism In the 3-3-1 model with right-handed neutrinos, three triplets of scalars engender the correct sequence of symmetry breaking, SU(3)_C times SU(3)_L times U(1)_X rightarrow SU(3)_C times SU(2)_L times U(1)_Y rightarrow SU(3)_C times U(1)_{EM}, generating mass for all fermions, except neutrinos. Tiny neutrino masses may be achieved by adding one sextet of scalars to the original scalar content. As consequence, it emerges a very complex scalar sector, involving terms that violate lepton number explicitly, too. The main obstacle to the development of the phenomenology of such scenario is the knowledge of its spectrum of scalars since, now, there are 15 massive scalar particles on it. The proposal of this work is to do an exhaustive analysis of such scalar sector with lepton number being explicitly violated at low, electroweak and high energy scales by means of trilinear terms in the potential. The first case can be addressed analytically and, as a nice result, we have observed that the scalar content of such case is split into two categories: One belonging to the 331 energy scale and the other belonging to the EWSB energy scale, with the last recovering the well known THDM+triplet. For the other cases, the scalar sector can be addressed only numerically. Hence, we proposed a very general approach for the numerical study of the potential, avoiding simplifications that can make us reach conclusions without foundation. We show that, in the case of lepton number being explicitly violated at electroweak scale, it is possible to recover the same physics of the THDM+triplet, as the previous case. Among all the possibilities, we call the attention to one special case which generates the 3HDM+triplet scenario. For the last case, when lepton number is violated at high energy scale, the sextet become very massive and decouples from the original scalar content of the 3-3-1 model. 2 authors · Dec 20, 2022
- More on the Weak Gravity Conjecture via Convexity of Charged Operators The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space the conformal dimension Delta (Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in different dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4+epsilon dimensions. As an example of the second type we consider the U(N)times U(M) model in 4-epsilon dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property. 5 authors · Sep 10, 2021
- Efficient Prediction of SO(3)-Equivariant Hamiltonian Matrices via SO(2) Local Frames We consider the task of predicting Hamiltonian matrices to accelerate electronic structure calculations, which plays an important role in physics, chemistry, and materials science. Motivated by the inherent relationship between the off-diagonal blocks of the Hamiltonian matrix and the SO(2) local frame, we propose a novel and efficient network, called QHNetV2, that achieves global SO(3) equivariance without the costly SO(3) Clebsch-Gordan tensor products. This is achieved by introducing a set of new efficient and powerful SO(2)-equivariant operations and performing all off-diagonal feature updates and message passing within SO(2) local frames, thereby eliminating the need of SO(3) tensor products. Moreover, a continuous SO(2) tensor product is performed within the SO(2) local frame at each node to fuse node features, mimicking the symmetric contraction operation. Extensive experiments on the large QH9 and MD17 datasets demonstrate that our model achieves superior performance across a wide range of molecular structures and trajectories, highlighting its strong generalization capability. The proposed SO(2) operations on SO(2) local frames offer a promising direction for scalable and symmetry-aware learning of electronic structures. Our code will be released as part of the AIRS library https://github.com/divelab/AIRS. 5 authors · Jun 11, 2025
- Anti-Hong-Ou-Mandel effect with entangled photons In the classical Hong-Ou-Mandel (HOM) effect pairs of photons with bosonic (fermionic) spatial wavefunction coalesce (anti-coalesce) when mixed on a lossless beamsplitter. Here we report that the presence of dissipation in the beamsplitter allows the observation of the anti-HOM effect, where bosons anti-coalesce and fermions show coalescent-like behavior. We provide an experimental demonstration of the anti-HOM effect for both bosonic and fermionic two-photon entangled states. Beyond its fundamental significance, the anti-HOM effect offers applications in quantum information and metrology where states of entangled photons are dynamically converted. 4 authors · May 12, 2021
- Symmetric Basis Convolutions for Learning Lagrangian Fluid Mechanics Learning physical simulations has been an essential and central aspect of many recent research efforts in machine learning, particularly for Navier-Stokes-based fluid mechanics. Classic numerical solvers have traditionally been computationally expensive and challenging to use in inverse problems, whereas Neural solvers aim to address both concerns through machine learning. We propose a general formulation for continuous convolutions using separable basis functions as a superset of existing methods and evaluate a large set of basis functions in the context of (a) a compressible 1D SPH simulation, (b) a weakly compressible 2D SPH simulation, and (c) an incompressible 2D SPH Simulation. We demonstrate that even and odd symmetries included in the basis functions are key aspects of stability and accuracy. Our broad evaluation shows that Fourier-based continuous convolutions outperform all other architectures regarding accuracy and generalization. Finally, using these Fourier-based networks, we show that prior inductive biases, such as window functions, are no longer necessary. An implementation of our approach, as well as complete datasets and solver implementations, is available at https://github.com/tum-pbs/SFBC. 2 authors · Mar 25, 2024
- Zero Sound from Holography Quantum liquids are characterized by the distinctive properties such as the low temperature behavior of heat capacity and the spectrum of low-energy quasiparticle excitations. In particular, at low temperature, Fermi liquids exhibit the zero sound, predicted by L. D. Landau in 1957 and subsequently observed in liquid He-3. In this paper, we ask a question whether such a characteristic behavior is present in theories with holographically dual description. We consider a class of gauge theories with fundamental matter fields whose holographic dual in the appropriate limit is given in terms of the Dirac-Born-Infeld action in AdS_{p+1} space. An example of such a system is the N=4 SU(N_c) supersymmetric Yang-Mills theory with N_f massless N=2 hypermultiplets at strong coupling, finite baryon number density, and low temperature. We find that these systems exhibit a zero sound mode despite having a non-Fermi liquid type behavior of the specific heat. These properties suggest that holography identifies a new type of quantum liquids. 3 authors · Jun 23, 2008
- Geometric Clifford Algebra Networks We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems. GCANs are based on symmetry group transformations using geometric (Clifford) algebras. We first review the quintessence of modern (plane-based) geometric algebra, which builds on isometries encoded as elements of the Pin(p,q,r) group. We then propose the concept of group action layers, which linearly combine object transformations using pre-specified group actions. Together with a new activation and normalization scheme, these layers serve as adjustable geometric templates that can be refined via gradient descent. Theoretical advantages are strongly reflected in the modeling of three-dimensional rigid body transformations as well as large-scale fluid dynamics simulations, showing significantly improved performance over traditional methods. 5 authors · Feb 13, 2023
- Quantum Criticality and Holographic Superconductors in M-theory We present a consistent Kaluza-Klein truncation of D=11 supergravity on an arbitrary seven-dimensional Sasaki-Einstein space (SE_7) to a D=4 theory containing a metric, a gauge-field, a complex scalar field and a real scalar field. We use this D=4 theory to construct various black hole solutions that describe the thermodynamics of the d=3 CFTs dual to skew-whiffed AdS_4 X SE_7 solutions. We show that these CFTs have a rich phase diagram, including holographic superconductivity with, generically, broken parity and time reversal invariance. At zero temperature the superconducting solutions are charged domain walls with a universal emergent conformal symmetry in the far infrared. 3 authors · Dec 3, 2009
- E(3)-equivariant models cannot learn chirality: Field-based molecular generation Obtaining the desired effect of drugs is highly dependent on their molecular geometries. Thus, the current prevailing paradigm focuses on 3D point-cloud atom representations, utilizing graph neural network (GNN) parametrizations, with rotational symmetries baked in via E(3) invariant layers. We prove that such models must necessarily disregard chirality, a geometric property of the molecules that cannot be superimposed on their mirror image by rotation and translation. Chirality plays a key role in determining drug safety and potency. To address this glaring issue, we introduce a novel field-based representation, proposing reference rotations that replace rotational symmetry constraints. The proposed model captures all molecular geometries including chirality, while still achieving highly competitive performance with E(3)-based methods across standard benchmarking metrics. 7 authors · Feb 24, 2024
- Classical Glasses, Black Holes, and Strange Quantum Liquids From the dynamics of a broad class of classical mean-field glass models one may obtain a quantum model with finite zero-temperature entropy, a quantum transition at zero temperature, and a time-reparametrization (quasi-)invariance in the dynamical equations for correlations. The low eigenvalue spectrum of the resulting quantum model is directly related to the structure and exploration of metastable states in the landscape of the original classical glass model. This mapping reveals deep connections between classical glasses and the properties of SYK-like models. 4 authors · Jun 21, 2019
- Visible and Invisible Pseudoscalar Meson Decays from Anomaly Sum Rules The decays of pseudoscalar mesons to real and virtual photons as well as neutrino-antineutrino pairs are considered in the framework of the dispersive method based on Anomaly Sum Rules. The contribution of singlet channel involving the new non-perturbative gluon form factor of virtual photon B(q^2) is systematically taken into account. The detailed analysis of its dependence on photon virtuality q^2 relying on the available data for meson transition fomfactors is performed. It is shown that B has quite a nontrivial structure at q^2 sim 1 GeV^2 which may be a signal of the existence of pseudoscalar glueball with a mass about 1.5-2 GeV. The calculation of the decay to νbar ν pairs leads to the compatibility with the result of Arnellos, Marciano and Parsa of 1982, when pion decay is considered neglecting the mixing effects. The account for these effects results, however, in the enhancement of pion branching ratio by a factor of 3, while that for eta decay is larger by several orders of magnitude. It is stressed, that dependence on the pair invariant mass is entirely defined by QCD and coincides with that of the meson transition form factor. The role of obtained results for the physics at HHaS detector at HIAF is discussed. 4 authors · Dec 17, 2025
1 Space Group Constrained Crystal Generation Crystals are the foundation of numerous scientific and industrial applications. While various learning-based approaches have been proposed for crystal generation, existing methods seldom consider the space group constraint which is crucial in describing the geometry of crystals and closely relevant to many desirable properties. However, considering space group constraint is challenging owing to its diverse and nontrivial forms. In this paper, we reduce the space group constraint into an equivalent formulation that is more tractable to be handcrafted into the generation process. In particular, we translate the space group constraint into two parts: the basis constraint of the invariant logarithmic space of the lattice matrix and the Wyckoff position constraint of the fractional coordinates. Upon the derived constraints, we then propose DiffCSP++, a novel diffusion model that has enhanced a previous work DiffCSP by further taking space group constraint into account. Experiments on several popular datasets verify the benefit of the involvement of the space group constraint, and show that our DiffCSP++ achieves promising performance on crystal structure prediction, ab initio crystal generation and controllable generation with customized space groups. 5 authors · Feb 6, 2024
- Kibble-Zurek Mechanism and Beyond: Lessons from a Holographic Superfluid Disk The superfluid phase transition dynamics and associated spontaneous vortex formation with the crossing of the critical temperature in a disk geometry is studied in the framework of the AdS/CFT correspondence by solving the Einstein-Abelian-Higgs model in an AdS_4 black hole. For a slow quench, the vortex density admits a universal scaling law with the cooling rate as predicted by the Kibble-Zurek mechanism (KZM), while for fast quenches, the density shows a universal scaling behavior as a function of the final temperature, that lies beyond the KZM prediction. The vortex number distribution in both the power-law and saturation regimes can be approximated by a normal distribution. However, the study of the universal scaling of the cumulants reveals non-normal features and indicates that vortex statistics in the newborn superfluid is best described by the Poisson binomial distribution, previously predicted in the KZM regime [Phys. Rev. Lett. 124, 240602 (2020)]. This is confirmed by studying the cumulant scalings as a function of the quench time and the quench depth. Our work supports the existence of a universal defect number distribution that accommodates the KZM scaling, its breakdown at fast quenches, and the additional universal scaling laws as a function of the final value of the control parameter. 4 authors · Jun 7, 2024
- One- and two-dimensional solitons in spin-orbit-coupled Bose-Einstein condensates with fractional kinetic energy We address effects of spin-orbit coupling (SOC), phenomenologically added to a two-component Bose-Einstein condensate composed of particles moving by Levy flights, in one- and two-dimensional (1D and 2D) settings. The corresponding system of coupled Gross-Pitaevskii equations includes fractional kinetic-energy operators, characterized by the Levy index, \alpha < 2 (the normal kinetic energy corresponds to \alpha = 2). The SOC terms, with strength \lambda, produce strong effects in the 2D case: they create families of stable solitons of the semi-vortex (SV) and mixed-mode (MM) types in the interval of 1 < \alpha < 2, where the supercritical collapse does not admit the existence of stable solitons in the absence of the SOC. At \lambda --> 0, amplitudes of these solitons vanish as (\lambda)^{1/(\alpha - 1)}. 2 authors · Jun 1, 2022
1 Unbalanced Stückelberg Holographic Superconductors with Backreaction We numerically investigate some properties of unbalanced St\"{u}ckelberg holographic superconductors, by considering backreaction effects of fields on the background geometry. More precisely, we study the impacts of the chemical potential mismatch and St\"{u}ckelberg mechanism on the condensation and conductivity types (electrical, spin, mixed, thermo-electric, thermo-spin and thermal conductivity). Our results show that the St\"{u}ckelberg's model parameters C_{alpha} and alpha not only have significant impacts on the phase transition, but also affect the conductivity pseudo-gap and the strength of conductivity fluctuations. Moreover, the effects of these parameters on a system will be gradually reduced as the imbalance grows. We also find that the influence of alpha on the amplitude of conductivity fluctuations depends on the magnitude of the both C_{alpha} and deltamu/mu in the electric and thermal conductivity cases. This results in that increasing alpha can damp the conductivity fluctuations of an unbalanced system in contrast to balanced ones. 2 authors · Aug 8, 2018
- Shoot from the HIP: Hessian Interatomic Potentials without derivatives Fundamental tasks in computational chemistry, from transition state search to vibrational analysis, rely on molecular Hessians, which are the second derivatives of the potential energy. Yet, Hessians are computationally expensive to calculate and scale poorly with system size, with both quantum mechanical methods and neural networks. In this work, we demonstrate that Hessians can be predicted directly from a deep learning model, without relying on automatic differentiation or finite differences. We observe that one can construct SE(3)-equivariant, symmetric Hessians from irreducible representations (irrep) features up to degree l=2 computed during message passing in graph neural networks. This makes HIP Hessians one to two orders of magnitude faster, more accurate, more memory efficient, easier to train, and enables more favorable scaling with system size. We validate our predictions across a wide range of downstream tasks, demonstrating consistently superior performance for transition state search, accelerated geometry optimization, zero-point energy corrections, and vibrational analysis benchmarks. We open-source the HIP codebase and model weights to enable further development of the direct prediction of Hessians at https://github.com/BurgerAndreas/hip 8 authors · Sep 25, 2025
- Thermodynamics of black holes featuring primary scalar hair In this work, we embark on the thermodynamic investigation concerning a family of primary charged black holes within the context of shift and parity symmetric Beyond Horndeski gravity. Employing the Euclidean approach, we derive the functional expression for the free energy and derive the first thermodynamic law, offering a methodology to address the challenge of extracting the thermal quantities in shift-symmetric scalar tensor theories characterized by linear time dependence in the scalar field. Following the formal analysis, we provide some illustrative examples focusing on the thermal evaporation of these fascinating objects. 3 authors · Apr 11, 2024
- Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry. 13 authors · Apr 15, 2025
- tt GrayHawk: A public code for calculating the Gray Body Factors of massless fields around spherically symmetric Black Holes We introduce and describe tt GrayHawk, a publicly available Mathematica-based tool designed for the efficient computation of gray-body factors for spherically symmetric and asymptotically flat black holes. This program provides users with a rapid and reliable means to compute gray-body factors for massless fields with spin \(s = 0, 1/2, 1, 2\) in modes specified by the angular quantum number \(l\), given a black hole metric and the associated parameter values. tt GrayHawk is preloaded with seven different black hole metrics, offering immediate applicability to a variety of theoretical models. Additionally, its modular structure allows users to extend its functionality easily by incorporating alternative metrics or configurations. This versatility makes tt GrayHawk a powerful and adaptable resource for researchers studying black hole physics and Hawking radiation. The codes described in this work are publicly available at https://github.com/marcocalza89/GrayHawk. 1 authors · Feb 6, 2025
- Predication of novel effects in rotational nuclei at high speed The study of high-speed rotating matter is a crucial research topic in physics due to the emergence of novel phenomena. In this paper, we combined cranking covariant density functional theory (CDFT) with a similar renormalization group approach to decompose the Hamiltonian from the cranking CDFT into different Hermit components, including the non-relativistic term, the dynamical term, the spin-orbit coupling, and the Darwin term. Especially, we obtained the rotational term, the term relating to Zeeman effect-like, and the spin-rotation coupling due to consideration of rotation and spatial component of vector potential. By exploring these operators, we aim to identify novel phenomena that may occur in rotating nuclei. Signature splitting, Zeeman effect-like, spin-rotation coupling, and spin current are among the potential novelties that may arise in rotating nuclei. Additionally, we investigated the observability of these phenomena and their dependence on various factors such as nuclear deformation, rotational angular velocity, and strength of magnetic field. 1 authors · Sep 1, 2023
- Comments on Fermi Liquid from Holography We investigate the signatures of Fermi liquid formation in the N=4 super Yang-Mills theory coupled to fundamental hypermultiplet at nonvanishing chemical potential for the global U(1) vector symmetry. At strong 't Hooft coupling the system can be analyzed in terms of the D7 brane dynamics in AdS_5 x S^5 background. The phases with vanishing and finite charge density are separated at zero temperature by a quantum phase transition. In case of vanishing hypermultiplet mass, Karch, Son and Starinets discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are consistent with the predictions of Landau Fermi liquid theory at strong coupling. 2 authors · Aug 28, 2008
- Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for Molecule Generation We present Symphony, an E(3)-equivariant autoregressive generative model for 3D molecular geometries that iteratively builds a molecule from molecular fragments. Existing autoregressive models such as G-SchNet and G-SphereNet for molecules utilize rotationally invariant features to respect the 3D symmetries of molecules. In contrast, Symphony uses message-passing with higher-degree E(3)-equivariant features. This allows a novel representation of probability distributions via spherical harmonic signals to efficiently model the 3D geometry of molecules. We show that Symphony is able to accurately generate small molecules from the QM9 dataset, outperforming existing autoregressive models and approaching the performance of diffusion models. 4 authors · Nov 27, 2023
- Improving thermal state preparation of Sachdev-Ye-Kitaev model with reinforcement learning on quantum hardware The Sachdev-Ye-Kitaev (SYK) model, known for its strong quantum correlations and chaotic behavior, serves as a key platform for quantum gravity studies. However, variationally preparing thermal states on near-term quantum processors for large systems (N>12, where N is the number of Majorana fermions) presents a significant challenge due to the rapid growth in the complexity of parameterized quantum circuits. This paper addresses this challenge by integrating reinforcement learning (RL) with convolutional neural networks, employing an iterative approach to optimize the quantum circuit and its parameters. The refinement process is guided by a composite reward signal derived from entropy and the expectation values of the SYK Hamiltonian. This approach reduces the number of CNOT gates by two orders of magnitude for systems Ngeq12 compared to traditional methods like first-order Trotterization. We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments, maintaining high accuracy in thermal state preparation. This work advances a scalable, RL-based framework with applications for quantum gravity studies and out-of-time-ordered thermal correlators computation in quantum many-body systems on near-term quantum hardware. The code is available at https://github.com/Aqasch/solving_SYK_model_with_RL. 1 authors · Jan 20, 2025
- Approximately Piecewise E(3) Equivariant Point Networks Integrating a notion of symmetry into point cloud neural networks is a provably effective way to improve their generalization capability. Of particular interest are E(3) equivariant point cloud networks where Euclidean transformations applied to the inputs are preserved in the outputs. Recent efforts aim to extend networks that are E(3) equivariant, to accommodate inputs made of multiple parts, each of which exhibits local E(3) symmetry. In practical settings, however, the partitioning into individually transforming regions is unknown a priori. Errors in the partition prediction would unavoidably map to errors in respecting the true input symmetry. Past works have proposed different ways to predict the partition, which may exhibit uncontrolled errors in their ability to maintain equivariance to the actual partition. To this end, we introduce APEN: a general framework for constructing approximate piecewise-E(3) equivariant point networks. Our primary insight is that functions that are equivariant with respect to a finer partition will also maintain equivariance in relation to the true partition. Leveraging this observation, we propose a design where the equivariance approximation error at each layers can be bounded solely in terms of (i) uncertainty quantification of the partition prediction, and (ii) bounds on the probability of failing to suggest a proper subpartition of the ground truth one. We demonstrate the effectiveness of APEN using two data types exemplifying part-based symmetry: (i) real-world scans of room scenes containing multiple furniture-type objects; and, (ii) human motions, characterized by articulated parts exhibiting rigid movement. Our empirical results demonstrate the advantage of integrating piecewise E(3) symmetry into network design, showing a distinct improvement in generalization compared to prior works for both classification and segmentation tasks. 4 authors · Feb 13, 2024
- Faces of highest weight modules and the universal Weyl polyhedron Let V be a highest weight module over a Kac-Moody algebra g, and let conv V denote the convex hull of its weights. We determine the combinatorial isomorphism type of conv V, i.e. we completely classify the faces and their inclusions. In the special case where g is semisimple, this brings closure to a question studied by Cellini-Marietti [IMRN 2015] for the adjoint representation, and by Khare [J. Algebra 2016; Trans. Amer. Math. Soc. 2017] for most modules. The determination of faces of finite-dimensional modules up to the Weyl group action and some of their inclusions also appears in previous work of Satake [Ann. of Math. 1960], Borel-Tits [IHES Publ. Math. 1965], Vinberg [Izv. Akad. Nauk 1990], and Casselman [Austral. Math. Soc. 1997]. For any subset of the simple roots, we introduce a remarkable convex cone which we call the universal Weyl polyhedron, which controls the convex hulls of all modules parabolically induced from the corresponding Levi factor. Namely, the combinatorial isomorphism type of the cone stores the classification of faces for all such highest weight modules, as well as how faces degenerate as the highest weight gets increasingly singular. To our knowledge, this cone is new in finite and infinite type. We further answer a question of Michel Brion, by showing that the localization of conv V along a face is always the convex hull of the weights of a parabolically induced module. Finally, as we determine the inclusion relations between faces representation-theoretically from the set of weights, without recourse to convexity, we answer a similar question for highest weight modules over symmetrizable quantum groups. 2 authors · Oct 31, 2016
- From structure mining to unsupervised exploration of atomic octahedral networks Networks of atom-centered coordination octahedra commonly occur in inorganic and hybrid solid-state materials. Characterizing their spatial arrangements and characteristics is crucial for relating structures to properties for many materials families. The traditional method using case-by-case inspection becomes prohibitive for discovering trends and similarities in large datasets. Here, we operationalize chemical intuition to automate the geometric parsing, quantification, and classification of coordination octahedral networks. We find axis-resolved tilting trends in ABO_{3} perovskite polymorphs, which assist in detecting oxidation state changes. Moreover, we develop a scale-invariant encoding scheme to represent these networks, which, combined with human-assisted unsupervised machine learning, allows us to taxonomize the inorganic framework polytypes in hybrid iodoplumbates (A_xPb_yI_z). Consequently, we uncover a violation of Pauling's third rule and the design principles underpinning their topological diversity. Our results offer a glimpse into the vast design space of atomic octahedral networks and inform high-throughput, targeted screening of specific structure types. 5 authors · Jun 21, 2023
1 Electronic properties, correlated topology and Green's function zeros There is extensive current interest about electronic topology in correlated settings. In strongly correlated systems, contours of Green's function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for Mott insulator. We show that the Green's function zeros contribute to several physically measurable correlation functions, in a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical potential variations up to the Mott gap as it should be based on general considerations. Our work sets the stage for further understandings on the rich interplay among topology, symmetry and strong correlations. 6 authors · Sep 25, 2023
- Breaking supersymmetry with pure spinors For several classes of BPS vacua, we find a procedure to modify the PDEs that imply preserved supersymmetry and the equations of motion so that they still imply the latter but not the former. In each case we trace back this supersymmetry-breaking deformation to a distinct modification of the pure spinor equations that provide a geometrical interpretation of supersymmetry. We give some concrete examples: first we generalize the Imamura class of Mink6 solutions by removing a symmetry requirement, and then derive some local and global solutions both before and after breaking supersymmetry. 2 authors · Nov 27, 2019
- How Jellyfish Characterise Alternating Group Equivariant Neural Networks We provide a full characterisation of all of the possible alternating group (A_n) equivariant neural networks whose layers are some tensor power of R^{n}. In particular, we find a basis of matrices for the learnable, linear, A_n-equivariant layer functions between such tensor power spaces in the standard basis of R^{n}. We also describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries. 1 authors · Jan 24, 2023
- Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies Kerr nonlinear oscillators driven by a two-photon process are promising systems to encode quantum information and to ensure a hardware-efficient scaling towards fault-tolerant quantum computation. In this paper, we show that an extra control parameter, the detuning of the two-photon drive with respect to the oscillator resonance, plays a crucial role in the properties of the defined qubit. At specific values of this detuning, we benefit from strong symmetries in the system, leading to multiple degeneracies in the spectrum of the effective confinement Hamiltonian. Overall, these degeneracies lead to a stronger suppression of bit-flip errors. We also study the combination of such Hamiltonian confinement with colored dissipation to suppress leakage outside of the bosonic code space. We show that the additional degeneracies allow us to perform fast and high-fidelity gates while preserving a strong suppression of bit-flip errors. 4 authors · Nov 7, 2022
- Flat matrix models for quantum permutation groups We study the matrix models pi:C(S_N^+)to M_N(C(X)) which are flat, in the sense that the standard generators of C(S_N^+) are mapped to rank 1 projections. Our first result is a generalization of the Pauli matrix construction at N=4, using finite groups and 2-cocycles. Our second result is the construction of a universal representation of C(S_N^+), inspired from the Sinkhorn algorithm, that we conjecture to be inner faithful. 2 authors · Feb 14, 2016