Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure
Code pre-trained models (CodePTMs) have recently demonstrated significant success in code intelligence. To interpret these models, some probing methods have been applied. However, these methods fail to consider the inherent characteristics of codes. In this paper, to address the problem, we propose a novel probing method CAT-probing to quantitatively interpret how CodePTMs attend code structure. We first denoise the input code sequences based on the token types pre-defined by the compilers to filter those tokens whose attention scores are too small. After that, we define a new metric CAT-score to measure the commonality between the token-level attention scores generated in CodePTMs and the pair-wise distances between corresponding AST nodes. The higher the CAT-score, the stronger the ability of CodePTMs to capture code structure. We conduct extensive experiments to integrate CAT-probing with representative CodePTMs for different programming languages. Experimental results show the effectiveness of CAT-probing in CodePTM interpretation. Our codes and data are publicly available at https://github.com/nchen909/CodeAttention.
Not All Models Localize Linguistic Knowledge in the Same Place: A Layer-wise Probing on BERToids' Representations
Most of the recent works on probing representations have focused on BERT, with the presumption that the findings might be similar to the other models. In this work, we extend the probing studies to two other models in the family, namely ELECTRA and XLNet, showing that variations in the pre-training objectives or architectural choices can result in different behaviors in encoding linguistic information in the representations. Most notably, we observe that ELECTRA tends to encode linguistic knowledge in the deeper layers, whereas XLNet instead concentrates that in the earlier layers. Also, the former model undergoes a slight change during fine-tuning, whereas the latter experiences significant adjustments. Moreover, we show that drawing conclusions based on the weight mixing evaluation strategy -- which is widely used in the context of layer-wise probing -- can be misleading given the norm disparity of the representations across different layers. Instead, we adopt an alternative information-theoretic probing with minimum description length, which has recently been proven to provide more reliable and informative results.
Give Me the Facts! A Survey on Factual Knowledge Probing in Pre-trained Language Models
Pre-trained Language Models (PLMs) are trained on vast unlabeled data, rich in world knowledge. This fact has sparked the interest of the community in quantifying the amount of factual knowledge present in PLMs, as this explains their performance on downstream tasks, and potentially justifies their use as knowledge bases. In this work, we survey methods and datasets that are used to probe PLMs for factual knowledge. Our contributions are: (1) We propose a categorization scheme for factual probing methods that is based on how their inputs, outputs and the probed PLMs are adapted; (2) We provide an overview of the datasets used for factual probing; (3) We synthesize insights about knowledge retention and prompt optimization in PLMs, analyze obstacles to adopting PLMs as knowledge bases and outline directions for future work.
False Sense of Security: Why Probing-based Malicious Input Detection Fails to Generalize
Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.
Can this Model Also Recognize Dogs? Zero-Shot Model Search from Weights
With the increasing numbers of publicly available models, there are probably pretrained, online models for most tasks users require. However, current model search methods are rudimentary, essentially a text-based search in the documentation, thus users cannot find the relevant models. This paper presents ProbeLog, a method for retrieving classification models that can recognize a target concept, such as "Dog", without access to model metadata or training data. Differently from previous probing methods, ProbeLog computes a descriptor for each output dimension (logit) of each model, by observing its responses on a fixed set of inputs (probes). Our method supports both logit-based retrieval ("find more logits like this") and zero-shot, text-based retrieval ("find all logits corresponding to dogs"). As probing-based representations require multiple costly feedforward passes through the model, we develop a method, based on collaborative filtering, that reduces the cost of encoding repositories by 3x. We demonstrate that ProbeLog achieves high retrieval accuracy, both in real-world and fine-grained search tasks and is scalable to full-size repositories.
Meta-Models: An Architecture for Decoding LLM Behaviors Through Interpreted Embeddings and Natural Language
As Large Language Models (LLMs) become increasingly integrated into our daily lives, the potential harms from deceptive behavior underlie the need for faithfully interpreting their decision-making. While traditional probing methods have shown some effectiveness, they remain best for narrowly scoped tasks while more comprehensive explanations are still necessary. To this end, we investigate meta-models-an architecture using a "meta-model" that takes activations from an "input-model" and answers natural language questions about the input-model's behaviors. We evaluate the meta-model's ability to generalize by training them on selected task types and assessing their out-of-distribution performance in deceptive scenarios. Our findings show that meta-models generalize well to out-of-distribution tasks and point towards opportunities for future research in this area. Our code is available at https://github.com/acostarelli/meta-models-public .
Eliciting Latent Knowledge from Quirky Language Models
Eliciting Latent Knowledge (ELK) aims to find patterns in a neural network's activations which robustly track the true state of the world, even when the network's overt output is false or misleading. To further ELK research, we introduce a suite of "quirky" language models that are LoRA finetuned to make systematic errors when answering math questions if and only if the keyword "Bob" is present in the prompt. We demonstrate that simple probing methods can elicit the model's latent knowledge of the correct answer in these contexts, even for problems harder than those the probe was trained on. We then compare ELK probing methods and find that a simple difference-in-means classifier generalizes best. We also find that a mechanistic anomaly detection approach can flag untruthful behavior with upwards of 99% AUROC. Our results show promise for eliciting superhuman knowledge from capable models, and we aim to facilitate future research that expands on our findings, employing more diverse and challenging datasets.
RuSentEval: Linguistic Source, Encoder Force!
The success of pre-trained transformer language models has brought a great deal of interest on how these models work, and what they learn about language. However, prior research in the field is mainly devoted to English, and little is known regarding other languages. To this end, we introduce RuSentEval, an enhanced set of 14 probing tasks for Russian, including ones that have not been explored yet. We apply a combination of complementary probing methods to explore the distribution of various linguistic properties in five multilingual transformers for two typologically contrasting languages -- Russian and English. Our results provide intriguing findings that contradict the common understanding of how linguistic knowledge is represented, and demonstrate that some properties are learned in a similar manner despite the language differences.
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts
The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.
Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs
We propose semantic entropy probes (SEPs), a cheap and reliable method for uncertainty quantification in Large Language Models (LLMs). Hallucinations, which are plausible-sounding but factually incorrect and arbitrary model generations, present a major challenge to the practical adoption of LLMs. Recent work by Farquhar et al. (2024) proposes semantic entropy (SE), which can detect hallucinations by estimating uncertainty in the space semantic meaning for a set of model generations. However, the 5-to-10-fold increase in computation cost associated with SE computation hinders practical adoption. To address this, we propose SEPs, which directly approximate SE from the hidden states of a single generation. SEPs are simple to train and do not require sampling multiple model generations at test time, reducing the overhead of semantic uncertainty quantification to almost zero. We show that SEPs retain high performance for hallucination detection and generalize better to out-of-distribution data than previous probing methods that directly predict model accuracy. Our results across models and tasks suggest that model hidden states capture SE, and our ablation studies give further insights into the token positions and model layers for which this is the case.
The Trilemma of Truth in Large Language Models
We often attribute human characteristics to large language models (LLMs) and claim that they "know" certain things. LLMs have an internal probabilistic knowledge that represents information retained during training. How can we assess the veracity of this knowledge? We examine two common methods for probing the veracity of LLMs and discover several assumptions that are flawed. To address these flawed assumptions, we introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning), a probing method that utilizes the internal activations of LLMs to separate statements into true, false, and neither. sAwMIL is based on multiple-instance learning and conformal prediction. We evaluate sAwMIL on 5 validity criteria across 16 open-source LLMs, including both default and chat-based variants, as well as on 3 new datasets. Among the insights we provide are: (1) the veracity signal is often concentrated in the third quarter of an LLM's depth; (2) truth and falsehood signals are not always symmetric; (3) linear probes perform better on chat models than on default models; (4) nonlinear probes may be required to capture veracity signals for some LLMs with reinforcement learning from human feedback or knowledge distillation; and (5) LLMs capture a third type of signal that is distinct from true and false and is neither true nor false. These findings provide a reliable method for verifying what LLMs "know" and how certain they are of their probabilistic internal knowledge.
An Analysis of Social Biases Present in BERT Variants Across Multiple Languages
Although large pre-trained language models have achieved great success in many NLP tasks, it has been shown that they reflect human biases from their pre-training corpora. This bias may lead to undesirable outcomes when these models are applied in real-world settings. In this paper, we investigate the bias present in monolingual BERT models across a diverse set of languages (English, Greek, and Persian). While recent research has mostly focused on gender-related biases, we analyze religious and ethnic biases as well and propose a template-based method to measure any kind of bias, based on sentence pseudo-likelihood, that can handle morphologically complex languages with gender-based adjective declensions. We analyze each monolingual model via this method and visualize cultural similarities and differences across different dimensions of bias. Ultimately, we conclude that current methods of probing for bias are highly language-dependent, necessitating cultural insights regarding the unique ways bias is expressed in each language and culture (e.g. through coded language, synecdoche, and other similar linguistic concepts). We also hypothesize that higher measured social biases in the non-English BERT models correlate with user-generated content in their training.
Probing Preference Representations: A Multi-Dimensional Evaluation and Analysis Method for Reward Models
Previous methods evaluate reward models by testing them on a fixed pairwise ranking test set, but they typically do not provide performance information on each preference dimension. In this work, we address the evaluation challenge of reward models by probing preference representations. To confirm the effectiveness of this evaluation method, we construct a Multi-dimensional Reward Model Benchmark (MRMBench), a collection of six probing tasks for different preference dimensions. We design it to favor and encourage reward models that better capture preferences across different dimensions. Furthermore, we introduce an analysis method, inference-time probing, which identifies the dimensions used during the reward prediction and enhances its interpretability. Through extensive experiments, we find that MRMBench strongly correlates with the alignment performance of large language models (LLMs), making it a reliable reference for developing advanced reward models. Our analysis of MRMBench evaluation results reveals that reward models often struggle to capture preferences across multiple dimensions, highlighting the potential of multi-objective optimization in reward modeling. Additionally, our findings show that the proposed inference-time probing method offers a reliable metric for assessing the confidence of reward predictions, which ultimately improves the alignment of LLMs.
Probing Off-diagonal Eigenstate Thermalization with Tensor Networks
Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases.
Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions
Large language models, despite extensive alignment with human values and ethical principles, remain vulnerable to sophisticated jailbreak attacks that exploit their reasoning abilities. Existing safety measures often detect overt malicious intent but fail to address subtle, reasoning-driven vulnerabilities. In this work, we introduce POATE (Polar Opposite query generation, Adversarial Template construction, and Elaboration), a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses. POATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety. We conduct extensive evaluation across six diverse language model families of varying parameter sizes to demonstrate the robustness of the attack, achieving significantly higher attack success rates (~44%) compared to existing methods. To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses. These methods enhance reasoning robustness and strengthen the model's defense against adversarial exploits.
Probing Quantifier Comprehension in Large Language Models: Another Example of Inverse Scaling
With their increasing size, large language models (LLMs) are becoming increasingly good at language understanding tasks. But even with high performance on specific downstream task, LLMs fail at simple linguistic tests for negation or quantifier understanding. Previous work on quantifier understanding in LLMs show inverse scaling in understanding few-type quantifiers. In this paper, we question the claims of of previous work and show that it is a result of inappropriate testing methodology. We also present alternate methods to measure quantifier comprehension in LLMs and show that LLMs are able to better understand the difference between the meaning of few-type and most-type quantifiers as their size increases, although they are not particularly good at it. We also observe inverse scaling for most-type quantifier understanding, which is contrary to human psycho-linguistic experiments and previous work, where the model's understanding of most-type quantifier gets worse as the model size increases. We do this evaluation on models ranging from 125M-175B parameters, which suggests that LLMs do not do as well as expected with quantifiers. We also discuss the possible reasons for this and the relevance of quantifier understanding in evaluating language understanding in LLMs.
Sentinel: Attention Probing of Proxy Models for LLM Context Compression with an Understanding Perspective
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external context, but retrieved passages are often lengthy, noisy, or exceed input limits. Existing compression methods typically require supervised training of dedicated compression models, increasing cost and reducing portability. We propose Sentinel, a lightweight sentence-level compression framework that reframes context filtering as an attention-based understanding task. Rather than training a compression model, Sentinel probes decoder attention from an off-the-shelf 0.5B proxy LLM using a lightweight classifier to identify sentence relevance. Empirically, we find that query-context relevance estimation is consistent across model scales, with 0.5B proxies closely matching the behaviors of larger models. On the LongBench benchmark, Sentinel achieves up to 5times compression while matching the QA performance of 7B-scale compression systems. Our results suggest that probing native attention signals enables fast, effective, and question-aware context compression. Code available at: https://github.com/yzhangchuck/Sentinel.
Verifying Robust Unlearning: Probing Residual Knowledge in Unlearned Models
Machine Unlearning (MUL) is crucial for privacy protection and content regulation, yet recent studies reveal that traces of forgotten information persist in unlearned models, enabling adversaries to resurface removed knowledge. Existing verification methods only confirm whether unlearning was executed, failing to detect such residual information leaks. To address this, we introduce the concept of Robust Unlearning, ensuring models are indistinguishable from retraining and resistant to adversarial recovery. To empirically evaluate whether unlearning techniques meet this security standard, we propose the Unlearning Mapping Attack (UMA), a post-unlearning verification framework that actively probes models for forgotten traces using adversarial queries. Extensive experiments on discriminative and generative tasks show that existing unlearning techniques remain vulnerable, even when passing existing verification metrics. By establishing UMA as a practical verification tool, this study sets a new standard for assessing and enhancing machine unlearning security.
STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence
Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.
Probing Out-of-Distribution Robustness of Language Models with Parameter-Efficient Transfer Learning
As the size of the pre-trained language model (PLM) continues to increase, numerous parameter-efficient transfer learning methods have been proposed recently to compensate for the tremendous cost of fine-tuning. Despite the impressive results achieved by large pre-trained language models (PLMs) and various parameter-efficient transfer learning (PETL) methods on sundry benchmarks, it remains unclear if they can handle inputs that have been distributionally shifted effectively. In this study, we systematically explore how the ability to detect out-of-distribution (OOD) changes as the size of the PLM grows or the transfer methods are altered. Specifically, we evaluated various PETL techniques, including fine-tuning, Adapter, LoRA, and prefix-tuning, on three different intention classification tasks, each utilizing various language models with different scales.
Probing-RAG: Self-Probing to Guide Language Models in Selective Document Retrieval
Retrieval-Augmented Generation (RAG) enhances language models by retrieving and incorporating relevant external knowledge. However, traditional retrieve-and-generate processes may not be optimized for real-world scenarios, where queries might require multiple retrieval steps or none at all. In this paper, we propose a Probing-RAG, which utilizes the hidden state representations from the intermediate layers of language models to adaptively determine the necessity of additional retrievals for a given query. By employing a pre-trained prober, Probing-RAG effectively captures the model's internal cognition, enabling reliable decision-making about retrieving external documents. Experimental results across five open-domain QA datasets demonstrate that Probing-RAG outperforms previous methods while reducing the number of redundant retrieval steps.
LiDAR: Sensing Linear Probing Performance in Joint Embedding SSL Architectures
Joint embedding (JE) architectures have emerged as a promising avenue for acquiring transferable data representations. A key obstacle to using JE methods, however, is the inherent challenge of evaluating learned representations without access to a downstream task, and an annotated dataset. Without efficient and reliable evaluation, it is difficult to iterate on architectural and training choices for JE methods. In this paper, we introduce LiDAR (Linear Discriminant Analysis Rank), a metric designed to measure the quality of representations within JE architectures. Our metric addresses several shortcomings of recent approaches based on feature covariance rank by discriminating between informative and uninformative features. In essence, LiDAR quantifies the rank of the Linear Discriminant Analysis (LDA) matrix associated with the surrogate SSL task -- a measure that intuitively captures the information content as it pertains to solving the SSL task. We empirically demonstrate that LiDAR significantly surpasses naive rank based approaches in its predictive power of optimal hyperparameters. Our proposed criterion presents a more robust and intuitive means of assessing the quality of representations within JE architectures, which we hope facilitates broader adoption of these powerful techniques in various domains.
CHARP: Conversation History AwaReness Probing for Knowledge-grounded Dialogue Systems
In this work, we dive deep into one of the popular knowledge-grounded dialogue benchmarks that focus on faithfulness, FaithDial. We show that a significant portion of the FaithDial data contains annotation artifacts, which may bias models towards completely ignoring the conversation history. We therefore introduce CHARP, a diagnostic test set, designed for an improved evaluation of hallucinations in conversational model. CHARP not only measures hallucination but also the compliance of the models to the conversation task. Our extensive analysis reveals that models primarily exhibit poor performance on CHARP due to their inability to effectively attend to and reason over the conversation history. Furthermore, the evaluation methods of FaithDial fail to capture these shortcomings, neglecting the conversational history. Our findings indicate that there is substantial room for contribution in both dataset creation and hallucination evaluation for knowledge-grounded dialogue, and that CHARP can serve as a tool for monitoring the progress in this particular research area. CHARP is publicly available at https://huggingface.co/datasets/huawei-noah/CHARP
Social Bias Probing: Fairness Benchmarking for Language Models
While the impact of social biases in language models has been recognized, prior methods for bias evaluation have been limited to binary association tests on small datasets, limiting our understanding of bias complexities. This paper proposes a novel framework for probing language models for social biases by assessing disparate treatment, which involves treating individuals differently according to their affiliation with a sensitive demographic group. We curate SoFa, a large-scale benchmark designed to address the limitations of existing fairness collections. SoFa expands the analysis beyond the binary comparison of stereotypical versus anti-stereotypical identities to include a diverse range of identities and stereotypes. Comparing our methodology with existing benchmarks, we reveal that biases within language models are more nuanced than acknowledged, indicating a broader scope of encoded biases than previously recognized. Benchmarking LMs on SoFa, we expose how identities expressing different religions lead to the most pronounced disparate treatments across all models. Finally, our findings indicate that real-life adversities faced by various groups such as women and people with disabilities are mirrored in the behavior of these models.
Tuning Pre-trained Model via Moment Probing
Recently, efficient fine-tuning of large-scale pre-trained models has attracted increasing research interests, where linear probing (LP) as a fundamental module is involved in exploiting the final representations for task-dependent classification. However, most of the existing methods focus on how to effectively introduce a few of learnable parameters, and little work pays attention to the commonly used LP module. In this paper, we propose a novel Moment Probing (MP) method to further explore the potential of LP. Distinguished from LP which builds a linear classification head based on the mean of final features (e.g., word tokens for ViT) or classification tokens, our MP performs a linear classifier on feature distribution, which provides the stronger representation ability by exploiting richer statistical information inherent in features. Specifically, we represent feature distribution by its characteristic function, which is efficiently approximated by using first- and second-order moments of features. Furthermore, we propose a multi-head convolutional cross-covariance (MHC^3) to compute second-order moments in an efficient and effective manner. By considering that MP could affect feature learning, we introduce a partially shared module to learn two recalibrating parameters (PSRP) for backbones based on MP, namely MP_{+}. Extensive experiments on ten benchmarks using various models show that our MP significantly outperforms LP and is competitive with counterparts at less training cost, while our MP_{+} achieves state-of-the-art performance.
Evaluation of sentence embeddings in downstream and linguistic probing tasks
Despite the fast developmental pace of new sentence embedding methods, it is still challenging to find comprehensive evaluations of these different techniques. In the past years, we saw significant improvements in the field of sentence embeddings and especially towards the development of universal sentence encoders that could provide inductive transfer to a wide variety of downstream tasks. In this work, we perform a comprehensive evaluation of recent methods using a wide variety of downstream and linguistic feature probing tasks. We show that a simple approach using bag-of-words with a recently introduced language model for deep context-dependent word embeddings proved to yield better results in many tasks when compared to sentence encoders trained on entailment datasets. We also show, however, that we are still far away from a universal encoder that can perform consistently across several downstream tasks.
MINED: Probing and Updating with Multimodal Time-Sensitive Knowledge for Large Multimodal Models
Large Multimodal Models (LMMs) encode rich factual knowledge via cross-modal pre-training, yet their static representations struggle to maintain an accurate understanding of time-sensitive factual knowledge. Existing benchmarks remain constrained by static designs, inadequately evaluating LMMs' ability to understand time-sensitive knowledge. To address this gap, we propose MINED, a comprehensive benchmark that evaluates temporal awareness along 6 key dimensions and 11 challenging tasks: cognition, awareness, trustworthiness, understanding, reasoning, and robustness. MINED is constructed from Wikipedia by two professional annotators, containing 2,104 time-sensitive knowledge samples spanning six knowledge types. Evaluating 15 widely used LMMs on MINED shows that Gemini-2.5-Pro achieves the highest average CEM score of 63.07, while most open-source LMMs still lack time understanding ability. Meanwhile, LMMs perform best on organization knowledge, whereas their performance is weakest on sport. To address these challenges, we investigate the feasibility of updating time-sensitive knowledge in LMMs through knowledge editing methods and observe that LMMs can effectively update knowledge via knowledge editing methods in single editing scenarios.
Counterfactual Probing for Hallucination Detection and Mitigation in Large Language Models
Large Language Models have demonstrated remarkable capabilities across diverse tasks, yet they frequently generate hallucinations outputs that are fluent but factually incorrect or unsupported. We propose Counterfactual Probing, a novel approach for detecting and mitigating hallucinations in LLM outputs. Our method dynamically generates counterfactual statements that appear plausible but contain subtle factual errors, then evaluates the model's sensitivity to these perturbations. We hypothesize that genuine knowledge exhibits robustness to counterfactual variations, while hallucinated content shows inconsistent confidence patterns when confronted with plausible alternatives. Our comprehensive evaluation on TruthfulQA, factual statement datasets, and curated hallucination examples demonstrates that counterfactual probing achieves superior detection performance compared to baseline methods, while our adaptive mitigation strategies reduce hallucination scores by an average of 24.5%. The approach requires no model retraining and can be integrated into existing LLM pipelines as a realtime verification mechanism.
CommunityLM: Probing Partisan Worldviews from Language Models
As political attitudes have diverged ideologically in the United States, political speech has diverged lingusitically. The ever-widening polarization between the US political parties is accelerated by an erosion of mutual understanding between them. We aim to make these communities more comprehensible to each other with a framework that probes community-specific responses to the same survey questions using community language models CommunityLM. In our framework we identify committed partisan members for each community on Twitter and fine-tune LMs on the tweets authored by them. We then assess the worldviews of the two groups using prompt-based probing of their corresponding LMs, with prompts that elicit opinions about public figures and groups surveyed by the American National Election Studies (ANES) 2020 Exploratory Testing Survey. We compare the responses generated by the LMs to the ANES survey results, and find a level of alignment that greatly exceeds several baseline methods. Our work aims to show that we can use community LMs to query the worldview of any group of people given a sufficiently large sample of their social media discussions or media diet.
Attention, Please! Revisiting Attentive Probing for Masked Image Modeling
As fine-tuning (FT) becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol for self-supervised learning (SSL). Yet, the standard linear probing (LP) fails to adequately reflect the potential of models trained with Masked Image Modeling (MIM), due to the distributed nature of patch tokens. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy-efficiency trade-off. We conduct a systematic study of existing methods, analyzing their mechanisms and benchmarking their performance. We introduce efficient probing (EP), a multi-query cross-attention mechanism that eliminates redundant projections, reduces the number of trainable parameters, and achieves up to a 10times speed-up over conventional multi-head attention. Despite its simplicity, EP outperforms LP and prior attentive probing approaches across seven benchmarks, generalizes well beyond MIM to diverse pre-training paradigms, produces interpretable attention maps, and achieves strong gains in low-shot and layer-wise settings. Code available at https://github.com/billpsomas/efficient-probing.
CausalGym: Benchmarking causal interpretability methods on linguistic tasks
Language models (LMs) have proven to be powerful tools for psycholinguistic research, but most prior work has focused on purely behavioural measures (e.g., surprisal comparisons). At the same time, research in model interpretability has begun to illuminate the abstract causal mechanisms shaping LM behavior. To help bring these strands of research closer together, we introduce CausalGym. We adapt and expand the SyntaxGym suite of tasks to benchmark the ability of interpretability methods to causally affect model behaviour. To illustrate how CausalGym can be used, we study the pythia models (14M--6.9B) and assess the causal efficacy of a wide range of interpretability methods, including linear probing and distributed alignment search (DAS). We find that DAS outperforms the other methods, and so we use it to study the learning trajectory of two difficult linguistic phenomena in pythia-1b: negative polarity item licensing and filler--gap dependencies. Our analysis shows that the mechanism implementing both of these tasks is learned in discrete stages, not gradually.
Polarity-Aware Probing for Quantifying Latent Alignment in Language Models
Advances in unsupervised probes such as Contrast-Consistent Search (CCS), which reveal latent beliefs without relying on token outputs, raise the question of whether these methods can reliably assess model alignment. We investigate this by examining the sensitivity of CCS to harmful vs. safe statements and by introducing Polarity-Aware CCS (PA-CCS), a method for evaluating whether a model's internal representations remain consistent under polarity inversion. We propose two alignment-oriented metrics, Polar-Consistency and the Contradiction Index, to quantify the semantic robustness of a model's latent knowledge. To validate PA-CCS, we curate two main datasets and one control dataset containing matched harmful-safe sentence pairs constructed using different methodologies (concurrent and antagonistic statements). We apply PA-CCS to 16 language models. Our results show that PA-CCS identifies both architectural and layer-specific differences in the encoding of latent harmful knowledge. Notably, replacing the negation token with a meaningless marker degrades PA-CCS scores for models with well-aligned internal representations, while models lacking robust internal calibration do not exhibit this degradation. Our findings highlight the potential of unsupervised probing for alignment evaluation and emphasize the need to incorporate structural robustness checks into interpretability benchmarks. Code and datasets are available at: https://github.com/SadSabrina/polarity-probing. WARNING: This paper contains potentially sensitive, harmful, and offensive content.
CoT Vectors: Transferring and Probing the Reasoning Mechanisms of LLMs
Chain-of-Thought (CoT) prompting has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs). However, existing implementations, such as in-context learning and fine-tuning, remain costly and inefficient. To improve CoT reasoning at a lower cost, and inspired by the task vector paradigm, we introduce CoT Vectors, compact representations that encode task-general, multi-step reasoning knowledge. Through experiments with Extracted CoT Vectors, we observe pronounced layer-wise instability, manifesting as a U-shaped performance curve that reflects a systematic three-stage reasoning process in LLMs. To address this limitation, we propose Learnable CoT Vectors, optimized under a teacher-student framework to provide more stable and robust guidance. Extensive evaluations across diverse benchmarks and models demonstrate that CoT Vectors not only outperform existing baselines but also achieve performance comparable to parameter-efficient fine-tuning methods, while requiring fewer trainable parameters. Moreover, by treating CoT Vectors as a probe, we uncover how their effectiveness varies due to latent space structure, information density, acquisition mechanisms, and pre-training differences, offering new insights into the functional organization of multi-step reasoning in LLMs. The source code will be released.
BabyLM's First Words: Word Segmentation as a Phonological Probing Task
Language models provide a key framework for studying linguistic theories based on prediction, but phonological analysis using large language models (LLMs) is difficult; there are few phonological benchmarks beyond English and the standard input representation used in LLMs (subwords of graphemes) is not suitable for analyzing the representation of phonemes. In this work, we demonstrate how word segmentation can be used as a phonological probing task, allowing us to study the representations learned by phoneme-based language models trained on child-directed speech across 31 languages. Following computational models of word segmentation, we present unsupervised methods for extracting word boundaries from a trained model using the observation that prediction-error peaks at the start of words. We also use linear probes to identify that these models implicitly track word boundaries, even when they do not appear in training. This cross-lingual work corroborates statistical learning theories of acquisition and empirically motivates new methods for training subword tokenizers.
Benchmarking Vision-Language Contrastive Methods for Medical Representation Learning
We perform a comprehensive benchmarking of contrastive frameworks for learning multimodal representations in the medical domain. Through this study, we aim to answer the following research questions: (i) How transferable are general-domain representations to the medical domain? (ii) Is multimodal contrastive training sufficient, or does it benefit from unimodal training as well? (iii) What is the impact of feature granularity on the effectiveness of multimodal medical representation learning? To answer these questions, we investigate eight contrastive learning approaches under identical training setups, and train them on 2.8 million image-text pairs from four datasets, and evaluate them on 25 downstream tasks, including classification (zero-shot and linear probing), image-to-text and text-to-image retrieval, and visual question-answering. Our findings suggest a positive answer to the first question, a negative answer to the second question, and the benefit of learning fine-grained features. Finally, we make our code publicly available.
Do NLP Models Know Numbers? Probing Numeracy in Embeddings
The ability to understand and work with numbers (numeracy) is critical for many complex reasoning tasks. Currently, most NLP models treat numbers in text in the same way as other tokens---they embed them as distributed vectors. Is this enough to capture numeracy? We begin by investigating the numerical reasoning capabilities of a state-of-the-art question answering model on the DROP dataset. We find this model excels on questions that require numerical reasoning, i.e., it already captures numeracy. To understand how this capability emerges, we probe token embedding methods (e.g., BERT, GloVe) on synthetic list maximum, number decoding, and addition tasks. A surprising degree of numeracy is naturally present in standard embeddings. For example, GloVe and word2vec accurately encode magnitude for numbers up to 1,000. Furthermore, character-level embeddings are even more precise---ELMo captures numeracy the best for all pre-trained methods---but BERT, which uses sub-word units, is less exact.
Worse than Random? An Embarrassingly Simple Probing Evaluation of Large Multimodal Models in Medical VQA
Large Multimodal Models (LMMs) have shown remarkable progress in the field of medical Visual Question Answering (Med-VQA), achieving high accuracy on existing benchmarks. However, their reliability under robust evaluation is questionable. This study reveals that state-of-the-art models, when subjected to simple probing evaluation, perform worse than random guessing on medical diagnosis questions. To address this critical evaluation problem, we introduce the Probing Evaluation for Medical Diagnosis (ProbMed) dataset to rigorously assess LMM performance in medical imaging through probing evaluation and procedural diagnosis. Particularly, probing evaluation features pairing original questions with negation questions with hallucinated attributes, while procedural diagnosis requires reasoning across various diagnostic dimensions for each image, including modality recognition, organ identification, clinical findings, abnormalities, and positional grounding. Our evaluation reveals that top-performing models like GPT-4V and Gemini Pro perform worse than random guessing on specialized diagnostic questions, indicating significant limitations in handling fine-grained medical inquiries. Besides, models like LLaVA-Med struggle even with more general questions, and results from CheXagent demonstrate the transferability of expertise across different modalities of the same organ, showing that specialized domain knowledge is still crucial for improving performance. This study underscores the urgent need for more robust evaluation to ensure the reliability of LMMs in critical fields like medical diagnosis, and current LMMs are still far from applicable to those fields.
Foundation Models for Discovery and Exploration in Chemical Space
Accurate prediction of atomistic, thermodynamic, and kinetic properties from molecular structures underpins materials innovation. Existing computational and experimental approaches lack the scalability required to efficiently navigate chemical space. Scientific foundation models trained on large unlabeled datasets offer a path toward exploring chemical space across diverse application domains. Here we develop MIST, a family of molecular foundation models with up to an order of magnitude more parameters and data than prior works. Trained using a novel tokenization scheme that comprehensively captures nuclear, electronic, and geometric information, MIST learns from a diverse range of molecules. MIST models have been fine-tuned to predict more than 400 structure -- property relationships and match or exceed state-of-the-art performance across benchmarks spanning physiology, electrochemistry, and quantum chemistry. We demonstrate the ability of these models to solve real-world problems across chemical space, including multiobjective electrolyte solvent screening, olfactory perception mapping, isotope half-life prediction, stereochemical reasoning for chiral organometallic compounds, and binary and multi-component mixture property prediction. Probing MIST models using mechanistic interpretability methods reveals identifiable patterns and trends not explicitly present in the training data, suggesting that the models learn generalizable scientific concepts. We formulate hyperparameter-penalized Bayesian neural scaling laws and use them to reduce the computational cost of model development by an order of magnitude. The methods and findings presented here represent a significant step toward accelerating materials discovery, design, and optimization using foundation models and provide valuable guidance for training compute-optimal scientific foundation models.
Beyond Transcription: Mechanistic Interpretability in ASR
Interpretability methods have recently gained significant attention, particularly in the context of large language models, enabling insights into linguistic representations, error detection, and model behaviors such as hallucinations and repetitions. However, these techniques remain underexplored in automatic speech recognition (ASR), despite their potential to advance both the performance and interpretability of ASR systems. In this work, we adapt and systematically apply established interpretability methods such as logit lens, linear probing, and activation patching, to examine how acoustic and semantic information evolves across layers in ASR systems. Our experiments reveal previously unknown internal dynamics, including specific encoder-decoder interactions responsible for repetition hallucinations and semantic biases encoded deep within acoustic representations. These insights demonstrate the benefits of extending and applying interpretability techniques to speech recognition, opening promising directions for future research on improving model transparency and robustness.
Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting inconsistencies confined to a single modality, particularly in text, but struggle with cross-modal conflicts and complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.
Propositional Interpretability in Artificial Intelligence
Mechanistic interpretability is the program of explaining what AI systems are doing in terms of their internal mechanisms. I analyze some aspects of the program, along with setting out some concrete challenges and assessing progress to date. I argue for the importance of propositional interpretability, which involves interpreting a system's mechanisms and behavior in terms of propositional attitudes: attitudes (such as belief, desire, or subjective probability) to propositions (e.g. the proposition that it is hot outside). Propositional attitudes are the central way that we interpret and explain human beings and they are likely to be central in AI too. A central challenge is what I call thought logging: creating systems that log all of the relevant propositional attitudes in an AI system over time. I examine currently popular methods of interpretability (such as probing, sparse auto-encoders, and chain of thought methods) as well as philosophical methods of interpretation (including those grounded in psychosemantics) to assess their strengths and weaknesses as methods of propositional interpretability.
Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence
Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.
TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset, progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including Edge Attribution Patching and Sparse Autoencoders, to identify minimal circuits and components supporting SQL generation. We compare circuits for different SQL subskills, evaluating their minimality, reliability, and identifiability. Finally, we conduct a layerwise logit lens analysis to reveal how models compose SQL queries across layers: from intent recognition to schema resolution to structured generation. Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
Images are Worth Variable Length of Representations
Most existing vision encoders map images into a fixed-length sequence of tokens, overlooking the fact that different images contain varying amounts of information. For example, a visually complex image (e.g., a cluttered room) inherently carries more information and thus deserves more tokens than a simple image (e.g., a blank wall). To address this inefficiency, we propose DOVE, a dynamic vision encoder that produces a variable number of visual tokens (i.e., continuous representation vectors) to reconstruct each image. Our results show that DOVE significantly reduces the average number of tokens while maintaining high reconstruction quality. In several linear probing and downstream multimodal tasks, it outperforms existing autoencoder-based tokenization methods when using far fewer tokens, capturing more expressive semantic features compared to fixed-length encoding. We further extend DOVE with query-conditioned tokenization. By guiding the model to focus on query-relevant regions, it achieves more efficient and targeted semantic extraction. Our code and checkpoints are available at https://dove-encoder.github.io/dove-encoder.
What Does BERT Look At? An Analysis of BERT's Attention
Large pre-trained neural networks such as BERT have had great recent success in NLP, motivating a growing body of research investigating what aspects of language they are able to learn from unlabeled data. Most recent analysis has focused on model outputs (e.g., language model surprisal) or internal vector representations (e.g., probing classifiers). Complementary to these works, we propose methods for analyzing the attention mechanisms of pre-trained models and apply them to BERT. BERT's attention heads exhibit patterns such as attending to delimiter tokens, specific positional offsets, or broadly attending over the whole sentence, with heads in the same layer often exhibiting similar behaviors. We further show that certain attention heads correspond well to linguistic notions of syntax and coreference. For example, we find heads that attend to the direct objects of verbs, determiners of nouns, objects of prepositions, and coreferent mentions with remarkably high accuracy. Lastly, we propose an attention-based probing classifier and use it to further demonstrate that substantial syntactic information is captured in BERT's attention.
Eliciting In-context Retrieval and Reasoning for Long-context Large Language Models
Recent advancements in long-context language models (LCLMs) promise to transform Retrieval-Augmented Generation (RAG) by simplifying pipelines. With their expanded context windows, LCLMs can process entire knowledge bases and perform retrieval and reasoning directly -- a capability we define as In-Context Retrieval and Reasoning (ICR^2). However, existing benchmarks like LOFT often overestimate LCLM performance by providing overly simplified contexts. To address this, we introduce ICR^2, a benchmark that evaluates LCLMs in more realistic scenarios by including confounding passages retrieved with strong retrievers. We then propose three methods to enhance LCLM performance: (1) retrieve-then-generate fine-tuning, (2) retrieval-attention-probing, which uses attention heads to filter and de-noise long contexts during decoding, and (3) joint retrieval head training alongside the generation head. Our evaluation of five well-known LCLMs on LOFT and ICR^2 demonstrates significant gains with our best approach applied to Mistral-7B: +17 and +15 points by Exact Match on LOFT, and +13 and +2 points on ICR^2, compared to vanilla RAG and supervised fine-tuning, respectively. It even outperforms GPT-4-Turbo on most tasks despite being a much smaller model.
LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving
Recent advancements in vision foundation models (VFMs) have revolutionized visual perception in 2D, yet their potential for 3D scene understanding, particularly in autonomous driving applications, remains underexplored. In this paper, we introduce LargeAD, a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets. Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples. This alignment facilitates cross-modal representation learning, enhancing the semantic consistency between 2D and 3D data. We introduce several key innovations: i) VFM-driven superpixel generation for detailed semantic representation, ii) a VFM-assisted contrastive learning strategy to align multimodal features, iii) superpoint temporal consistency to maintain stable representations across time, and iv) multi-source data pretraining to generalize across various LiDAR configurations. Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection. Extensive experiments on eleven large-scale multi-modal datasets highlight our superior performance, demonstrating the adaptability, efficiency, and robustness in real-world autonomous driving scenarios.
Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning
Existing fine-tuning methods either tune all parameters of the pre-trained model (full fine-tuning), which is not efficient, or only tune the last linear layer (linear probing), which suffers a significant accuracy drop compared to the full fine-tuning. In this paper, we propose a new parameter-efficient fine-tuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance of full fine-tuning. In this way, SSF also surprisingly outperforms other parameter-efficient fine-tuning approaches even with a smaller number of tunable parameters. Furthermore, different from some existing parameter-efficient fine-tuning methods (e.g., Adapter or VPT) that introduce the extra parameters and computational cost in the training and inference stages, SSF only adds learnable parameters during the training stage, and these additional parameters can be merged into the original pre-trained model weights via re-parameterization in the inference phase. With the proposed SSF, our model obtains 2.46% (90.72% vs. 88.54%) and 11.48% (73.10% vs. 65.57%) performance improvement on FGVC and VTAB-1k in terms of Top-1 accuracy compared to the full fine-tuning but only fine-tuning about 0.3M parameters. We also conduct amounts of experiments in various model families (CNNs, Transformers, and MLPs) and datasets. Results on 26 image classification datasets in total and 3 robustness & out-of-distribution datasets show the effectiveness of SSF. Code is available at https://github.com/dongzelian/SSF.
Growing Through Experience: Scaling Episodic Grounding in Language Models
Language models (LMs) require robust episodic grounding-the capacity to learn from and apply past experiences-to excel at physical planning tasks. Current episodic grounding approaches struggle with scalability and integration, limiting their effectiveness, especially for medium-sized LMs (7B parameters). While larger LMs (70-405B parameters) possess superior hierarchical representations and extensive pre-trained knowledge, they encounter a fundamental scale paradox: despite their advanced abstraction capabilities, they lack efficient mechanisms to leverage experience streams. We propose a scalable weak-to-strong episodic learning framework that effectively transfers episodic behaviors from smaller to larger LMs. This framework integrates Monte Carlo tree search for structured experience collection with a novel distillation method, preserving the inherent LM capabilities while embedding episodic memory. Experiments demonstrate our method surpasses state-of-the-art proprietary LMs by 3.45% across diverse planning and question-answering tasks. Layer-wise probing further indicates significant improvements in task alignment, especially within deeper LM layers, highlighting stable generalization even for previously unseen scenarios with increased planning complexity-conditions where baseline methods degrade markedly.
Injecting Domain Knowledge in Language Models for Task-Oriented Dialogue Systems
Pre-trained language models (PLM) have advanced the state-of-the-art across NLP applications, but lack domain-specific knowledge that does not naturally occur in pre-training data. Previous studies augmented PLMs with symbolic knowledge for different downstream NLP tasks. However, knowledge bases (KBs) utilized in these studies are usually large-scale and static, in contrast to small, domain-specific, and modifiable knowledge bases that are prominent in real-world task-oriented dialogue (TOD) systems. In this paper, we showcase the advantages of injecting domain-specific knowledge prior to fine-tuning on TOD tasks. To this end, we utilize light-weight adapters that can be easily integrated with PLMs and serve as a repository for facts learned from different KBs. To measure the efficacy of proposed knowledge injection methods, we introduce Knowledge Probing using Response Selection (KPRS) -- a probe designed specifically for TOD models. Experiments on KPRS and the response generation task show improvements of knowledge injection with adapters over strong baselines.
Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors
Interpretability research now offers a variety of techniques for identifying abstract internal mechanisms in neural networks. Can such techniques be used to predict how models will behave on out-of-distribution examples? In this work, we provide a positive answer to this question. Through a diverse set of language modeling tasks--including symbol manipulation, knowledge retrieval, and instruction following--we show that the most robust features for correctness prediction are those that play a distinctive causal role in the model's behavior. Specifically, we propose two methods that leverage causal mechanisms to predict the correctness of model outputs: counterfactual simulation (checking whether key causal variables are realized) and value probing (using the values of those variables to make predictions). Both achieve high AUC-ROC in distribution and outperform methods that rely on causal-agnostic features in out-of-distribution settings, where predicting model behaviors is more crucial. Our work thus highlights a novel and significant application for internal causal analysis of language models.
UNIP: Rethinking Pre-trained Attention Patterns for Infrared Semantic Segmentation
Pre-training techniques significantly enhance the performance of semantic segmentation tasks with limited training data. However, the efficacy under a large domain gap between pre-training (e.g. RGB) and fine-tuning (e.g. infrared) remains underexplored. In this study, we first benchmark the infrared semantic segmentation performance of various pre-training methods and reveal several phenomena distinct from the RGB domain. Next, our layerwise analysis of pre-trained attention maps uncovers that: (1) There are three typical attention patterns (local, hybrid, and global); (2) Pre-training tasks notably influence the pattern distribution across layers; (3) The hybrid pattern is crucial for semantic segmentation as it attends to both nearby and foreground elements; (4) The texture bias impedes model generalization in infrared tasks. Building on these insights, we propose UNIP, a UNified Infrared Pre-training framework, to enhance the pre-trained model performance. This framework uses the hybrid-attention distillation NMI-HAD as the pre-training target, a large-scale mixed dataset InfMix for pre-training, and a last-layer feature pyramid network LL-FPN for fine-tuning. Experimental results show that UNIP outperforms various pre-training methods by up to 13.5\% in average mIoU on three infrared segmentation tasks, evaluated using fine-tuning and linear probing metrics. UNIP-S achieves performance on par with MAE-L while requiring only 1/10 of the computational cost. Furthermore, UNIP significantly surpasses state-of-the-art (SOTA) infrared or RGB segmentation methods and demonstrates broad potential for application in other modalities, such as RGB and depth. Our code is available at https://github.com/casiatao/UNIP.
Adaptive Multi-head Contrastive Learning
In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.
AutoVP: An Automated Visual Prompting Framework and Benchmark
Visual prompting (VP) is an emerging parameter-efficient fine-tuning approach to adapting pre-trained vision models to solve various downstream image-classification tasks. However, there has hitherto been little systematic study of the design space of VP and no clear benchmark for evaluating its performance. To bridge this gap, we propose AutoVP, an end-to-end expandable framework for automating VP design choices, along with 12 downstream image-classification tasks that can serve as a holistic VP-performance benchmark. Our design space covers 1) the joint optimization of the prompts; 2) the selection of pre-trained models, including image classifiers and text-image encoders; and 3) model output mapping strategies, including nonparametric and trainable label mapping. Our extensive experimental results show that AutoVP outperforms the best-known current VP methods by a substantial margin, having up to 6.7% improvement in accuracy; and attains a maximum performance increase of 27.5% compared to linear-probing (LP) baseline. AutoVP thus makes a two-fold contribution: serving both as an efficient tool for hyperparameter tuning on VP design choices, and as a comprehensive benchmark that can reasonably be expected to accelerate VP's development. The source code is available at https://github.com/IBM/AutoVP.
RISE: Randomized Input Sampling for Explanation of Black-box Models
Deep neural networks are being used increasingly to automate data analysis and decision making, yet their decision-making process is largely unclear and is difficult to explain to the end users. In this paper, we address the problem of Explainable AI for deep neural networks that take images as input and output a class probability. We propose an approach called RISE that generates an importance map indicating how salient each pixel is for the model's prediction. In contrast to white-box approaches that estimate pixel importance using gradients or other internal network state, RISE works on black-box models. It estimates importance empirically by probing the model with randomly masked versions of the input image and obtaining the corresponding outputs. We compare our approach to state-of-the-art importance extraction methods using both an automatic deletion/insertion metric and a pointing metric based on human-annotated object segments. Extensive experiments on several benchmark datasets show that our approach matches or exceeds the performance of other methods, including white-box approaches. Project page: http://cs-people.bu.edu/vpetsiuk/rise/
Black Sheep in the Herd: Playing with Spuriously Correlated Attributes for Vision-Language Recognition
Few-shot adaptation for Vision-Language Models (VLMs) presents a dilemma: balancing in-distribution accuracy with out-of-distribution generalization. Recent research has utilized low-level concepts such as visual attributes to enhance generalization. However, this study reveals that VLMs overly rely on a small subset of attributes on decision-making, which co-occur with the category but are not inherently part of it, termed spuriously correlated attributes. This biased nature of VLMs results in poor generalization. To address this, 1) we first propose Spurious Attribute Probing (SAP), identifying and filtering out these problematic attributes to significantly enhance the generalization of existing attribute-based methods; 2) We introduce Spurious Attribute Shielding (SAS), a plug-and-play module that mitigates the influence of these attributes on prediction, seamlessly integrating into various Parameter-Efficient Fine-Tuning (PEFT) methods. In experiments, SAP and SAS significantly enhance accuracy on distribution shifts across 11 datasets and 3 generalization tasks without compromising downstream performance, establishing a new state-of-the-art benchmark.
C-MELT: Contrastive Enhanced Masked Auto-Encoders for ECG-Language Pre-Training
Accurate interpretation of Electrocardiogram (ECG) signals is pivotal for diagnosing cardiovascular diseases. Integrating ECG signals with their accompanying textual reports holds immense potential to enhance clinical diagnostics through the combination of physiological data and qualitative insights. However, this integration faces significant challenges due to inherent modality disparities and the scarcity of labeled data for robust cross-modal learning. To address these obstacles, we propose C-MELT, a novel framework that pre-trains ECG and text data using a contrastive masked auto-encoder architecture. C-MELT uniquely combines the strengths of generative with enhanced discriminative capabilities to achieve robust cross-modal representations. This is accomplished through masked modality modeling, specialized loss functions, and an improved negative sampling strategy tailored for cross-modal alignment. Extensive experiments on five public datasets across diverse downstream tasks demonstrate that C-MELT significantly outperforms existing methods, achieving 15% and 2% increases in linear probing and zero-shot performance over state-of-the-art models, respectively. These results highlight the effectiveness of C-MELT, underscoring its potential to advance automated clinical diagnostics through multi-modal representations.
GaussianCross: Cross-modal Self-supervised 3D Representation Learning via Gaussian Splatting
The significance of informative and robust point representations has been widely acknowledged for 3D scene understanding. Despite existing self-supervised pre-training counterparts demonstrating promising performance, the model collapse and structural information deficiency remain prevalent due to insufficient point discrimination difficulty, yielding unreliable expressions and suboptimal performance. In this paper, we present GaussianCross, a novel cross-modal self-supervised 3D representation learning architecture integrating feed-forward 3D Gaussian Splatting (3DGS) techniques to address current challenges. GaussianCross seamlessly converts scale-inconsistent 3D point clouds into a unified cuboid-normalized Gaussian representation without missing details, enabling stable and generalizable pre-training. Subsequently, a tri-attribute adaptive distillation splatting module is incorporated to construct a 3D feature field, facilitating synergetic feature capturing of appearance, geometry, and semantic cues to maintain cross-modal consistency. To validate GaussianCross, we perform extensive evaluations on various benchmarks, including ScanNet, ScanNet200, and S3DIS. In particular, GaussianCross shows a prominent parameter and data efficiency, achieving superior performance through linear probing (<0.1% parameters) and limited data training (1% of scenes) compared to state-of-the-art methods. Furthermore, GaussianCross demonstrates strong generalization capabilities, improving the full fine-tuning accuracy by 9.3% mIoU and 6.1% AP_{50} on ScanNet200 semantic and instance segmentation tasks, respectively, supporting the effectiveness of our approach. The code, weights, and visualizations are publicly available at https://rayyoh.github.io/GaussianCross/{https://rayyoh.github.io/GaussianCross/}.
Segment Any Point Cloud Sequences by Distilling Vision Foundation Models
Recent advancements in vision foundation models (VFMs) have opened up new possibilities for versatile and efficient visual perception. In this work, we introduce Seal, a novel framework that harnesses VFMs for segmenting diverse automotive point cloud sequences. Seal exhibits three appealing properties: i) Scalability: VFMs are directly distilled into point clouds, eliminating the need for annotations in either 2D or 3D during pretraining. ii) Consistency: Spatial and temporal relationships are enforced at both the camera-to-LiDAR and point-to-segment stages, facilitating cross-modal representation learning. iii) Generalizability: Seal enables knowledge transfer in an off-the-shelf manner to downstream tasks involving diverse point clouds, including those from real/synthetic, low/high-resolution, large/small-scale, and clean/corrupted datasets. Extensive experiments conducted on eleven different point cloud datasets showcase the effectiveness and superiority of Seal. Notably, Seal achieves a remarkable 45.0% mIoU on nuScenes after linear probing, surpassing random initialization by 36.9% mIoU and outperforming prior arts by 6.1% mIoU. Moreover, Seal demonstrates significant performance gains over existing methods across 20 different few-shot fine-tuning tasks on all eleven tested point cloud datasets.
Learning by Sorting: Self-supervised Learning with Group Ordering Constraints
Contrastive learning has become an important tool in learning representations from unlabeled data mainly relying on the idea of minimizing distance between positive data pairs, e.g., views from the same images, and maximizing distance between negative data pairs, e.g., views from different images. This paper proposes a new variation of the contrastive learning objective, Group Ordering Constraints (GroCo), that leverages the idea of sorting the distances of positive and negative pairs and computing the respective loss based on how many positive pairs have a larger distance than the negative pairs, and thus are not ordered correctly. To this end, the GroCo loss is based on differentiable sorting networks, which enable training with sorting supervision by matching a differentiable permutation matrix, which is produced by sorting a given set of scores, to a respective ground truth permutation matrix. Applying this idea to groupwise pre-ordered inputs of multiple positive and negative pairs allows introducing the GroCo loss with implicit emphasis on strong positives and negatives, leading to better optimization of the local neighborhood. We evaluate the proposed formulation on various self-supervised learning benchmarks and show that it not only leads to improved results compared to vanilla contrastive learning but also shows competitive performance to comparable methods in linear probing and outperforms current methods in k-NN performance.
When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories
Despite their impressive performance on diverse tasks, large language models (LMs) still struggle with tasks requiring rich world knowledge, implying the limitations of relying solely on their parameters to encode a wealth of world knowledge. This paper aims to understand LMs' strengths and limitations in memorizing factual knowledge, by conducting large-scale knowledge probing experiments of 10 models and 4 augmentation methods on PopQA, our new open-domain QA dataset with 14k questions. We find that LMs struggle with less popular factual knowledge, and that scaling fails to appreciably improve memorization of factual knowledge in the long tail. We then show that retrieval-augmented LMs largely outperform orders of magnitude larger LMs, while unassisted LMs remain competitive in questions about high-popularity entities. Based on those findings, we devise a simple, yet effective, method for powerful and efficient retrieval-augmented LMs, which retrieves non-parametric memories only when necessary. Experimental results show that this significantly improves models' performance while reducing the inference costs.
Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding. Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups, and achieves superior segmentation transfer.
GLoRE: Evaluating Logical Reasoning of Large Language Models
Recently, large language models (LLMs), including notable models such as GPT-4 and burgeoning community models, have showcased significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a meticulously assembled General Logical Reasoning Evaluation benchmark comprised of 12 datasets that span three different types of tasks. Our experimental results show that compared to the performance of human and supervised fine-tuning, the logical reasoning capabilities of open LLM models necessitate additional improvement; ChatGPT and GPT-4 show a strong capability of logical reasoning, with GPT-4 surpassing ChatGPT by a large margin. We propose a self-consistency probing method to enhance the accuracy of ChatGPT and a fine-tuned method to boost the performance of an open LLM. We release the datasets and evaluation programs to facilitate future research.
UniVIP: A Unified Framework for Self-Supervised Visual Pre-training
Self-supervised learning (SSL) holds promise in leveraging large amounts of unlabeled data. However, the success of popular SSL methods has limited on single-centric-object images like those in ImageNet and ignores the correlation among the scene and instances, as well as the semantic difference of instances in the scene. To address the above problems, we propose a Unified Self-supervised Visual Pre-training (UniVIP), a novel self-supervised framework to learn versatile visual representations on either single-centric-object or non-iconic dataset. The framework takes into account the representation learning at three levels: 1) the similarity of scene-scene, 2) the correlation of scene-instance, 3) the discrimination of instance-instance. During the learning, we adopt the optimal transport algorithm to automatically measure the discrimination of instances. Massive experiments show that UniVIP pre-trained on non-iconic COCO achieves state-of-the-art transfer performance on a variety of downstream tasks, such as image classification, semi-supervised learning, object detection and segmentation. Furthermore, our method can also exploit single-centric-object dataset such as ImageNet and outperforms BYOL by 2.5% with the same pre-training epochs in linear probing, and surpass current self-supervised object detection methods on COCO dataset, demonstrating its universality and potential.
ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods can fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition when reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global comprehension, offering a principled, cognitively motivated paradigm for retrieval-based long context comprehension towards stateful reasoning. Our code is publicly released at https://github.com/EternityJune25/ComoRAG
Masked Scene Modeling: Narrowing the Gap Between Supervised and Self-Supervised Learning in 3D Scene Understanding
Self-supervised learning has transformed 2D computer vision by enabling models trained on large, unannotated datasets to provide versatile off-the-shelf features that perform similarly to models trained with labels. However, in 3D scene understanding, self-supervised methods are typically only used as a weight initialization step for task-specific fine-tuning, limiting their utility for general-purpose feature extraction. This paper addresses this shortcoming by proposing a robust evaluation protocol specifically designed to assess the quality of self-supervised features for 3D scene understanding. Our protocol uses multi-resolution feature sampling of hierarchical models to create rich point-level representations that capture the semantic capabilities of the model and, hence, are suitable for evaluation with linear probing and nearest-neighbor methods. Furthermore, we introduce the first self-supervised model that performs similarly to supervised models when only off-the-shelf features are used in a linear probing setup. In particular, our model is trained natively in 3D with a novel self-supervised approach based on a Masked Scene Modeling objective, which reconstructs deep features of masked patches in a bottom-up manner and is specifically tailored to hierarchical 3D models. Our experiments not only demonstrate that our method achieves competitive performance to supervised models, but also surpasses existing self-supervised approaches by a large margin. The model and training code can be found at our Github repository (https://github.com/phermosilla/msm).
Where Culture Fades: Revealing the Cultural Gap in Text-to-Image Generation
Multilingual text-to-image (T2I) models have advanced rapidly in terms of visual realism and semantic alignment, and are now widely utilized. Yet outputs vary across cultural contexts: because language carries cultural connotations, images synthesized from multilingual prompts should preserve cross-lingual cultural consistency. We conduct a comprehensive analysis showing that current T2I models often produce culturally neutral or English-biased results under multilingual prompts. Analyses of two representative models indicate that the issue stems not from missing cultural knowledge but from insufficient activation of culture-related representations. We propose a probing method that localizes culture-sensitive signals to a small set of neurons in a few fixed layers. Guided by this finding, we introduce two complementary alignment strategies: (1) inference-time cultural activation that amplifies the identified neurons without backbone fine-tuned; and (2) layer-targeted cultural enhancement that updates only culturally relevant layers. Experiments on our CultureBench demonstrate consistent improvements over strong baselines in cultural consistency while preserving fidelity and diversity.
Learning on Model Weights using Tree Experts
The number of publicly available models is rapidly increasing, yet most remain undocumented. Users looking for suitable models for their tasks must first determine what each model does. Training machine learning models to infer missing documentation directly from model weights is challenging, as these weights often contain significant variation unrelated to model functionality (denoted nuisance). Here, we identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. Concretely, while learning across Model Trees requires complex architectures, even a linear classifier trained on a single model layer often works within trees. While effective, these linear classifiers are computationally expensive, especially when dealing with larger models that have many parameters. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated and lightweight method. Notably, ProbeX is the first probing method specifically designed to learn from the weights of a single hidden model layer. We demonstrate the effectiveness of ProbeX by predicting the categories in a model's training dataset based only on its weights. Excitingly, ProbeX can map the weights of Stable Diffusion into a weight-language embedding space, enabling model search via text, i.e., zero-shot model classification.
Unsupervised Contrast-Consistent Ranking with Language Models
Language models contain ranking-based knowledge and are powerful solvers of in-context ranking tasks. For instance, they may have parametric knowledge about the ordering of countries by size or may be able to rank reviews by sentiment. Recent work focuses on pairwise, pointwise, and listwise prompting techniques to elicit a language model's ranking knowledge. However, we find that even with careful calibration and constrained decoding, prompting-based techniques may not always be self-consistent in the rankings they produce. This motivates us to explore an alternative approach that is inspired by an unsupervised probing method called Contrast-Consistent Search (CCS). The idea is to train a probing model guided by a logical constraint: a model's representation of a statement and its negation must be mapped to contrastive true-false poles consistently across multiple statements. We hypothesize that similar constraints apply to ranking tasks where all items are related via consistent pairwise or listwise comparisons. To this end, we extend the binary CCS method to Contrast-Consistent Ranking (CCR) by adapting existing ranking methods such as the Max-Margin Loss, Triplet Loss, and Ordinal Regression objective. Our results confirm that, for the same language model, CCR probing outperforms prompting and even performs on a par with prompting much larger language models.
Chain of Tools: Large Language Model is an Automatic Multi-tool Learner
Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extend their utility, empowering them to solve practical tasks. Existing work typically empowers LLMs as tool users with a manually designed workflow, where the LLM plans a series of tools in a step-by-step manner, and sequentially executes each tool to obtain intermediate results until deriving the final answer. However, they suffer from two challenges in realistic scenarios: (1) The handcrafted control flow is often ad-hoc and constraints the LLM to local planning; (2) The LLM is instructed to use only manually demonstrated tools or well-trained Python functions, which limits its generalization to new tools. In this work, we first propose Automatic Tool Chain (ATC), a framework that enables the LLM to act as a multi-tool user, which directly utilizes a chain of tools through programming. To scale up the scope of the tools, we next propose a black-box probing method. This further empowers the LLM as a tool learner that can actively discover and document tool usages, teaching themselves to properly master new tools. For a comprehensive evaluation, we build a challenging benchmark named ToolFlow, which diverges from previous benchmarks by its long-term planning scenarios and complex toolset. Experiments on both existing datasets and ToolFlow illustrate the superiority of our framework. Analysis on different settings also validates the effectiveness and the utility of our black-box probing algorithm.
AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models
The objective of pre-trained language models is to learn contextual representations of textual data. Pre-trained language models have become mainstream in natural language processing and code modeling. Using probes, a technique to study the linguistic properties of hidden vector spaces, previous works have shown that these pre-trained language models encode simple linguistic properties in their hidden representations. However, none of the previous work assessed whether these models encode the whole grammatical structure of a programming language. In this paper, we prove the existence of a syntactic subspace, lying in the hidden representations of pre-trained language models, which contain the syntactic information of the programming language. We show that this subspace can be extracted from the models' representations and define a novel probing method, the AST-Probe, that enables recovering the whole abstract syntax tree (AST) of an input code snippet. In our experimentations, we show that this syntactic subspace exists in five state-of-the-art pre-trained language models. In addition, we highlight that the middle layers of the models are the ones that encode most of the AST information. Finally, we estimate the optimal size of this syntactic subspace and show that its dimension is substantially lower than those of the models' representation spaces. This suggests that pre-trained language models use a small part of their representation spaces to encode syntactic information of the programming languages.
Understanding and Harnessing Sparsity in Unified Multimodal Models
Large multimodal models have achieved remarkable progress in both understanding and generation. Recent efforts pursue unified multimodal models that integrate heterogeneous components to support both capabilities within a single framework. However, such unification introduces inference inefficiencies, e.g., specific tasks or samples may not require the full knowledge or capacity of the unified model. Yet, a systematic understanding of how these inefficiencies manifest across different components remains limited. In this work, we first conduct a systematic analysis of unified multimodal model components using training-free pruning as a probing methodology, considering both depth pruning and width reduction. Our study reveals that the understanding component exhibits notable compressibility in both understanding and generation tasks, which is more pronounced in the latter. In contrast, the generation components are highly sensitive to compression, with performance deteriorating sharply even under moderate compression ratios. To address this limitation, we propose the Mixture-of-Experts (MoE) Adaptation, inspired by the dynamic activation patterns observed across different samples. This approach partitions the generation module into multiple experts and enables sparse activation to restore generation quality. We validate the effectiveness of sparse activation through expert-frozen tuning and further demonstrate that a fully trainable adaptation delivers additional gains. As a result, the adapted BAGEL model achieves performance comparable to the full model while activating only about half of its parameters. The code is released at https://github.com/Shwai-He/SparseUnifiedModel{this link}.
Interpret the Internal States of Recommendation Model with Sparse Autoencoder
Explainable recommendation systems are important to enhance transparency, accuracy, and fairness. Beyond result-level explanations, model-level interpretations can provide valuable insights that allow developers to optimize system designs and implement targeted improvements. However, most current approaches depend on specialized model designs, which often lack generalization capabilities. Given the various kinds of recommendation models, existing methods have limited ability to effectively interpret them. To address this issue, we propose RecSAE, an automatic, generalizable probing method for interpreting the internal states of Recommendation models with Sparse AutoEncoder. RecSAE serves as a plug-in module that does not affect original models during interpretations, while also enabling predictable modifications to their behaviors based on interpretation results. Firstly, we train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models, making the RecSAE latents more interpretable and monosemantic than the original neuron activations. Secondly, we automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences. Thirdly, RecSAE validates these interpretations by predicting latent activations on new item sequences using the concept dictionary and deriving interpretation confidence scores from precision and recall. We demonstrate RecSAE's effectiveness on two datasets, identifying hundreds of highly interpretable concepts from pure ID-based models. Latent ablation studies further confirm that manipulating latent concepts produces corresponding changes in model output behavior, underscoring RecSAE's utility for both understanding and targeted tuning recommendation models. Code and data are publicly available at https://github.com/Alice1998/RecSAE.
