Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVT-LVLM-AR: A Video-Temporal Large Vision-Language Model Adapter for Fine-Grained Action Recognition in Long-Term Videos
Human action recognition in long-term videos, characterized by complex backgrounds and subtle action differences, poses significant challenges for traditional deep learning models due to computational overhead, difficulty in capturing long-range temporal dependencies, and limited semantic understanding. While Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) have shown remarkable capabilities in multi-modal understanding and reasoning, their direct application to continuous video streams for fine-grained action recognition remains an open problem. This paper introduces VT-LVLM-AR (Video-Temporal Large Vision-Language Model Adapter for Action Recognition), a novel framework designed to bridge this gap. VT-LVLM-AR comprises a Video-to-Event Mapper (VTEM) that efficiently transforms raw video into compact, semantically rich, and temporally coherent "visual event sequences" through lightweight spatio-temporal feature extraction, adaptive temporal pooling, and conceptual quantization with an event coherence bias. These visual event sequences are then fed into an LVLM-based Action Reasoning module, specifically a frozen LLaVA-1.5 model, adapted using parameter-efficient Prompt Tuning (P-Tuning v2) for action classification. Comprehensive evaluations on the NTU RGB+D and NTU RGB+D 120 datasets demonstrate that VT-LVLM-AR consistently achieves state-of-the-art performance, surpassing existing methods (e.g., 94.1% accuracy on NTU RGB+D X-Sub). Ablation studies confirm the critical contributions of VTEM's components and the efficacy of Prompt Tuning, while human evaluations underscore the interpretability of our visual event representations. This work highlights the immense potential of leveraging LVLMs for robust and interpretable video action understanding through effective video-to-language translation and efficient model adaptation.
VideoGLaMM: A Large Multimodal Model for Pixel-Level Visual Grounding in Videos
Fine-grained alignment between videos and text is challenging due to complex spatial and temporal dynamics in videos. Existing video-based Large Multimodal Models (LMMs) handle basic conversations but struggle with precise pixel-level grounding in videos. To address this, we introduce VideoGLaMM, a LMM designed for fine-grained pixel-level grounding in videos based on user-provided textual inputs. Our design seamlessly connects three key components: a Large Language Model, a dual vision encoder that emphasizes both spatial and temporal details, and a spatio-temporal decoder for accurate mask generation. This connection is facilitated via tunable V-L and L-V adapters that enable close Vision-Language (VL) alignment. The architecture is trained to synchronize both spatial and temporal elements of video content with textual instructions. To enable fine-grained grounding, we curate a multimodal dataset featuring detailed visually-grounded conversations using a semiautomatic annotation pipeline, resulting in a diverse set of 38k video-QA triplets along with 83k objects and 671k masks. We evaluate VideoGLaMM on three challenging tasks: Grounded Conversation Generation, Visual Grounding, and Referring Video Segmentation. Experimental results show that our model consistently outperforms existing approaches across all three tasks.
ChangeMamba: Remote Sensing Change Detection With Spatiotemporal State Space Model
Convolutional neural networks (CNN) and Transformers have made impressive progress in the field of remote sensing change detection (CD). However, both architectures have inherent shortcomings: CNN are constrained by a limited receptive field that may hinder their ability to capture broader spatial contexts, while Transformers are computationally intensive, making them costly to train and deploy on large datasets. Recently, the Mamba architecture, based on state space models, has shown remarkable performance in a series of natural language processing tasks, which can effectively compensate for the shortcomings of the above two architectures. In this paper, we explore for the first time the potential of the Mamba architecture for remote sensing CD tasks. We tailor the corresponding frameworks, called MambaBCD, MambaSCD, and MambaBDA, for binary change detection (BCD), semantic change detection (SCD), and building damage assessment (BDA), respectively. All three frameworks adopt the cutting-edge Visual Mamba architecture as the encoder, which allows full learning of global spatial contextual information from the input images. For the change decoder, which is available in all three architectures, we propose three spatio-temporal relationship modeling mechanisms, which can be naturally combined with the Mamba architecture and fully utilize its attribute to achieve spatio-temporal interaction of multi-temporal features, thereby obtaining accurate change information. On five benchmark datasets, our proposed frameworks outperform current CNN- and Transformer-based approaches without using any complex training strategies or tricks, fully demonstrating the potential of the Mamba architecture in CD tasks. Further experiments show that our architecture is quite robust to degraded data. The source code will be available in https://github.com/ChenHongruixuan/MambaCD
Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
MoMa: Modulating Mamba for Adapting Image Foundation Models to Video Recognition
Video understanding is a complex challenge that requires effective modeling of spatial-temporal dynamics. With the success of image foundation models (IFMs) in image understanding, recent approaches have explored parameter-efficient fine-tuning (PEFT) to adapt IFMs for video. However, most of these methods tend to process spatial and temporal information separately, which may fail to capture the full intricacy of video dynamics. In this paper, we propose MoMa, an efficient adapter framework that achieves full spatial-temporal modeling by integrating Mamba's selective state space modeling into IFMs. We propose a novel SeqMod operation to inject spatial-temporal information into pre-trained IFMs, without disrupting their original features. By incorporating SeqMod into a Divide-and-Modulate architecture, MoMa enhances video understanding while maintaining computational efficiency. Extensive experiments on multiple video benchmarks demonstrate the effectiveness of MoMa, achieving superior performance with reduced computational cost.
SimDA: Simple Diffusion Adapter for Efficient Video Generation
The recent wave of AI-generated content has witnessed the great development and success of Text-to-Image (T2I) technologies. By contrast, Text-to-Video (T2V) still falls short of expectations though attracting increasing interests. Existing works either train from scratch or adapt large T2I model to videos, both of which are computation and resource expensive. In this work, we propose a Simple Diffusion Adapter (SimDA) that fine-tunes only 24M out of 1.1B parameters of a strong T2I model, adapting it to video generation in a parameter-efficient way. In particular, we turn the T2I model for T2V by designing light-weight spatial and temporal adapters for transfer learning. Besides, we change the original spatial attention to the proposed Latent-Shift Attention (LSA) for temporal consistency. With similar model architecture, we further train a video super-resolution model to generate high-definition (1024x1024) videos. In addition to T2V generation in the wild, SimDA could also be utilized in one-shot video editing with only 2 minutes tuning. Doing so, our method could minimize the training effort with extremely few tunable parameters for model adaptation.
UniTS: Unified Time Series Generative Model for Remote Sensing
One of the primary objectives of satellite remote sensing is to capture the complex dynamics of the Earth environment, which encompasses tasks such as reconstructing continuous cloud-free time series images, detecting land cover changes, and forecasting future surface evolution. However, existing methods typically require specialized models tailored to different tasks, lacking unified modeling of spatiotemporal features across multiple time series tasks. In this paper, we propose a Unified Time Series Generative Model (UniTS), a general framework applicable to various time series tasks, including time series reconstruction, time series cloud removal, time series semantic change detection, and time series forecasting. Based on the flow matching generative paradigm, UniTS constructs a deterministic evolution path from noise to targets under the guidance of task-specific conditions, achieving unified modeling of spatiotemporal representations for multiple tasks. The UniTS architecture consists of a diffusion transformer with spatio-temporal blocks, where we design an Adaptive Condition Injector (ACor) to enhance the model's conditional perception of multimodal inputs, enabling high-quality controllable generation. Additionally, we design a Spatiotemporal-aware Modulator (STM) to improve the ability of spatio-temporal blocks to capture complex spatiotemporal dependencies. Furthermore, we construct two high-quality multimodal time series datasets, TS-S12 and TS-S12CR, filling the gap of benchmark datasets for time series cloud removal and forecasting tasks. Extensive experiments demonstrate that UniTS exhibits exceptional generative and cognitive capabilities in both low-level and high-level time series tasks. It significantly outperforms existing methods, particularly when facing challenges such as severe cloud contamination, modality absence, and forecasting phenological variations.
Ctrl-Adapter: An Efficient and Versatile Framework for Adapting Diverse Controls to Any Diffusion Model
ControlNets are widely used for adding spatial control in image generation with different conditions, such as depth maps, canny edges, and human poses. However, there are several challenges when leveraging the pretrained image ControlNets for controlled video generation. First, pretrained ControlNet cannot be directly plugged into new backbone models due to the mismatch of feature spaces, and the cost of training ControlNets for new backbones is a big burden. Second, ControlNet features for different frames might not effectively handle the temporal consistency. To address these challenges, we introduce Ctrl-Adapter, an efficient and versatile framework that adds diverse controls to any image/video diffusion models, by adapting pretrained ControlNets (and improving temporal alignment for videos). Ctrl-Adapter provides diverse capabilities including image control, video control, video control with sparse frames, multi-condition control, compatibility with different backbones, adaptation to unseen control conditions, and video editing. In Ctrl-Adapter, we train adapter layers that fuse pretrained ControlNet features to different image/video diffusion models, while keeping the parameters of the ControlNets and the diffusion models frozen. Ctrl-Adapter consists of temporal and spatial modules so that it can effectively handle the temporal consistency of videos. We also propose latent skipping and inverse timestep sampling for robust adaptation and sparse control. Moreover, Ctrl-Adapter enables control from multiple conditions by simply taking the (weighted) average of ControlNet outputs. With diverse image/video diffusion backbones (SDXL, Hotshot-XL, I2VGen-XL, and SVD), Ctrl-Adapter matches ControlNet for image control and outperforms all baselines for video control (achieving the SOTA accuracy on the DAVIS 2017 dataset) with significantly lower computational costs (less than 10 GPU hours).
End-to-End Temporal Action Detection with 1B Parameters Across 1000 Frames
Recently, temporal action detection (TAD) has seen significant performance improvement with end-to-end training. However, due to the memory bottleneck, only models with limited scales and limited data volumes can afford end-to-end training, which inevitably restricts TAD performance. In this paper, we reduce the memory consumption for end-to-end training, and manage to scale up the TAD backbone to 1 billion parameters and the input video to 1,536 frames, leading to significant detection performance. The key to our approach lies in our proposed temporal-informative adapter (TIA), which is a novel lightweight module that reduces training memory. Using TIA, we free the humongous backbone from learning to adapt to the TAD task by only updating the parameters in TIA. TIA also leads to better TAD representation by temporally aggregating context from adjacent frames throughout the backbone. We evaluate our model across four representative datasets. Owing to our efficient design, we are able to train end-to-end on VideoMAEv2-giant and achieve 75.4% mAP on THUMOS14, being the first end-to-end model to outperform the best feature-based methods. Code is available at https://github.com/sming256/AdaTAD.
Is Space-Time Attention All You Need for Video Understanding?
We present a convolution-free approach to video classification built exclusively on self-attention over space and time. Our method, named "TimeSformer," adapts the standard Transformer architecture to video by enabling spatiotemporal feature learning directly from a sequence of frame-level patches. Our experimental study compares different self-attention schemes and suggests that "divided attention," where temporal attention and spatial attention are separately applied within each block, leads to the best video classification accuracy among the design choices considered. Despite the radically new design, TimeSformer achieves state-of-the-art results on several action recognition benchmarks, including the best reported accuracy on Kinetics-400 and Kinetics-600. Finally, compared to 3D convolutional networks, our model is faster to train, it can achieve dramatically higher test efficiency (at a small drop in accuracy), and it can also be applied to much longer video clips (over one minute long). Code and models are available at: https://github.com/facebookresearch/TimeSformer.
Inflation with Diffusion: Efficient Temporal Adaptation for Text-to-Video Super-Resolution
We propose an efficient diffusion-based text-to-video super-resolution (SR) tuning approach that leverages the readily learned capacity of pixel level image diffusion model to capture spatial information for video generation. To accomplish this goal, we design an efficient architecture by inflating the weightings of the text-to-image SR model into our video generation framework. Additionally, we incorporate a temporal adapter to ensure temporal coherence across video frames. We investigate different tuning approaches based on our inflated architecture and report trade-offs between computational costs and super-resolution quality. Empirical evaluation, both quantitative and qualitative, on the Shutterstock video dataset, demonstrates that our approach is able to perform text-to-video SR generation with good visual quality and temporal consistency. To evaluate temporal coherence, we also present visualizations in video format in https://drive.google.com/drive/folders/1YVc-KMSJqOrEUdQWVaI-Yfu8Vsfu_1aO?usp=sharing .
OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning
Spatio-temporal predictive learning is a learning paradigm that enables models to learn spatial and temporal patterns by predicting future frames from given past frames in an unsupervised manner. Despite remarkable progress in recent years, a lack of systematic understanding persists due to the diverse settings, complex implementation, and difficult reproducibility. Without standardization, comparisons can be unfair and insights inconclusive. To address this dilemma, we propose OpenSTL, a comprehensive benchmark for spatio-temporal predictive learning that categorizes prevalent approaches into recurrent-based and recurrent-free models. OpenSTL provides a modular and extensible framework implementing various state-of-the-art methods. We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and weather forecasting. Based on our observations, we provide a detailed analysis of how model architecture and dataset properties affect spatio-temporal predictive learning performance. Surprisingly, we find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models. Thus, we further extend the common MetaFormers to boost recurrent-free spatial-temporal predictive learning. We open-source the code and models at https://github.com/chengtan9907/OpenSTL.
TubeDETR: Spatio-Temporal Video Grounding with Transformers
We consider the problem of localizing a spatio-temporal tube in a video corresponding to a given text query. This is a challenging task that requires the joint and efficient modeling of temporal, spatial and multi-modal interactions. To address this task, we propose TubeDETR, a transformer-based architecture inspired by the recent success of such models for text-conditioned object detection. Our model notably includes: (i) an efficient video and text encoder that models spatial multi-modal interactions over sparsely sampled frames and (ii) a space-time decoder that jointly performs spatio-temporal localization. We demonstrate the advantage of our proposed components through an extensive ablation study. We also evaluate our full approach on the spatio-temporal video grounding task and demonstrate improvements over the state of the art on the challenging VidSTG and HC-STVG benchmarks. Code and trained models are publicly available at https://antoyang.github.io/tubedetr.html.
Spatio-temporal Prompting Network for Robust Video Feature Extraction
Frame quality deterioration is one of the main challenges in the field of video understanding. To compensate for the information loss caused by deteriorated frames, recent approaches exploit transformer-based integration modules to obtain spatio-temporal information. However, these integration modules are heavy and complex. Furthermore, each integration module is specifically tailored for its target task, making it difficult to generalise to multiple tasks. In this paper, we present a neat and unified framework, called Spatio-Temporal Prompting Network (STPN). It can efficiently extract robust and accurate video features by dynamically adjusting the input features in the backbone network. Specifically, STPN predicts several video prompts containing spatio-temporal information of neighbour frames. Then, these video prompts are prepended to the patch embeddings of the current frame as the updated input for video feature extraction. Moreover, STPN is easy to generalise to various video tasks because it does not contain task-specific modules. Without bells and whistles, STPN achieves state-of-the-art performance on three widely-used datasets for different video understanding tasks, i.e., ImageNetVID for video object detection, YouTubeVIS for video instance segmentation, and GOT-10k for visual object tracking. Code is available at https://github.com/guanxiongsun/vfe.pytorch.
Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting
Spatiotemporal forecasting techniques are significant for various domains such as transportation, energy, and weather. Accurate prediction of spatiotemporal series remains challenging due to the complex spatiotemporal heterogeneity. In particular, current end-to-end models are limited by input length and thus often fall into spatiotemporal mirage, i.e., similar input time series followed by dissimilar future values and vice versa. To address these problems, we propose a novel self-supervised pre-training framework Spatial-Temporal-Decoupled Masked Pre-training (STD-MAE) that employs two decoupled masked autoencoders to reconstruct spatiotemporal series along the spatial and temporal dimensions. Rich-context representations learned through such reconstruction could be seamlessly integrated by downstream predictors with arbitrary architectures to augment their performances. A series of quantitative and qualitative evaluations on six widely used benchmarks (PEMS03, PEMS04, PEMS07, PEMS08, METR-LA, and PEMS-BAY) are conducted to validate the state-of-the-art performance of STD-MAE. Codes are available at https://github.com/Jimmy-7664/STD-MAE.
TrackGo: A Flexible and Efficient Method for Controllable Video Generation
Recent years have seen substantial progress in diffusion-based controllable video generation. However, achieving precise control in complex scenarios, including fine-grained object parts, sophisticated motion trajectories, and coherent background movement, remains a challenge. In this paper, we introduce TrackGo, a novel approach that leverages free-form masks and arrows for conditional video generation. This method offers users with a flexible and precise mechanism for manipulating video content. We also propose the TrackAdapter for control implementation, an efficient and lightweight adapter designed to be seamlessly integrated into the temporal self-attention layers of a pretrained video generation model. This design leverages our observation that the attention map of these layers can accurately activate regions corresponding to motion in videos. Our experimental results demonstrate that our new approach, enhanced by the TrackAdapter, achieves state-of-the-art performance on key metrics such as FVD, FID, and ObjMC scores. The project page of TrackGo can be found at: https://zhtjtcz.github.io/TrackGo-Page/
EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for Continuous Space-Time Video Super-Resolution with Events
Continuous space-time video super-resolution (C-STVSR) endeavors to upscale videos simultaneously at arbitrary spatial and temporal scales, which has recently garnered increasing interest. However, prevailing methods struggle to yield satisfactory videos at out-of-distribution spatial and temporal scales. On the other hand, event streams characterized by high temporal resolution and high dynamic range, exhibit compelling promise in vision tasks. This paper presents EvEnhancer, an innovative approach that marries the unique advantages of event streams to elevate effectiveness, efficiency, and generalizability for C-STVSR. Our approach hinges on two pivotal components: 1) Event-adapted synthesis capitalizes on the spatiotemporal correlations between frames and events to discern and learn long-term motion trajectories, enabling the adaptive interpolation and fusion of informative spatiotemporal features; 2) Local implicit video transformer integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations utilized to generate plausible videos at arbitrary resolutions and frame rates. Experiments show that EvEnhancer achieves superiority on synthetic and real-world datasets and preferable generalizability on out-of-distribution scales against state-of-the-art methods. Code is available at https://github.com/W-Shuoyan/EvEnhancer.
STDAN: Deformable Attention Network for Space-Time Video Super-Resolution
The target of space-time video super-resolution (STVSR) is to increase the spatial-temporal resolution of low-resolution (LR) and low frame rate (LFR) videos. Recent approaches based on deep learning have made significant improvements, but most of them only use two adjacent frames, that is, short-term features, to synthesize the missing frame embedding, which cannot fully explore the information flow of consecutive input LR frames. In addition, existing STVSR models hardly exploit the temporal contexts explicitly to assist high-resolution (HR) frame reconstruction. To address these issues, in this paper, we propose a deformable attention network called STDAN for STVSR. First, we devise a long-short term feature interpolation (LSTFI) module, which is capable of excavating abundant content from more neighboring input frames for the interpolation process through a bidirectional RNN structure. Second, we put forward a spatial-temporal deformable feature aggregation (STDFA) module, in which spatial and temporal contexts in dynamic video frames are adaptively captured and aggregated to enhance SR reconstruction. Experimental results on several datasets demonstrate that our approach outperforms state-of-the-art STVSR methods. The code is available at https://github.com/littlewhitesea/STDAN.
Still-Moving: Customized Video Generation without Customized Video Data
Customizing text-to-image (T2I) models has seen tremendous progress recently, particularly in areas such as personalization, stylization, and conditional generation. However, expanding this progress to video generation is still in its infancy, primarily due to the lack of customized video data. In this work, we introduce Still-Moving, a novel generic framework for customizing a text-to-video (T2V) model, without requiring any customized video data. The framework applies to the prominent T2V design where the video model is built over a text-to-image (T2I) model (e.g., via inflation). We assume access to a customized version of the T2I model, trained only on still image data (e.g., using DreamBooth or StyleDrop). Naively plugging in the weights of the customized T2I model into the T2V model often leads to significant artifacts or insufficient adherence to the customization data. To overcome this issue, we train lightweight Spatial Adapters that adjust the features produced by the injected T2I layers. Importantly, our adapters are trained on "frozen videos" (i.e., repeated images), constructed from image samples generated by the customized T2I model. This training is facilitated by a novel Motion Adapter module, which allows us to train on such static videos while preserving the motion prior of the video model. At test time, we remove the Motion Adapter modules and leave in only the trained Spatial Adapters. This restores the motion prior of the T2V model while adhering to the spatial prior of the customized T2I model. We demonstrate the effectiveness of our approach on diverse tasks including personalized, stylized, and conditional generation. In all evaluated scenarios, our method seamlessly integrates the spatial prior of the customized T2I model with a motion prior supplied by the T2V model.
SpaceTimePilot: Generative Rendering of Dynamic Scenes Across Space and Time
We present SpaceTimePilot, a video diffusion model that disentangles space and time for controllable generative rendering. Given a monocular video, SpaceTimePilot can independently alter the camera viewpoint and the motion sequence within the generative process, re-rendering the scene for continuous and arbitrary exploration across space and time. To achieve this, we introduce an effective animation time-embedding mechanism in the diffusion process, allowing explicit control of the output video's motion sequence with respect to that of the source video. As no datasets provide paired videos of the same dynamic scene with continuous temporal variations, we propose a simple yet effective temporal-warping training scheme that repurposes existing multi-view datasets to mimic temporal differences. This strategy effectively supervises the model to learn temporal control and achieve robust space-time disentanglement. To further enhance the precision of dual control, we introduce two additional components: an improved camera-conditioning mechanism that allows altering the camera from the first frame, and CamxTime, the first synthetic space-and-time full-coverage rendering dataset that provides fully free space-time video trajectories within a scene. Joint training on the temporal-warping scheme and the CamxTime dataset yields more precise temporal control. We evaluate SpaceTimePilot on both real-world and synthetic data, demonstrating clear space-time disentanglement and strong results compared to prior work. Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
OmniTransfer: All-in-one Framework for Spatio-temporal Video Transfer
Videos convey richer information than images or text, capturing both spatial and temporal dynamics. However, most existing video customization methods rely on reference images or task-specific temporal priors, failing to fully exploit the rich spatio-temporal information inherent in videos, thereby limiting flexibility and generalization in video generation. To address these limitations, we propose OmniTransfer, a unified framework for spatio-temporal video transfer. It leverages multi-view information across frames to enhance appearance consistency and exploits temporal cues to enable fine-grained temporal control. To unify various video transfer tasks, OmniTransfer incorporates three key designs: Task-aware Positional Bias that adaptively leverages reference video information to improve temporal alignment or appearance consistency; Reference-decoupled Causal Learning separating reference and target branches to enable precise reference transfer while improving efficiency; and Task-adaptive Multimodal Alignment using multimodal semantic guidance to dynamically distinguish and tackle different tasks. Extensive experiments show that OmniTransfer outperforms existing methods in appearance (ID and style) and temporal transfer (camera movement and video effects), while matching pose-guided methods in motion transfer without using pose, establishing a new paradigm for flexible, high-fidelity video generation.
MoTIF: Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution
This work addresses continuous space-time video super-resolution (C-STVSR) that aims to up-scale an input video both spatially and temporally by any scaling factors. One key challenge of C-STVSR is to propagate information temporally among the input video frames. To this end, we introduce a space-time local implicit neural function. It has the striking feature of learning forward motion for a continuum of pixels. We motivate the use of forward motion from the perspective of learning individual motion trajectories, as opposed to learning a mixture of motion trajectories with backward motion. To ease motion interpolation, we encode sparsely sampled forward motion extracted from the input video as the contextual input. Along with a reliability-aware splatting and decoding scheme, our framework, termed MoTIF, achieves the state-of-the-art performance on C-STVSR. The source code of MoTIF is available at https://github.com/sichun233746/MoTIF.
M2-CLIP: A Multimodal, Multi-task Adapting Framework for Video Action Recognition
Recently, the rise of large-scale vision-language pretrained models like CLIP, coupled with the technology of Parameter-Efficient FineTuning (PEFT), has captured substantial attraction in video action recognition. Nevertheless, prevailing approaches tend to prioritize strong supervised performance at the expense of compromising the models' generalization capabilities during transfer. In this paper, we introduce a novel Multimodal, Multi-task CLIP adapting framework named \name to address these challenges, preserving both high supervised performance and robust transferability. Firstly, to enhance the individual modality architectures, we introduce multimodal adapters to both the visual and text branches. Specifically, we design a novel visual TED-Adapter, that performs global Temporal Enhancement and local temporal Difference modeling to improve the temporal representation capabilities of the visual encoder. Moreover, we adopt text encoder adapters to strengthen the learning of semantic label information. Secondly, we design a multi-task decoder with a rich set of supervisory signals to adeptly satisfy the need for strong supervised performance and generalization within a multimodal framework. Experimental results validate the efficacy of our approach, demonstrating exceptional performance in supervised learning while maintaining strong generalization in zero-shot scenarios.
FlexiAct: Towards Flexible Action Control in Heterogeneous Scenarios
Action customization involves generating videos where the subject performs actions dictated by input control signals. Current methods use pose-guided or global motion customization but are limited by strict constraints on spatial structure, such as layout, skeleton, and viewpoint consistency, reducing adaptability across diverse subjects and scenarios. To overcome these limitations, we propose FlexiAct, which transfers actions from a reference video to an arbitrary target image. Unlike existing methods, FlexiAct allows for variations in layout, viewpoint, and skeletal structure between the subject of the reference video and the target image, while maintaining identity consistency. Achieving this requires precise action control, spatial structure adaptation, and consistency preservation. To this end, we introduce RefAdapter, a lightweight image-conditioned adapter that excels in spatial adaptation and consistency preservation, surpassing existing methods in balancing appearance consistency and structural flexibility. Additionally, based on our observations, the denoising process exhibits varying levels of attention to motion (low frequency) and appearance details (high frequency) at different timesteps. So we propose FAE (Frequency-aware Action Extraction), which, unlike existing methods that rely on separate spatial-temporal architectures, directly achieves action extraction during the denoising process. Experiments demonstrate that our method effectively transfers actions to subjects with diverse layouts, skeletons, and viewpoints. We release our code and model weights to support further research at https://shiyi-zh0408.github.io/projectpages/FlexiAct/
Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control
Current face reenactment and swapping methods mainly rely on GAN frameworks, but recent focus has shifted to pre-trained diffusion models for their superior generation capabilities. However, training these models is resource-intensive, and the results have not yet achieved satisfactory performance levels. To address this issue, we introduce Face-Adapter, an efficient and effective adapter designed for high-precision and high-fidelity face editing for pre-trained diffusion models. We observe that both face reenactment/swapping tasks essentially involve combinations of target structure, ID and attribute. We aim to sufficiently decouple the control of these factors to achieve both tasks in one model. Specifically, our method contains: 1) A Spatial Condition Generator that provides precise landmarks and background; 2) A Plug-and-play Identity Encoder that transfers face embeddings to the text space by a transformer decoder. 3) An Attribute Controller that integrates spatial conditions and detailed attributes. Face-Adapter achieves comparable or even superior performance in terms of motion control precision, ID retention capability, and generation quality compared to fully fine-tuned face reenactment/swapping models. Additionally, Face-Adapter seamlessly integrates with various StableDiffusion models.
Learning Trajectory-Aware Transformer for Video Super-Resolution
Video super-resolution (VSR) aims to restore a sequence of high-resolution (HR) frames from their low-resolution (LR) counterparts. Although some progress has been made, there are grand challenges to effectively utilize temporal dependency in entire video sequences. Existing approaches usually align and aggregate video frames from limited adjacent frames (e.g., 5 or 7 frames), which prevents these approaches from satisfactory results. In this paper, we take one step further to enable effective spatio-temporal learning in videos. We propose a novel Trajectory-aware Transformer for Video Super-Resolution (TTVSR). In particular, we formulate video frames into several pre-aligned trajectories which consist of continuous visual tokens. For a query token, self-attention is only learned on relevant visual tokens along spatio-temporal trajectories. Compared with vanilla vision Transformers, such a design significantly reduces the computational cost and enables Transformers to model long-range features. We further propose a cross-scale feature tokenization module to overcome scale-changing problems that often occur in long-range videos. Experimental results demonstrate the superiority of the proposed TTVSR over state-of-the-art models, by extensive quantitative and qualitative evaluations in four widely-used video super-resolution benchmarks. Both code and pre-trained models can be downloaded at https://github.com/researchmm/TTVSR.
Video Test-Time Adaptation for Action Recognition
Although action recognition systems can achieve top performance when evaluated on in-distribution test points, they are vulnerable to unanticipated distribution shifts in test data. However, test-time adaptation of video action recognition models against common distribution shifts has so far not been demonstrated. We propose to address this problem with an approach tailored to spatio-temporal models that is capable of adaptation on a single video sample at a step. It consists in a feature distribution alignment technique that aligns online estimates of test set statistics towards the training statistics. We further enforce prediction consistency over temporally augmented views of the same test video sample. Evaluations on three benchmark action recognition datasets show that our proposed technique is architecture-agnostic and able to significantly boost the performance on both, the state of the art convolutional architecture TANet and the Video Swin Transformer. Our proposed method demonstrates a substantial performance gain over existing test-time adaptation approaches in both evaluations of a single distribution shift and the challenging case of random distribution shifts. Code will be available at https://github.com/wlin-at/ViTTA.
Strefer: Empowering Video LLMs with Space-Time Referring and Reasoning via Synthetic Instruction Data
Next-generation AI companions must go beyond general video understanding to resolve spatial and temporal references in dynamic, real-world environments. Existing Video Large Language Models (Video LLMs), while capable of coarse-level comprehension, struggle with fine-grained, spatiotemporal reasoning, especially when user queries rely on time-based event references for temporal anchoring, or gestural cues for spatial anchoring to clarify object references and positions. To bridge this critical gap, we introduce Strefer, a synthetic instruction data generation framework designed to equip Video LLMs with spatiotemporal referring and reasoning capabilities. Strefer produces diverse instruction-tuning data using a data engine that pseudo-annotates temporally dense, fine-grained video metadata, capturing rich spatial and temporal information in a structured manner, including subjects, objects, their locations as masklets, and their action descriptions and timelines. Our approach enhances the ability of Video LLMs to interpret spatial and temporal references, fostering more versatile, space-time-aware reasoning essential for real-world AI companions. Without using proprietary models, costly human annotation, or the need to annotate large volumes of new videos, experimental evaluations show that models trained with data produced by Strefer outperform baselines on tasks requiring spatial and temporal disambiguation. Additionally, these models exhibit enhanced space-time-aware reasoning, establishing a new foundation for perceptually grounded, instruction-tuned Video LLMs.
Trace Anything: Representing Any Video in 4D via Trajectory Fields
Effective spatio-temporal representation is fundamental to modeling, understanding, and predicting dynamics in videos. The atomic unit of a video, the pixel, traces a continuous 3D trajectory over time, serving as the primitive element of dynamics. Based on this principle, we propose representing any video as a Trajectory Field: a dense mapping that assigns a continuous 3D trajectory function of time to each pixel in every frame. With this representation, we introduce Trace Anything, a neural network that predicts the entire trajectory field in a single feed-forward pass. Specifically, for each pixel in each frame, our model predicts a set of control points that parameterizes a trajectory (i.e., a B-spline), yielding its 3D position at arbitrary query time instants. We trained the Trace Anything model on large-scale 4D data, including data from our new platform, and our experiments demonstrate that: (i) Trace Anything achieves state-of-the-art performance on our new benchmark for trajectory field estimation and performs competitively on established point-tracking benchmarks; (ii) it offers significant efficiency gains thanks to its one-pass paradigm, without requiring iterative optimization or auxiliary estimators; and (iii) it exhibits emergent abilities, including goal-conditioned manipulation, motion forecasting, and spatio-temporal fusion. Project page: https://trace-anything.github.io/.
4Real-Video-V2: Fused View-Time Attention and Feedforward Reconstruction for 4D Scene Generation
We propose the first framework capable of computing a 4D spatio-temporal grid of video frames and 3D Gaussian particles for each time step using a feed-forward architecture. Our architecture has two main components, a 4D video model and a 4D reconstruction model. In the first part, we analyze current 4D video diffusion architectures that perform spatial and temporal attention either sequentially or in parallel within a two-stream design. We highlight the limitations of existing approaches and introduce a novel fused architecture that performs spatial and temporal attention within a single layer. The key to our method is a sparse attention pattern, where tokens attend to others in the same frame, at the same timestamp, or from the same viewpoint. In the second part, we extend existing 3D reconstruction algorithms by introducing a Gaussian head, a camera token replacement algorithm, and additional dynamic layers and training. Overall, we establish a new state of the art for 4D generation, improving both visual quality and reconstruction capability.
Tem-adapter: Adapting Image-Text Pretraining for Video Question Answer
Video-language pre-trained models have shown remarkable success in guiding video question-answering (VideoQA) tasks. However, due to the length of video sequences, training large-scale video-based models incurs considerably higher costs than training image-based ones. This motivates us to leverage the knowledge from image-based pretraining, despite the obvious gaps between image and video domains. To bridge these gaps, in this paper, we propose Tem-Adapter, which enables the learning of temporal dynamics and complex semantics by a visual Temporal Aligner and a textual Semantic Aligner. Unlike conventional pretrained knowledge adaptation methods that only concentrate on the downstream task objective, the Temporal Aligner introduces an extra language-guided autoregressive task aimed at facilitating the learning of temporal dependencies, with the objective of predicting future states based on historical clues and language guidance that describes event progression. Besides, to reduce the semantic gap and adapt the textual representation for better event description, we introduce a Semantic Aligner that first designs a template to fuse question and answer pairs as event descriptions and then learns a Transformer decoder with the whole video sequence as guidance for refinement. We evaluate Tem-Adapter and different pre-train transferring methods on two VideoQA benchmarks, and the significant performance improvement demonstrates the effectiveness of our method.
ST-VLM: Kinematic Instruction Tuning for Spatio-Temporal Reasoning in Vision-Language Models
Spatio-temporal reasoning is essential in understanding real-world environments in various fields, eg, autonomous driving and sports analytics. Recent advances have improved the spatial reasoning ability of Vision-Language Models (VLMs) by introducing large-scale data, but these models still struggle to analyze kinematic elements like traveled distance and speed of moving objects. To bridge this gap, we construct a spatio-temporal reasoning dataset and benchmark involving kinematic instruction tuning, referred to as STKit and STKit-Bench. They consist of real-world videos with 3D annotations, detailing object motion dynamics: traveled distance, speed, movement direction, inter-object distance comparisons, and relative movement direction. To further scale such data construction to videos without 3D labels, we propose an automatic pipeline to generate pseudo-labels using 4D reconstruction in real-world scale. With our kinematic instruction tuning data for spatio-temporal reasoning, we present ST-VLM, a VLM enhanced for spatio-temporal reasoning, which exhibits outstanding performance on STKit-Bench. Furthermore, we show that ST-VLM generalizes robustly across diverse domains and tasks, outperforming baselines on other spatio-temporal benchmarks (eg, ActivityNet, TVQA+). Finally, by integrating learned spatio-temporal reasoning with existing abilities, ST-VLM enables complex multi-step reasoning. Project page: https://ikodoh.github.io/ST-VLM.
Streaming 4D Visual Geometry Transformer
Perceiving and reconstructing 4D spatial-temporal geometry from videos is a fundamental yet challenging computer vision task. To facilitate interactive and real-time applications, we propose a streaming 4D visual geometry transformer that shares a similar philosophy with autoregressive large language models. We explore a simple and efficient design and employ a causal transformer architecture to process the input sequence in an online manner. We use temporal causal attention and cache the historical keys and values as implicit memory to enable efficient streaming long-term 4D reconstruction. This design can handle real-time 4D reconstruction by incrementally integrating historical information while maintaining high-quality spatial consistency. For efficient training, we propose to distill knowledge from the dense bidirectional visual geometry grounded transformer (VGGT) to our causal model. For inference, our model supports the migration of optimized efficient attention operator (e.g., FlashAttention) from the field of large language models. Extensive experiments on various 4D geometry perception benchmarks demonstrate that our model increases the inference speed in online scenarios while maintaining competitive performance, paving the way for scalable and interactive 4D vision systems. Code is available at: https://github.com/wzzheng/StreamVGGT.
POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction
3D reconstruction in dynamic scenes primarily relies on the combination of geometry estimation and matching modules where the latter task is pivotal for distinguishing dynamic regions which can help to mitigate the interference introduced by camera and object motion. Furthermore, the matching module explicitly models object motion, enabling the tracking of specific targets and advancing motion understanding in complex scenarios. Recently, the proposed representation of pointmap in DUSt3R suggests a potential solution to unify both geometry estimation and matching in 3D space, but it still struggles with ambiguous matching in dynamic regions, which may hamper further improvement. In this work, we present POMATO, a unified framework for dynamic 3D reconstruction by marrying pointmap matching with temporal motion. Specifically, our method first learns an explicit matching relationship by mapping RGB pixels from both dynamic and static regions across different views to 3D pointmaps within a unified coordinate system. Furthermore, we introduce a temporal motion module for dynamic motions that ensures scale consistency across different frames and enhances performance in tasks requiring both precise geometry and reliable matching, most notably 3D point tracking. We show the effectiveness of the proposed pointmap matching and temporal fusion paradigm by demonstrating the remarkable performance across multiple downstream tasks, including video depth estimation, 3D point tracking, and pose estimation. Code and models are publicly available at https://github.com/wyddmw/POMATO.
Tora: Trajectory-oriented Diffusion Transformer for Video Generation
Recent advancements in Diffusion Transformer (DiT) have demonstrated remarkable proficiency in producing high-quality video content. Nonetheless, the potential of transformer-based diffusion models for effectively generating videos with controllable motion remains an area of limited exploration. This paper introduces Tora, the first trajectory-oriented DiT framework that integrates textual, visual, and trajectory conditions concurrently for video generation. Specifically, Tora consists of a Trajectory Extractor~(TE), a Spatial-Temporal DiT, and a Motion-guidance Fuser~(MGF). The TE encodes arbitrary trajectories into hierarchical spacetime motion patches with a 3D video compression network. The MGF integrates the motion patches into the DiT blocks to generate consistent videos following trajectories. Our design aligns seamlessly with DiT's scalability, allowing precise control of video content's dynamics with diverse durations, aspect ratios, and resolutions. Extensive experiments demonstrate Tora's excellence in achieving high motion fidelity, while also meticulously simulating the movement of the physical world. Page can be found at https://ali-videoai.github.io/tora_video.
Probabilistic Adaptation of Text-to-Video Models
Large text-to-video models trained on internet-scale data have demonstrated exceptional capabilities in generating high-fidelity videos from arbitrary textual descriptions. However, adapting these models to tasks with limited domain-specific data, such as animation or robotics videos, poses a significant computational challenge, since finetuning a pretrained large model can be prohibitively expensive. Inspired by how a small modifiable component (e.g., prompts, prefix-tuning) can adapt a large language model to perform new tasks without requiring access to the model weights, we investigate how to adapt a large pretrained text-to-video model to a variety of downstream domains and tasks without finetuning. In answering this question, we propose Video Adapter, which leverages the score function of a large pretrained video diffusion model as a probabilistic prior to guide the generation of a task-specific small video model. Our experiments show that Video Adapter is capable of incorporating the broad knowledge and preserving the high fidelity of a large pretrained video model in a task-specific small video model that is able to generate high-quality yet specialized videos on a variety of tasks such as animation, egocentric modeling, and modeling of simulated and real-world robotics data. More videos can be found on the website https://video-adapter.github.io/.
VideoComposer: Compositional Video Synthesis with Motion Controllability
The pursuit of controllability as a higher standard of visual content creation has yielded remarkable progress in customizable image synthesis. However, achieving controllable video synthesis remains challenging due to the large variation of temporal dynamics and the requirement of cross-frame temporal consistency. Based on the paradigm of compositional generation, this work presents VideoComposer that allows users to flexibly compose a video with textual conditions, spatial conditions, and more importantly temporal conditions. Specifically, considering the characteristic of video data, we introduce the motion vector from compressed videos as an explicit control signal to provide guidance regarding temporal dynamics. In addition, we develop a Spatio-Temporal Condition encoder (STC-encoder) that serves as a unified interface to effectively incorporate the spatial and temporal relations of sequential inputs, with which the model could make better use of temporal conditions and hence achieve higher inter-frame consistency. Extensive experimental results suggest that VideoComposer is able to control the spatial and temporal patterns simultaneously within a synthesized video in various forms, such as text description, sketch sequence, reference video, or even simply hand-crafted motions. The code and models will be publicly available at https://videocomposer.github.io.
I2V-Adapter: A General Image-to-Video Adapter for Video Diffusion Models
In the rapidly evolving domain of digital content generation, the focus has shifted from text-to-image (T2I) models to more advanced video diffusion models, notably text-to-video (T2V) and image-to-video (I2V). This paper addresses the intricate challenge posed by I2V: converting static images into dynamic, lifelike video sequences while preserving the original image fidelity. Traditional methods typically involve integrating entire images into diffusion processes or using pretrained encoders for cross attention. However, these approaches often necessitate altering the fundamental weights of T2I models, thereby restricting their reusability. We introduce a novel solution, namely I2V-Adapter, designed to overcome such limitations. Our approach preserves the structural integrity of T2I models and their inherent motion modules. The I2V-Adapter operates by processing noised video frames in parallel with the input image, utilizing a lightweight adapter module. This module acts as a bridge, efficiently linking the input to the model's self-attention mechanism, thus maintaining spatial details without requiring structural changes to the T2I model. Moreover, I2V-Adapter requires only a fraction of the parameters of conventional models and ensures compatibility with existing community-driven T2I models and controlling tools. Our experimental results demonstrate I2V-Adapter's capability to produce high-quality video outputs. This performance, coupled with its versatility and reduced need for trainable parameters, represents a substantial advancement in the field of AI-driven video generation, particularly for creative applications.
Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding
Large foundation models have recently emerged as a prominent focus of interest, attaining superior performance in widespread scenarios. Due to the scarcity of 3D data, many efforts have been made to adapt pre-trained transformers from vision to 3D domains. However, such 2D-to-3D approaches are still limited, due to the potential loss of spatial geometries and high computation cost. More importantly, their frameworks are mainly designed for 2D models, lacking a general any-to-3D paradigm. In this paper, we introduce Any2Point, a parameter-efficient method to empower any-modality large models (vision, language, audio) for 3D understanding. Given a frozen transformer from any source modality, we propose a 3D-to-any (1D or 2D) virtual projection strategy that correlates the input 3D points to the original 1D or 2D positions within the source modality. This mechanism enables us to assign each 3D token with a positional encoding paired with the pre-trained model, which avoids 3D geometry loss caused by the true projection and better motivates the transformer for 3D learning with 1D/2D positional priors. Then, within each transformer block, we insert an any-to-3D guided adapter module for parameter-efficient fine-tuning. The adapter incorporates prior spatial knowledge from the source modality to guide the local feature aggregation of 3D tokens, compelling the semantic adaption of any-modality transformers. We conduct extensive experiments to showcase the effectiveness and efficiency of our method. Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point.
MV-Adapter: Multi-view Consistent Image Generation Made Easy
Existing multi-view image generation methods often make invasive modifications to pre-trained text-to-image (T2I) models and require full fine-tuning, leading to (1) high computational costs, especially with large base models and high-resolution images, and (2) degradation in image quality due to optimization difficulties and scarce high-quality 3D data. In this paper, we propose the first adapter-based solution for multi-view image generation, and introduce MV-Adapter, a versatile plug-and-play adapter that enhances T2I models and their derivatives without altering the original network structure or feature space. By updating fewer parameters, MV-Adapter enables efficient training and preserves the prior knowledge embedded in pre-trained models, mitigating overfitting risks. To efficiently model the 3D geometric knowledge within the adapter, we introduce innovative designs that include duplicated self-attention layers and parallel attention architecture, enabling the adapter to inherit the powerful priors of the pre-trained models to model the novel 3D knowledge. Moreover, we present a unified condition encoder that seamlessly integrates camera parameters and geometric information, facilitating applications such as text- and image-based 3D generation and texturing. MV-Adapter achieves multi-view generation at 768 resolution on Stable Diffusion XL (SDXL), and demonstrates adaptability and versatility. It can also be extended to arbitrary view generation, enabling broader applications. We demonstrate that MV-Adapter sets a new quality standard for multi-view image generation, and opens up new possibilities due to its efficiency, adaptability and versatility.
ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video
Adapting image models to the video domain has emerged as an efficient paradigm for solving video recognition tasks. Due to the huge number of parameters and effective transferability of image models, performing full fine-tuning is less efficient and even unnecessary. Thus, recent research is shifting its focus toward parameter-efficient image-to-video adaptation. However, these adaptation strategies inevitably introduce extra computational costs to deal with the domain gap and temporal modeling in videos. In this paper, we present a new adaptation paradigm (ZeroI2V) to transfer the image transformers to video recognition tasks (i.e., introduce zero extra cost to the original models during inference). To achieve this goal, we present two core designs. First, to capture the dynamics in videos and reduce the difficulty of image-to-video adaptation, we exploit the flexibility of self-attention and introduce spatial-temporal dual-headed attention (STDHA). This approach efficiently endows the image transformers with temporal modeling capability at zero extra parameters and computation. Second, to handle the domain gap between images and videos, we propose a linear adaption strategy that utilizes lightweight densely placed linear adapters to fully transfer the frozen image models to video recognition. Thanks to the customized linear design, all newly added adapters could be easily merged with the original modules through structural reparameterization after training, enabling zero extra cost during inference. Extensive experiments on representative fully-supervised and few-shot video recognition benchmarks showcase that ZeroI2V can match or even outperform previous state-of-the-art methods while enjoying superior parameter and inference efficiency.
Global Spatial-Temporal Information-based Residual ConvLSTM for Video Space-Time Super-Resolution
By converting low-frame-rate, low-resolution videos into high-frame-rate, high-resolution ones, space-time video super-resolution techniques can enhance visual experiences and facilitate more efficient information dissemination. We propose a convolutional neural network (CNN) for space-time video super-resolution, namely GIRNet. To generate highly accurate features and thus improve performance, the proposed network integrates a feature-level temporal interpolation module with deformable convolutions and a global spatial-temporal information-based residual convolutional long short-term memory (convLSTM) module. In the feature-level temporal interpolation module, we leverage deformable convolution, which adapts to deformations and scale variations of objects across different scene locations. This presents a more efficient solution than conventional convolution for extracting features from moving objects. Our network effectively uses forward and backward feature information to determine inter-frame offsets, leading to the direct generation of interpolated frame features. In the global spatial-temporal information-based residual convLSTM module, the first convLSTM is used to derive global spatial-temporal information from the input features, and the second convLSTM uses the previously computed global spatial-temporal information feature as its initial cell state. This second convLSTM adopts residual connections to preserve spatial information, thereby enhancing the output features. Experiments on the Vimeo90K dataset show that the proposed method outperforms state-of-the-art techniques in peak signal-to-noise-ratio (by 1.45 dB, 1.14 dB, and 0.02 dB over STARnet, TMNet, and 3DAttGAN, respectively), structural similarity index(by 0.027, 0.023, and 0.006 over STARnet, TMNet, and 3DAttGAN, respectively), and visually.
DropletVideo: A Dataset and Approach to Explore Integral Spatio-Temporal Consistent Video Generation
Spatio-temporal consistency is a critical research topic in video generation. A qualified generated video segment must ensure plot plausibility and coherence while maintaining visual consistency of objects and scenes across varying viewpoints. Prior research, especially in open-source projects, primarily focuses on either temporal or spatial consistency, or their basic combination, such as appending a description of a camera movement after a prompt without constraining the outcomes of this movement. However, camera movement may introduce new objects to the scene or eliminate existing ones, thereby overlaying and affecting the preceding narrative. Especially in videos with numerous camera movements, the interplay between multiple plots becomes increasingly complex. This paper introduces and examines integral spatio-temporal consistency, considering the synergy between plot progression and camera techniques, and the long-term impact of prior content on subsequent generation. Our research encompasses dataset construction through to the development of the model. Initially, we constructed a DropletVideo-10M dataset, which comprises 10 million videos featuring dynamic camera motion and object actions. Each video is annotated with an average caption of 206 words, detailing various camera movements and plot developments. Following this, we developed and trained the DropletVideo model, which excels in preserving spatio-temporal coherence during video generation. The DropletVideo dataset and model are accessible at https://dropletx.github.io.
Astra: General Interactive World Model with Autoregressive Denoising
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models
The explosive growth of videos on streaming media platforms has underscored the urgent need for effective video quality assessment (VQA) algorithms to monitor and perceptually optimize the quality of streaming videos. However, VQA remains an extremely challenging task due to the diverse video content and the complex spatial and temporal distortions, thus necessitating more advanced methods to address these issues. Nowadays, large multimodal models (LMMs), such as GPT-4V, have exhibited strong capabilities for various visual understanding tasks, motivating us to leverage the powerful multimodal representation ability of LMMs to solve the VQA task. Therefore, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel spatiotemporal visual modeling strategy for quality-aware feature extraction. Specifically, we first reformulate the quality regression problem into a question and answering (Q&A) task and construct Q&A prompts for VQA instruction tuning. Then, we design a spatiotemporal vision encoder to extract spatial and temporal features to represent the quality characteristics of videos, which are subsequently mapped into the language space by the spatiotemporal projector for modality alignment. Finally, the aligned visual tokens and the quality-inquired text tokens are aggregated as inputs for the large language model (LLM) to generate the quality score and level. Extensive experiments demonstrate that LMM-VQA achieves state-of-the-art performance across five VQA benchmarks, exhibiting an average improvement of 5% in generalization ability over existing methods. Furthermore, due to the advanced design of the spatiotemporal encoder and projector, LMM-VQA also performs exceptionally well on general video understanding tasks, further validating its effectiveness. Our code will be released at https://github.com/Sueqk/LMM-VQA.
PredFormer: Transformers Are Effective Spatial-Temporal Predictive Learners
Spatiotemporal predictive learning methods generally fall into two categories: recurrent-based approaches, which face challenges in parallelization and performance, and recurrent-free methods, which employ convolutional neural networks (CNNs) as encoder-decoder architectures. These methods benefit from strong inductive biases but often at the expense of scalability and generalization. This paper proposes PredFormer, a pure transformer-based framework for spatiotemporal predictive learning. Motivated by the Vision Transformers (ViT) design, PredFormer leverages carefully designed Gated Transformer blocks, following a comprehensive analysis of 3D attention mechanisms, including full-, factorized-, and interleaved-spatial-temporal attention. With its recurrent-free, transformer-based design, PredFormer is both simple and efficient, significantly outperforming previous methods by large margins. Extensive experiments on synthetic and real-world datasets demonstrate that PredFormer achieves state-of-the-art performance. On Moving MNIST, PredFormer achieves a 51.3% reduction in MSE relative to SimVP. For TaxiBJ, the model decreases MSE by 33.1% and boosts FPS from 533 to 2364. Additionally, on WeatherBench, it reduces MSE by 11.1% while enhancing FPS from 196 to 404. These performance gains in both accuracy and efficiency demonstrate PredFormer's potential for real-world applications. The source code will be released at https://github.com/yyyujintang/PredFormer .
Disentangling Spatial and Temporal Learning for Efficient Image-to-Video Transfer Learning
Recently, large-scale pre-trained language-image models like CLIP have shown extraordinary capabilities for understanding spatial contents, but naively transferring such models to video recognition still suffers from unsatisfactory temporal modeling capabilities. Existing methods insert tunable structures into or in parallel with the pre-trained model, which either requires back-propagation through the whole pre-trained model and is thus resource-demanding, or is limited by the temporal reasoning capability of the pre-trained structure. In this work, we present DiST, which disentangles the learning of spatial and temporal aspects of videos. Specifically, DiST uses a dual-encoder structure, where a pre-trained foundation model acts as the spatial encoder, and a lightweight network is introduced as the temporal encoder. An integration branch is inserted between the encoders to fuse spatio-temporal information. The disentangled spatial and temporal learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters. Meanwhile, we empirically show that disentangled learning with an extra network for integration benefits both spatial and temporal understanding. Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps. When pre-training on the large-scale Kinetics-710, we achieve 89.7% on Kinetics-400 with a frozen ViT-L model, which verifies the scalability of DiST. Codes and models can be found in https://github.com/alibaba-mmai-research/DiST.
3D-Adapter: Geometry-Consistent Multi-View Diffusion for High-Quality 3D Generation
Multi-view image diffusion models have significantly advanced open-domain 3D object generation. However, most existing models rely on 2D network architectures that lack inherent 3D biases, resulting in compromised geometric consistency. To address this challenge, we introduce 3D-Adapter, a plug-in module designed to infuse 3D geometry awareness into pretrained image diffusion models. Central to our approach is the idea of 3D feedback augmentation: for each denoising step in the sampling loop, 3D-Adapter decodes intermediate multi-view features into a coherent 3D representation, then re-encodes the rendered RGBD views to augment the pretrained base model through feature addition. We study two variants of 3D-Adapter: a fast feed-forward version based on Gaussian splatting and a versatile training-free version utilizing neural fields and meshes. Our extensive experiments demonstrate that 3D-Adapter not only greatly enhances the geometry quality of text-to-multi-view models such as Instant3D and Zero123++, but also enables high-quality 3D generation using the plain text-to-image Stable Diffusion. Furthermore, we showcase the broad application potential of 3D-Adapter by presenting high quality results in text-to-3D, image-to-3D, text-to-texture, and text-to-avatar tasks.
MotionAdapter: Video Motion Transfer via Content-Aware Attention Customization
Recent advances in diffusion-based text-to-video models, particularly those built on the diffusion transformer architecture, have achieved remarkable progress in generating high-quality and temporally coherent videos. However, transferring complex motions between videos remains challenging. In this work, we present MotionAdapter, a content-aware motion transfer framework that enables robust and semantically aligned motion transfer within DiT-based T2V models. Our key insight is that effective motion transfer requires \romannumeral1) explicit disentanglement of motion from appearance and \romannumeral 2) adaptive customization of motion to target content. MotionAdapter first isolates motion by analyzing cross-frame attention within 3D full-attention modules to extract attention-derived motion fields. To bridge the semantic gap between reference and target videos, we further introduce a DINO-guided motion customization module that rearranges and refines motion fields based on content correspondences. The customized motion field is then used to guide the DiT denoising process, ensuring that the synthesized video inherits the reference motion while preserving target appearance and semantics. Extensive experiments demonstrate that MotionAdapter outperforms state-of-the-art methods in both qualitative and quantitative evaluations. Moreover, MotionAdapter naturally supports complex motion transfer and motion editing tasks such as zooming.
Optimizing ViViT Training: Time and Memory Reduction for Action Recognition
In this paper, we address the challenges posed by the substantial training time and memory consumption associated with video transformers, focusing on the ViViT (Video Vision Transformer) model, in particular the Factorised Encoder version, as our baseline for action recognition tasks. The factorised encoder variant follows the late-fusion approach that is adopted by many state of the art approaches. Despite standing out for its favorable speed/accuracy tradeoffs among the different variants of ViViT, its considerable training time and memory requirements still pose a significant barrier to entry. Our method is designed to lower this barrier and is based on the idea of freezing the spatial transformer during training. This leads to a low accuracy model if naively done. But we show that by (1) appropriately initializing the temporal transformer (a module responsible for processing temporal information) (2) introducing a compact adapter model connecting frozen spatial representations ((a module that selectively focuses on regions of the input image) to the temporal transformer, we can enjoy the benefits of freezing the spatial transformer without sacrificing accuracy. Through extensive experimentation over 6 benchmarks, we demonstrate that our proposed training strategy significantly reduces training costs (by sim 50%) and memory consumption while maintaining or slightly improving performance by up to 1.79\% compared to the baseline model. Our approach additionally unlocks the capability to utilize larger image transformer models as our spatial transformer and access more frames with the same memory consumption.
Decoupling Spatio-Temporal Prediction: When Lightweight Large Models Meet Adaptive Hypergraphs
Spatio-temporal prediction is a pivotal task with broad applications in traffic management, climate monitoring, energy scheduling, etc. However, existing methodologies often struggle to balance model expressiveness and computational efficiency, especially when scaling to large real-world datasets. To tackle these challenges, we propose STH-SepNet (Spatio-Temporal Hypergraph Separation Networks), a novel framework that decouples temporal and spatial modeling to enhance both efficiency and precision. Therein, the temporal dimension is modeled using lightweight large language models, which effectively capture low-rank temporal dynamics. Concurrently, the spatial dimension is addressed through an adaptive hypergraph neural network, which dynamically constructs hyperedges to model intricate, higher-order interactions. A carefully designed gating mechanism is integrated to seamlessly fuse temporal and spatial representations. By leveraging the fundamental principles of low-rank temporal dynamics and spatial interactions, STH-SepNet offers a pragmatic and scalable solution for spatio-temporal prediction in real-world applications. Extensive experiments on large-scale real-world datasets across multiple benchmarks demonstrate the effectiveness of STH-SepNet in boosting predictive performance while maintaining computational efficiency. This work may provide a promising lightweight framework for spatio-temporal prediction, aiming to reduce computational demands and while enhancing predictive performance. Our code is avaliable at https://github.com/SEU-WENJIA/ST-SepNet-Lightweight-LLMs-Meet-Adaptive-Hypergraphs.
HR-INR: Continuous Space-Time Video Super-Resolution via Event Camera
Continuous space-time video super-resolution (C-STVSR) aims to simultaneously enhance video resolution and frame rate at an arbitrary scale. Recently, implicit neural representation (INR) has been applied to video restoration, representing videos as implicit fields that can be decoded at an arbitrary scale. However, the highly ill-posed nature of C-STVSR limits the effectiveness of current INR-based methods: they assume linear motion between frames and use interpolation or feature warping to generate features at arbitrary spatiotemporal positions with two consecutive frames. This restrains C-STVSR from capturing rapid and nonlinear motion and long-term dependencies (involving more than two frames) in complex dynamic scenes. In this paper, we propose a novel C-STVSR framework, called HR-INR, which captures both holistic dependencies and regional motions based on INR. It is assisted by an event camera, a novel sensor renowned for its high temporal resolution and low latency. To fully utilize the rich temporal information from events, we design a feature extraction consisting of (1) a regional event feature extractor - taking events as inputs via the proposed event temporal pyramid representation to capture the regional nonlinear motion and (2) a holistic event-frame feature extractor for long-term dependence and continuity motion. We then propose a novel INR-based decoder with spatiotemporal embeddings to capture long-term dependencies with a larger temporal perception field. We validate the effectiveness and generalization of our method on four datasets (both simulated and real data), showing the superiority of our method.
VACE: All-in-One Video Creation and Editing
Diffusion Transformer has demonstrated powerful capability and scalability in generating high-quality images and videos. Further pursuing the unification of generation and editing tasks has yielded significant progress in the domain of image content creation. However, due to the intrinsic demands for consistency across both temporal and spatial dynamics, achieving a unified approach for video synthesis remains challenging. We introduce VACE, which enables users to perform Video tasks within an All-in-one framework for Creation and Editing. These tasks include reference-to-video generation, video-to-video editing, and masked video-to-video editing. Specifically, we effectively integrate the requirements of various tasks by organizing video task inputs, such as editing, reference, and masking, into a unified interface referred to as the Video Condition Unit (VCU). Furthermore, by utilizing a Context Adapter structure, we inject different task concepts into the model using formalized representations of temporal and spatial dimensions, allowing it to handle arbitrary video synthesis tasks flexibly. Extensive experiments demonstrate that the unified model of VACE achieves performance on par with task-specific models across various subtasks. Simultaneously, it enables diverse applications through versatile task combinations. Project page: https://ali-vilab.github.io/VACE-Page/.
STaRFormer: Semi-Supervised Task-Informed Representation Learning via Dynamic Attention-Based Regional Masking for Sequential Data
Accurate predictions using sequential spatiotemporal data are crucial for various applications. Utilizing real-world data, we aim to learn the intent of a smart device user within confined areas of a vehicle's surroundings. However, in real-world scenarios, environmental factors and sensor limitations result in non-stationary and irregularly sampled data, posing significant challenges. To address these issues, we developed a Transformer-based approach, STaRFormer, which serves as a universal framework for sequential modeling. STaRFormer employs a novel, dynamic attention-based regional masking scheme combined with semi-supervised contrastive learning to enhance task-specific latent representations. Comprehensive experiments on 15 datasets varying in types (including non-stationary and irregularly sampled), domains, sequence lengths, training samples, and applications, demonstrate the efficacy and practicality of STaRFormer. We achieve notable improvements over state-of-the-art approaches. Code and data will be made available.
LLMs Meet Long Video: Advancing Long Video Comprehension with An Interactive Visual Adapter in LLMs
Long video understanding is a significant and ongoing challenge in the intersection of multimedia and artificial intelligence. Employing large language models (LLMs) for comprehending video becomes an emerging and promising method. However, this approach incurs high computational costs due to the extensive array of video tokens, experiences reduced visual clarity as a consequence of token aggregation, and confronts challenges arising from irrelevant visual tokens while answering video-related questions. To alleviate these issues, we present an Interactive Visual Adapter (IVA) within LLMs, designed to enhance interaction with fine-grained visual elements. Specifically, we first transform long videos into temporal video tokens via leveraging a visual encoder alongside a pretrained causal transformer, then feed them into LLMs with the video instructions. Subsequently, we integrated IVA, which contains a lightweight temporal frame selector and a spatial feature interactor, within the internal blocks of LLMs to capture instruction-aware and fine-grained visual signals. Consequently, the proposed video-LLM facilitates a comprehensive understanding of long video content through appropriate long video modeling and precise visual interactions. We conducted extensive experiments on nine video understanding benchmarks and experimental results show that our interactive visual adapter significantly improves the performance of video LLMs on long video QA tasks. Ablation studies further verify the effectiveness of IVA in long and short video understandings.
VADER: Video Alignment Differencing and Retrieval
We propose VADER, a spatio-temporal matching, alignment, and change summarization method to help fight misinformation spread via manipulated videos. VADER matches and coarsely aligns partial video fragments to candidate videos using a robust visual descriptor and scalable search over adaptively chunked video content. A transformer-based alignment module then refines the temporal localization of the query fragment within the matched video. A space-time comparator module identifies regions of manipulation between aligned content, invariant to any changes due to any residual temporal misalignments or artifacts arising from non-editorial changes of the content. Robustly matching video to a trusted source enables conclusions to be drawn on video provenance, enabling informed trust decisions on content encountered.
MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model
We present MOFA-Video, an advanced controllable image animation method that generates video from the given image using various additional controllable signals (such as human landmarks reference, manual trajectories, and another even provided video) or their combinations. This is different from previous methods which only can work on a specific motion domain or show weak control abilities with diffusion prior. To achieve our goal, we design several domain-aware motion field adapters (\ie, MOFA-Adapters) to control the generated motions in the video generation pipeline. For MOFA-Adapters, we consider the temporal motion consistency of the video and generate the dense motion flow from the given sparse control conditions first, and then, the multi-scale features of the given image are wrapped as a guided feature for stable video diffusion generation. We naively train two motion adapters for the manual trajectories and the human landmarks individually since they both contain sparse information about the control. After training, the MOFA-Adapters in different domains can also work together for more controllable video generation.
Two-Stream Transformer Architecture for Long Video Understanding
Pure vision transformer architectures are highly effective for short video classification and action recognition tasks. However, due to the quadratic complexity of self attention and lack of inductive bias, transformers are resource intensive and suffer from data inefficiencies. Long form video understanding tasks amplify data and memory efficiency problems in transformers making current approaches unfeasible to implement on data or memory restricted domains. This paper introduces an efficient Spatio-Temporal Attention Network (STAN) which uses a two-stream transformer architecture to model dependencies between static image features and temporal contextual features. Our proposed approach can classify videos up to two minutes in length on a single GPU, is data efficient, and achieves SOTA performance on several long video understanding tasks.
SpaceVLLM: Endowing Multimodal Large Language Model with Spatio-Temporal Video Grounding Capability
Multimodal large language models (MLLMs) have made remarkable progress in either temporal or spatial localization. However, they struggle to perform spatio-temporal video grounding. This limitation stems from two major challenges. Firstly, it is difficult to extract accurate spatio-temporal information of each frame in the video. Secondly, the substantial number of visual tokens makes it challenging to precisely map visual tokens of each frame to their corresponding spatial coordinates. To address these issues, we introduce SpaceVLLM, a MLLM endowed with spatio-temporal video grounding capability. Specifically, we adopt a set of interleaved Spatio-Temporal Aware Queries to capture temporal perception and dynamic spatial information. Moreover, we propose a Query-Guided Space Decoder to establish a corresponding connection between the queries and spatial coordinates. Additionally, due to the lack of spatio-temporal datasets, we construct the Unified Spatio-Temporal Grounding (Uni-STG) dataset, comprising 480K instances across three tasks. This dataset fully exploits the potential of MLLM to simultaneously facilitate localization in both temporal and spatial dimensions. Extensive experiments demonstrate that SpaceVLLM achieves the state-of-the-art performance across 11 benchmarks covering temporal, spatial, spatio-temporal and video understanding tasks, highlighting the effectiveness of our approach. Our code, datasets and model will be released at https://github.com/Jayce1kk/SpaceVLLM.
How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning
Spatio-temporal forecasting is essential for real-world applications such as traffic management and urban computing. Although recent methods have shown improved accuracy, they often fail to account for dynamic deviations between current inputs and historical patterns. These deviations contain critical signals that can significantly affect model performance. To fill this gap, we propose ST-SSDL, a Spatio-Temporal time series forecasting framework that incorporates a Self-Supervised Deviation Learning scheme to capture and utilize such deviations. ST-SSDL anchors each input to its historical average and discretizes the latent space using learnable prototypes that represent typical spatio-temporal patterns. Two auxiliary objectives are proposed to refine this structure: a contrastive loss that enhances inter-prototype discriminability and a deviation loss that regularizes the distance consistency between input representations and corresponding prototypes to quantify deviation. Optimized jointly with the forecasting objective, these components guide the model to organize its hidden space and improve generalization across diverse input conditions. Experiments on six benchmark datasets show that ST-SSDL consistently outperforms state-of-the-art baselines across multiple metrics. Visualizations further demonstrate its ability to adaptively respond to varying levels of deviation in complex spatio-temporal scenarios. Our code and datasets are available at https://github.com/Jimmy-7664/ST-SSDL.
A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at https://github.com/facebookresearch/SlowFast
VIA: A Spatiotemporal Video Adaptation Framework for Global and Local Video Editing
Video editing stands as a cornerstone of digital media, from entertainment and education to professional communication. However, previous methods often overlook the necessity of comprehensively understanding both global and local contexts, leading to inaccurate and inconsistency edits in the spatiotemporal dimension, especially for long videos. In this paper, we introduce VIA, a unified spatiotemporal VIdeo Adaptation framework for global and local video editing, pushing the limits of consistently editing minute-long videos. First, to ensure local consistency within individual frames, the foundation of VIA is a novel test-time editing adaptation method, which adapts a pre-trained image editing model for improving consistency between potential editing directions and the text instruction, and adapts masked latent variables for precise local control. Furthermore, to maintain global consistency over the video sequence, we introduce spatiotemporal adaptation that adapts consistent attention variables in key frames and strategically applies them across the whole sequence to realize the editing effects. Extensive experiments demonstrate that, compared to baseline methods, our VIA approach produces edits that are more faithful to the source videos, more coherent in the spatiotemporal context, and more precise in local control. More importantly, we show that VIA can achieve consistent long video editing in minutes, unlocking the potentials for advanced video editing tasks over long video sequences.
STMA: A Spatio-Temporal Memory Agent for Long-Horizon Embodied Task Planning
A key objective of embodied intelligence is enabling agents to perform long-horizon tasks in dynamic environments while maintaining robust decision-making and adaptability. To achieve this goal, we propose the Spatio-Temporal Memory Agent (STMA), a novel framework designed to enhance task planning and execution by integrating spatio-temporal memory. STMA is built upon three critical components: (1) a spatio-temporal memory module that captures historical and environmental changes in real time, (2) a dynamic knowledge graph that facilitates adaptive spatial reasoning, and (3) a planner-critic mechanism that iteratively refines task strategies. We evaluate STMA in the TextWorld environment on 32 tasks, involving multi-step planning and exploration under varying levels of complexity. Experimental results demonstrate that STMA achieves a 31.25% improvement in success rate and a 24.7% increase in average score compared to the state-of-the-art model. The results highlight the effectiveness of spatio-temporal memory in advancing the memory capabilities of embodied agents.
Generalizable Implicit Motion Modeling for Video Frame Interpolation
Motion modeling is critical in flow-based Video Frame Interpolation (VFI). Existing paradigms either consider linear combinations of bidirectional flows or directly predict bilateral flows for given timestamps without exploring favorable motion priors, thus lacking the capability of effectively modeling spatiotemporal dynamics in real-world videos. To address this limitation, in this study, we introduce Generalizable Implicit Motion Modeling (GIMM), a novel and effective approach to motion modeling for VFI. Specifically, to enable GIMM as an effective motion modeling paradigm, we design a motion encoding pipeline to model spatiotemporal motion latent from bidirectional flows extracted from pre-trained flow estimators, effectively representing input-specific motion priors. Then, we implicitly predict arbitrary-timestep optical flows within two adjacent input frames via an adaptive coordinate-based neural network, with spatiotemporal coordinates and motion latent as inputs. Our GIMM can be smoothly integrated with existing flow-based VFI works without further modifications. We show that GIMM performs better than the current state of the art on the VFI benchmarks.
Learning Streaming Video Representation via Multitask Training
Understanding continuous video streams plays a fundamental role in real-time applications including embodied AI and autonomous driving. Unlike offline video understanding, streaming video understanding requires the ability to process video streams frame by frame, preserve historical information, and make low-latency decisions. To address these challenges, our main contributions are three-fold. (i) We develop a novel streaming video backbone, termed as StreamFormer, by incorporating causal temporal attention into a pre-trained vision transformer. This enables efficient streaming video processing while maintaining image representation capability. (ii) To train StreamFormer, we propose to unify diverse spatial-temporal video understanding tasks within a multitask visual-language alignment framework. Hence, StreamFormer learns global semantics, temporal dynamics, and fine-grained spatial relationships simultaneously. (iii) We conduct extensive experiments on online action detection, online video instance segmentation, and video question answering. StreamFormer achieves competitive results while maintaining efficiency, demonstrating its potential for real-time applications.
Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation
Spatio-temporal modeling is foundational for smart city applications, yet it is often hindered by data scarcity in many cities and regions. To bridge this gap, we propose a novel generative pre-training framework, GPD, for spatio-temporal few-shot learning with urban knowledge transfer. Unlike conventional approaches that heavily rely on common feature extraction or intricate few-shot learning designs, our solution takes a novel approach by performing generative pre-training on a collection of neural network parameters optimized with data from source cities. We recast spatio-temporal few-shot learning as pre-training a generative diffusion model, which generates tailored neural networks guided by prompts, allowing for adaptability to diverse data distributions and city-specific characteristics. GPD employs a Transformer-based denoising diffusion model, which is model-agnostic to integrate with powerful spatio-temporal neural networks. By addressing challenges arising from data gaps and the complexity of generalizing knowledge across cities, our framework consistently outperforms state-of-the-art baselines on multiple real-world datasets for tasks such as traffic speed prediction and crowd flow prediction. The implementation of our approach is available: https://github.com/tsinghua-fib-lab/GPD.
Local All-Pair Correspondence for Point Tracking
We introduce LocoTrack, a highly accurate and efficient model designed for the task of tracking any point (TAP) across video sequences. Previous approaches in this task often rely on local 2D correlation maps to establish correspondences from a point in the query image to a local region in the target image, which often struggle with homogeneous regions or repetitive features, leading to matching ambiguities. LocoTrack overcomes this challenge with a novel approach that utilizes all-pair correspondences across regions, i.e., local 4D correlation, to establish precise correspondences, with bidirectional correspondence and matching smoothness significantly enhancing robustness against ambiguities. We also incorporate a lightweight correlation encoder to enhance computational efficiency, and a compact Transformer architecture to integrate long-term temporal information. LocoTrack achieves unmatched accuracy on all TAP-Vid benchmarks and operates at a speed almost 6 times faster than the current state-of-the-art.
HoloTime: Taming Video Diffusion Models for Panoramic 4D Scene Generation
The rapid advancement of diffusion models holds the promise of revolutionizing the application of VR and AR technologies, which typically require scene-level 4D assets for user experience. Nonetheless, existing diffusion models predominantly concentrate on modeling static 3D scenes or object-level dynamics, constraining their capacity to provide truly immersive experiences. To address this issue, we propose HoloTime, a framework that integrates video diffusion models to generate panoramic videos from a single prompt or reference image, along with a 360-degree 4D scene reconstruction method that seamlessly transforms the generated panoramic video into 4D assets, enabling a fully immersive 4D experience for users. Specifically, to tame video diffusion models for generating high-fidelity panoramic videos, we introduce the 360World dataset, the first comprehensive collection of panoramic videos suitable for downstream 4D scene reconstruction tasks. With this curated dataset, we propose Panoramic Animator, a two-stage image-to-video diffusion model that can convert panoramic images into high-quality panoramic videos. Following this, we present Panoramic Space-Time Reconstruction, which leverages a space-time depth estimation method to transform the generated panoramic videos into 4D point clouds, enabling the optimization of a holistic 4D Gaussian Splatting representation to reconstruct spatially and temporally consistent 4D scenes. To validate the efficacy of our method, we conducted a comparative analysis with existing approaches, revealing its superiority in both panoramic video generation and 4D scene reconstruction. This demonstrates our method's capability to create more engaging and realistic immersive environments, thereby enhancing user experiences in VR and AR applications.
Space-Time Video Super-resolution with Neural Operator
This paper addresses the task of space-time video super-resolution (ST-VSR). Existing methods generally suffer from inaccurate motion estimation and motion compensation (MEMC) problems for large motions. Inspired by recent progress in physics-informed neural networks, we model the challenges of MEMC in ST-VSR as a mapping between two continuous function spaces. Specifically, our approach transforms independent low-resolution representations in the coarse-grained continuous function space into refined representations with enriched spatiotemporal details in the fine-grained continuous function space. To achieve efficient and accurate MEMC, we design a Galerkin-type attention function to perform frame alignment and temporal interpolation. Due to the linear complexity of the Galerkin-type attention mechanism, our model avoids patch partitioning and offers global receptive fields, enabling precise estimation of large motions. The experimental results show that the proposed method surpasses state-of-the-art techniques in both fixed-size and continuous space-time video super-resolution tasks.
AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
Pre-trained foundation models (FMs) have shown exceptional performance in univariate time series forecasting tasks. However, several practical challenges persist, including managing intricate dependencies among features and quantifying uncertainty in predictions. This study aims to tackle these critical limitations by introducing adapters; feature-space transformations that facilitate the effective use of pre-trained univariate time series FMs for multivariate tasks. Adapters operate by projecting multivariate inputs into a suitable latent space and applying the FM independently to each dimension. Inspired by the literature on representation learning and partially stochastic Bayesian neural networks, we present a range of adapters and optimization/inference strategies. Experiments conducted on both synthetic and real-world datasets confirm the efficacy of adapters, demonstrating substantial enhancements in forecasting accuracy and uncertainty quantification compared to baseline methods. Our framework, AdaPTS, positions adapters as a modular, scalable, and effective solution for leveraging time series FMs in multivariate contexts, thereby promoting their wider adoption in real-world applications. We release the code at https://github.com/abenechehab/AdaPTS.
TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding
We introduce TimeViper, a hybrid vision-language model designed to tackle challenges of long video understanding. Processing long videos demands both an efficient model architecture and an effective mechanism for handling extended temporal contexts. To this end, TimeViper adopts a hybrid Mamba-Transformer backbone that combines the efficiency of state-space models with the expressivity of attention mechanisms. Through this hybrid design, we reveal the vision-to-text information aggregation phenomenon, where information progressively flows from vision tokens to text tokens across increasing LLM depth, resulting in severe vision token redundancy. Motivated by this observation, we propose TransV, a token information transfer module that transfers and compresses vision tokens into instruction tokens while maintaining multimodal understanding capabilities. This design enables TimeViper to process hour-long videos exceeding 10,000 frames. Extensive experiments across multiple benchmarks demonstrate that TimeViper competes with state-of-the-art models while extending frame numbers. We further analyze attention behaviors of both Mamba and Transformer layers, offering new insights into hybrid model interpretability. This work represents an initial step towards developing, interpreting, and compressing hybrid Mamba-Transformer architectures.
Conditional Adapters: Parameter-efficient Transfer Learning with Fast Inference
We propose Conditional Adapter (CoDA), a parameter-efficient transfer learning method that also improves inference efficiency. CoDA generalizes beyond standard adapter approaches to enable a new way of balancing speed and accuracy using conditional computation. Starting with an existing dense pretrained model, CoDA adds sparse activation together with a small number of new parameters and a light-weight training phase. Our experiments demonstrate that the CoDA approach provides an unexpectedly efficient way to transfer knowledge. Across a variety of language, vision, and speech tasks, CoDA achieves a 2x to 8x inference speed-up compared to the state-of-the-art Adapter approaches with moderate to no accuracy loss and the same parameter efficiency.
ChronosObserver: Taming 4D World with Hyperspace Diffusion Sampling
Although prevailing camera-controlled video generation models can produce cinematic results, lifting them directly to the generation of 3D-consistent and high-fidelity time-synchronized multi-view videos remains challenging, which is a pivotal capability for taming 4D worlds. Some works resort to data augmentation or test-time optimization, but these strategies are constrained by limited model generalization and scalability issues. To this end, we propose ChronosObserver, a training-free method including World State Hyperspace to represent the spatiotemporal constraints of a 4D world scene, and Hyperspace Guided Sampling to synchronize the diffusion sampling trajectories of multiple views using the hyperspace. Experimental results demonstrate that our method achieves high-fidelity and 3D-consistent time-synchronized multi-view videos generation without training or fine-tuning for diffusion models.
DiTaiListener: Controllable High Fidelity Listener Video Generation with Diffusion
Generating naturalistic and nuanced listener motions for extended interactions remains an open problem. Existing methods often rely on low-dimensional motion codes for facial behavior generation followed by photorealistic rendering, limiting both visual fidelity and expressive richness. To address these challenges, we introduce DiTaiListener, powered by a video diffusion model with multimodal conditions. Our approach first generates short segments of listener responses conditioned on the speaker's speech and facial motions with DiTaiListener-Gen. It then refines the transitional frames via DiTaiListener-Edit for a seamless transition. Specifically, DiTaiListener-Gen adapts a Diffusion Transformer (DiT) for the task of listener head portrait generation by introducing a Causal Temporal Multimodal Adapter (CTM-Adapter) to process speakers' auditory and visual cues. CTM-Adapter integrates speakers' input in a causal manner into the video generation process to ensure temporally coherent listener responses. For long-form video generation, we introduce DiTaiListener-Edit, a transition refinement video-to-video diffusion model. The model fuses video segments into smooth and continuous videos, ensuring temporal consistency in facial expressions and image quality when merging short video segments produced by DiTaiListener-Gen. Quantitatively, DiTaiListener achieves the state-of-the-art performance on benchmark datasets in both photorealism (+73.8% in FID on RealTalk) and motion representation (+6.1% in FD metric on VICO) spaces. User studies confirm the superior performance of DiTaiListener, with the model being the clear preference in terms of feedback, diversity, and smoothness, outperforming competitors by a significant margin.
STPro: Spatial and Temporal Progressive Learning for Weakly Supervised Spatio-Temporal Grounding
In this work we study Weakly Supervised Spatio-Temporal Video Grounding (WSTVG), a challenging task of localizing subjects spatio-temporally in videos using only textual queries and no bounding box supervision. Inspired by recent advances in vision-language foundation models, we investigate their utility for WSTVG, leveraging their zero-shot grounding capabilities. However, we find that a simple adaptation lacks essential spatio-temporal grounding abilities. To bridge this gap, we introduce Tubelet Referral Grounding (TRG), which connects textual queries to tubelets to enable spatio-temporal predictions. Despite its promise, TRG struggles with compositional action understanding and dense scene scenarios. To address these limitations, we propose STPro, a novel progressive learning framework with two key modules: (1) Sub-Action Temporal Curriculum Learning (SA-TCL), which incrementally builds compositional action understanding, and (2) Congestion-Guided Spatial Curriculum Learning (CG-SCL), which adapts the model to complex scenes by spatially increasing task difficulty. STPro achieves state-of-the-art results on three benchmark datasets, with improvements of 1.0% on VidSTG-Declarative and 3.0% on HCSTVG-v1.
Feed-Forward Bullet-Time Reconstruction of Dynamic Scenes from Monocular Videos
Recent advancements in static feed-forward scene reconstruction have demonstrated significant progress in high-quality novel view synthesis. However, these models often struggle with generalizability across diverse environments and fail to effectively handle dynamic content. We present BTimer (short for BulletTimer), the first motion-aware feed-forward model for real-time reconstruction and novel view synthesis of dynamic scenes. Our approach reconstructs the full scene in a 3D Gaussian Splatting representation at a given target ('bullet') timestamp by aggregating information from all the context frames. Such a formulation allows BTimer to gain scalability and generalization by leveraging both static and dynamic scene datasets. Given a casual monocular dynamic video, BTimer reconstructs a bullet-time scene within 150ms while reaching state-of-the-art performance on both static and dynamic scene datasets, even compared with optimization-based approaches.
DynamicScaler: Seamless and Scalable Video Generation for Panoramic Scenes
The increasing demand for immersive AR/VR applications and spatial intelligence has heightened the need to generate high-quality scene-level and 360{\deg} panoramic video. However, most video diffusion models are constrained by limited resolution and aspect ratio, which restricts their applicability to scene-level dynamic content synthesis. In this work, we propose the DynamicScaler, addressing these challenges by enabling spatially scalable and panoramic dynamic scene synthesis that preserves coherence across panoramic scenes of arbitrary size. Specifically, we introduce a Offset Shifting Denoiser, facilitating efficient, synchronous, and coherent denoising panoramic dynamic scenes via a diffusion model with fixed resolution through a seamless rotating Window, which ensures seamless boundary transitions and consistency across the entire panoramic space, accommodating varying resolutions and aspect ratios. Additionally, we employ a Global Motion Guidance mechanism to ensure both local detail fidelity and global motion continuity. Extensive experiments demonstrate our method achieves superior content and motion quality in panoramic scene-level video generation, offering a training-free, efficient, and scalable solution for immersive dynamic scene creation with constant VRAM consumption regardless of the output video resolution. Our project page is available at https://dynamic-scaler.pages.dev/.
VideoMamba: Spatio-Temporal Selective State Space Model
We introduce VideoMamba, a novel adaptation of the pure Mamba architecture, specifically designed for video recognition. Unlike transformers that rely on self-attention mechanisms leading to high computational costs by quadratic complexity, VideoMamba leverages Mamba's linear complexity and selective SSM mechanism for more efficient processing. The proposed Spatio-Temporal Forward and Backward SSM allows the model to effectively capture the complex relationship between non-sequential spatial and sequential temporal information in video. Consequently, VideoMamba is not only resource-efficient but also effective in capturing long-range dependency in videos, demonstrated by competitive performance and outstanding efficiency on a variety of video understanding benchmarks. Our work highlights the potential of VideoMamba as a powerful tool for video understanding, offering a simple yet effective baseline for future research in video analysis.
LSTA-Net: Long short-term Spatio-Temporal Aggregation Network for Skeleton-based Action Recognition
Modelling various spatio-temporal dependencies is the key to recognising human actions in skeleton sequences. Most existing methods excessively relied on the design of traversal rules or graph topologies to draw the dependencies of the dynamic joints, which is inadequate to reflect the relationships of the distant yet important joints. Furthermore, due to the locally adopted operations, the important long-range temporal information is therefore not well explored in existing works. To address this issue, in this work we propose LSTA-Net: a novel Long short-term Spatio-Temporal Aggregation Network, which can effectively capture the long/short-range dependencies in a spatio-temporal manner. We devise our model into a pure factorised architecture which can alternately perform spatial feature aggregation and temporal feature aggregation. To improve the feature aggregation effect, a channel-wise attention mechanism is also designed and employed. Extensive experiments were conducted on three public benchmark datasets, and the results suggest that our approach can capture both long-and-short range dependencies in the space and time domain, yielding higher results than other state-of-the-art methods. Code available at https://github.com/tailin1009/LSTA-Net.
Temporal Interpolation Is All You Need for Dynamic Neural Radiance Fields
Temporal interpolation often plays a crucial role to learn meaningful representations in dynamic scenes. In this paper, we propose a novel method to train spatiotemporal neural radiance fields of dynamic scenes based on temporal interpolation of feature vectors. Two feature interpolation methods are suggested depending on underlying representations, neural networks or grids. In the neural representation, we extract features from space-time inputs via multiple neural network modules and interpolate them based on time frames. The proposed multi-level feature interpolation network effectively captures features of both short-term and long-term time ranges. In the grid representation, space-time features are learned via four-dimensional hash grids, which remarkably reduces training time. The grid representation shows more than 100 times faster training speed than the previous neural-net-based methods while maintaining the rendering quality. Concatenating static and dynamic features and adding a simple smoothness term further improve the performance of our proposed models. Despite the simplicity of the model architectures, our method achieved state-of-the-art performance both in rendering quality for the neural representation and in training speed for the grid representation.
Autoregressive Video Generation beyond Next Frames Prediction
Autoregressive models for video generation typically operate frame-by-frame, extending next-token prediction from language to video's temporal dimension. We question that unlike word as token is universally agreed in language if frame is a appropriate prediction unit? To address this, we present VideoAR, a unified framework that supports a spectrum of prediction units including full frames, key-detail frames, multiscale refinements, and spatiotemporal cubes. Among these designs, we find model video generation using spatiotemporal cubes as prediction units, which allows autoregressive models to operate across both spatial and temporal dimensions simultaneously. This approach eliminates the assumption that frames are the natural atomic units for video autoregression. We evaluate VideoAR across diverse prediction strategies, finding that cube-based prediction consistently delivers superior quality, speed, and temporal coherence. By removing the frame-by-frame constraint, our video generator surpasses state-of-the-art baselines on VBench while achieving faster inference and enabling seamless scaling to minute-long sequences. We hope this work will motivate rethinking sequence decomposition in video and other spatiotemporal domains.
Spatia: Video Generation with Updatable Spatial Memory
Existing video generation models struggle to maintain long-term spatial and temporal consistency due to the dense, high-dimensional nature of video signals. To overcome this limitation, we propose Spatia, a spatial memory-aware video generation framework that explicitly preserves a 3D scene point cloud as persistent spatial memory. Spatia iteratively generates video clips conditioned on this spatial memory and continuously updates it through visual SLAM. This dynamic-static disentanglement design enhances spatial consistency throughout the generation process while preserving the model's ability to produce realistic dynamic entities. Furthermore, Spatia enables applications such as explicit camera control and 3D-aware interactive editing, providing a geometrically grounded framework for scalable, memory-driven video generation.
MotionRAG: Motion Retrieval-Augmented Image-to-Video Generation
Image-to-video generation has made remarkable progress with the advancements in diffusion models, yet generating videos with realistic motion remains highly challenging. This difficulty arises from the complexity of accurately modeling motion, which involves capturing physical constraints, object interactions, and domain-specific dynamics that are not easily generalized across diverse scenarios. To address this, we propose MotionRAG, a retrieval-augmented framework that enhances motion realism by adapting motion priors from relevant reference videos through Context-Aware Motion Adaptation (CAMA). The key technical innovations include: (i) a retrieval-based pipeline extracting high-level motion features using video encoder and specialized resamplers to distill semantic motion representations; (ii) an in-context learning approach for motion adaptation implemented through a causal transformer architecture; (iii) an attention-based motion injection adapter that seamlessly integrates transferred motion features into pretrained video diffusion models. Extensive experiments demonstrate that our method achieves significant improvements across multiple domains and various base models, all with negligible computational overhead during inference. Furthermore, our modular design enables zero-shot generalization to new domains by simply updating the retrieval database without retraining any components. This research enhances the core capability of video generation systems by enabling the effective retrieval and transfer of motion priors, facilitating the synthesis of realistic motion dynamics.
Pathformer: Multi-scale Transformers with Adaptive Pathways for Time Series Forecasting
Transformers for time series forecasting mainly model time series from limited or fixed scales, making it challenging to capture different characteristics spanning various scales. We propose Pathformer, a multi-scale Transformer with adaptive pathways. It integrates both temporal resolution and temporal distance for multi-scale modeling. Multi-scale division divides the time series into different temporal resolutions using patches of various sizes. Based on the division of each scale, dual attention is performed over these patches to capture global correlations and local details as temporal dependencies. We further enrich the multi-scale Transformer with adaptive pathways, which adaptively adjust the multi-scale modeling process based on the varying temporal dynamics of the input, improving the accuracy and generalization of Pathformer. Extensive experiments on eleven real-world datasets demonstrate that Pathformer not only achieves state-of-the-art performance by surpassing all current models but also exhibits stronger generalization abilities under various transfer scenarios. The code is made available at https://github.com/decisionintelligence/pathformer.
STAMP: Spatial-Temporal Adapter with Multi-Head Pooling
Time series foundation models (TSFMs) pretrained on data from multiple domains have shown strong performance on diverse modeling tasks. Various efforts have been made to develop foundation models specific to electroencephalography (EEG) data, which records brain electrical activity as time series. However, no comparative analysis of EEG-specific foundation models (EEGFMs) versus general TSFMs has been performed on EEG-specific tasks. We introduce a novel Spatial-Temporal Adapter with Multi-Head Pooling (STAMP), which leverages univariate embeddings produced by a general TSFM, implicitly models spatial-temporal characteristics of EEG data, and achieves performance comparable to state-of-the-art EEGFMs. A comprehensive analysis is performed on 8 benchmark datasets of clinical tasks using EEG for classification, along with ablation studies. Our proposed adapter is lightweight in trainable parameters and flexible in the inputs it can accommodate, supporting easy modeling of EEG data using TSFMs.
TS-LSTM and Temporal-Inception: Exploiting Spatiotemporal Dynamics for Activity Recognition
Recent two-stream deep Convolutional Neural Networks (ConvNets) have made significant progress in recognizing human actions in videos. Despite their success, methods extending the basic two-stream ConvNet have not systematically explored possible network architectures to further exploit spatiotemporal dynamics within video sequences. Further, such networks often use different baseline two-stream networks. Therefore, the differences and the distinguishing factors between various methods using Recurrent Neural Networks (RNN) or convolutional networks on temporally-constructed feature vectors (Temporal-ConvNet) are unclear. In this work, we first demonstrate a strong baseline two-stream ConvNet using ResNet-101. We use this baseline to thoroughly examine the use of both RNNs and Temporal-ConvNets for extracting spatiotemporal information. Building upon our experimental results, we then propose and investigate two different networks to further integrate spatiotemporal information: 1) temporal segment RNN and 2) Inception-style Temporal-ConvNet. We demonstrate that using both RNNs (using LSTMs) and Temporal-ConvNets on spatiotemporal feature matrices are able to exploit spatiotemporal dynamics to improve the overall performance. However, each of these methods require proper care to achieve state-of-the-art performance; for example, LSTMs require pre-segmented data or else they cannot fully exploit temporal information. Our analysis identifies specific limitations for each method that could form the basis of future work. Our experimental results on UCF101 and HMDB51 datasets achieve state-of-the-art performances, 94.1% and 69.0%, respectively, without requiring extensive temporal augmentation.
BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
Enhancing low-resolution, low-frame-rate videos to high-resolution, high-frame-rate quality is essential for a seamless user experience, motivating advancements in Continuous Spatial-Temporal Video Super Resolution (C-STVSR). While prior methods employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow network for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve-and even degrade performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art PSNR and SSIM performance, showing enhanced spatial details and natural temporal consistency.
Stylus: Automatic Adapter Selection for Diffusion Models
Beyond scaling base models with more data or parameters, fine-tuned adapters provide an alternative way to generate high fidelity, custom images at reduced costs. As such, adapters have been widely adopted by open-source communities, accumulating a database of over 100K adapters-most of which are highly customized with insufficient descriptions. This paper explores the problem of matching the prompt to a set of relevant adapters, built on recent work that highlight the performance gains of composing adapters. We introduce Stylus, which efficiently selects and automatically composes task-specific adapters based on a prompt's keywords. Stylus outlines a three-stage approach that first summarizes adapters with improved descriptions and embeddings, retrieves relevant adapters, and then further assembles adapters based on prompts' keywords by checking how well they fit the prompt. To evaluate Stylus, we developed StylusDocs, a curated dataset featuring 75K adapters with pre-computed adapter embeddings. In our evaluation on popular Stable Diffusion checkpoints, Stylus achieves greater CLIP-FID Pareto efficiency and is twice as preferred, with humans and multimodal models as evaluators, over the base model. See stylus-diffusion.github.io for more.
PUSA V1.0: Surpassing Wan-I2V with $500 Training Cost by Vectorized Timestep Adaptation
The rapid advancement of video diffusion models has been hindered by fundamental limitations in temporal modeling, particularly the rigid synchronization of frame evolution imposed by conventional scalar timestep variables. While task-specific adaptations and autoregressive models have sought to address these challenges, they remain constrained by computational inefficiency, catastrophic forgetting, or narrow applicability. In this work, we present Pusa, a groundbreaking paradigm that leverages vectorized timestep adaptation (VTA) to enable fine-grained temporal control within a unified video diffusion framework. Besides, VTA is a non-destructive adaptation, which means it fully preserves the capabilities of the base model. By finetuning the SOTA Wan2.1-T2V-14B model with VTA, we achieve unprecedented efficiency -- surpassing the performance of Wan-I2V-14B with leq 1/200 of the training cost (\500 vs. \geq 100,000) and leq 1/2500 of the dataset size (4K vs. geq 10M samples). Pusa not only sets a new standard for image-to-video (I2V) generation, achieving a VBench-I2V total score of 87.32\% (vs. 86.86\% of Wan-I2V-14B), but also unlocks many zero-shot multi-task capabilities such as start-end frames and video extension -- all without task-specific training. Meanwhile, Pusa can still perform text-to-video generation. Mechanistic analyses reveal that our approach preserves the foundation model's generative priors while surgically injecting temporal dynamics, avoiding the combinatorial explosion inherent to vectorized timesteps. This work establishes a scalable, efficient, and versatile paradigm for next-generation video synthesis, democratizing high-fidelity video generation for research and industry alike. Code is open-sourced at https://github.com/Yaofang-Liu/Pusa-VidGen
UniMTS: Unified Pre-training for Motion Time Series
Motion time series collected from mobile and wearable devices such as smartphones and smartwatches offer significant insights into human behavioral patterns, with wide applications in healthcare, automation, IoT, and AR/XR due to their low-power, always-on nature. However, given security and privacy concerns, building large-scale motion time series datasets remains difficult, preventing the development of pre-trained models for human activity analysis. Typically, existing models are trained and tested on the same dataset, leading to poor generalizability across variations in device location, device mounting orientation and human activity type. In this paper, we introduce UniMTS, the first unified pre-training procedure for motion time series that generalizes across diverse device latent factors and activities. Specifically, we employ a contrastive learning framework that aligns motion time series with text descriptions enriched by large language models. This helps the model learn the semantics of time series to generalize across activities. Given the absence of large-scale motion time series data, we derive and synthesize time series from existing motion skeleton data with all-joint coverage. Spatio-temporal graph networks are utilized to capture the relationships across joints for generalization across different device locations. We further design rotation-invariant augmentation to make the model agnostic to changes in device mounting orientations. Our model shows exceptional generalizability across 18 motion time series classification benchmark datasets, outperforming the best baselines by 340% in the zero-shot setting, 16.3% in the few-shot setting, and 9.2% in the full-shot setting.
Unleashing the Potential of Multimodal LLMs for Zero-Shot Spatio-Temporal Video Grounding
Spatio-temporal video grounding (STVG) aims at localizing the spatio-temporal tube of a video, as specified by the input text query. In this paper, we utilize multimodal large language models (MLLMs) to explore a zero-shot solution in STVG. We reveal two key insights about MLLMs: (1) MLLMs tend to dynamically assign special tokens, referred to as grounding tokens, for grounding the text query; and (2) MLLMs often suffer from suboptimal grounding due to the inability to fully integrate the cues in the text query (e.g., attributes, actions) for inference. Based on these insights, we propose a MLLM-based zero-shot framework for STVG, which includes novel decomposed spatio-temporal highlighting (DSTH) and temporal-augmented assembling (TAS) strategies to unleash the reasoning ability of MLLMs. The DSTH strategy first decouples the original query into attribute and action sub-queries for inquiring the existence of the target both spatially and temporally. It then uses a novel logit-guided re-attention (LRA) module to learn latent variables as spatial and temporal prompts, by regularizing token predictions for each sub-query. These prompts highlight attribute and action cues, respectively, directing the model's attention to reliable spatial and temporal related visual regions. In addition, as the spatial grounding by the attribute sub-query should be temporally consistent, we introduce the TAS strategy to assemble the predictions using the original video frames and the temporal-augmented frames as inputs to help improve temporal consistency. We evaluate our method on various MLLMs, and show that it outperforms SOTA methods on three common STVG benchmarks. The code will be available at https://github.com/zaiquanyang/LLaVA_Next_STVG.
VideoMAR: Autoregressive Video Generatio with Continuous Tokens
Masked-based autoregressive models have demonstrated promising image generation capability in continuous space. However, their potential for video generation remains under-explored. In this paper, we propose VideoMAR, a concise and efficient decoder-only autoregressive image-to-video model with continuous tokens, composing temporal frame-by-frame and spatial masked generation. We first identify temporal causality and spatial bi-directionality as the first principle of video AR models, and propose the next-frame diffusion loss for the integration of mask and video generation. Besides, the huge cost and difficulty of long sequence autoregressive modeling is a basic but crucial issue. To this end, we propose the temporal short-to-long curriculum learning and spatial progressive resolution training, and employ progressive temperature strategy at inference time to mitigate the accumulation error. Furthermore, VideoMAR replicates several unique capacities of language models to video generation. It inherently bears high efficiency due to simultaneous temporal-wise KV cache and spatial-wise parallel generation, and presents the capacity of spatial and temporal extrapolation via 3D rotary embeddings. On the VBench-I2V benchmark, VideoMAR surpasses the previous state-of-the-art (Cosmos I2V) while requiring significantly fewer parameters (9.3%), training data (0.5%), and GPU resources (0.2%).
Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection
Detecting abnormal activities in real-world surveillance videos is an important yet challenging task as the prior knowledge about video anomalies is usually limited or unavailable. Despite that many approaches have been developed to resolve this problem, few of them can capture the normal spatio-temporal patterns effectively and efficiently. Moreover, existing works seldom explicitly consider the local consistency at frame level and global coherence of temporal dynamics in video sequences. To this end, we propose Convolutional Transformer based Dual Discriminator Generative Adversarial Networks (CT-D2GAN) to perform unsupervised video anomaly detection. Specifically, we first present a convolutional transformer to perform future frame prediction. It contains three key components, i.e., a convolutional encoder to capture the spatial information of the input video clips, a temporal self-attention module to encode the temporal dynamics, and a convolutional decoder to integrate spatio-temporal features and predict the future frame. Next, a dual discriminator based adversarial training procedure, which jointly considers an image discriminator that can maintain the local consistency at frame-level and a video discriminator that can enforce the global coherence of temporal dynamics, is employed to enhance the future frame prediction. Finally, the prediction error is used to identify abnormal video frames. Thoroughly empirical studies on three public video anomaly detection datasets, i.e., UCSD Ped2, CUHK Avenue, and Shanghai Tech Campus, demonstrate the effectiveness of the proposed adversarial spatio-temporal modeling framework.
VEnhancer: Generative Space-Time Enhancement for Video Generation
We present VEnhancer, a generative space-time enhancement framework that improves the existing text-to-video results by adding more details in spatial domain and synthetic detailed motion in temporal domain. Given a generated low-quality video, our approach can increase its spatial and temporal resolution simultaneously with arbitrary up-sampling space and time scales through a unified video diffusion model. Furthermore, VEnhancer effectively removes generated spatial artifacts and temporal flickering of generated videos. To achieve this, basing on a pretrained video diffusion model, we train a video ControlNet and inject it to the diffusion model as a condition on low frame-rate and low-resolution videos. To effectively train this video ControlNet, we design space-time data augmentation as well as video-aware conditioning. Benefiting from the above designs, VEnhancer yields to be stable during training and shares an elegant end-to-end training manner. Extensive experiments show that VEnhancer surpasses existing state-of-the-art video super-resolution and space-time super-resolution methods in enhancing AI-generated videos. Moreover, with VEnhancer, exisiting open-source state-of-the-art text-to-video method, VideoCrafter-2, reaches the top one in video generation benchmark -- VBench.
ViSAudio: End-to-End Video-Driven Binaural Spatial Audio Generation
Despite progress in video-to-audio generation, the field focuses predominantly on mono output, lacking spatial immersion. Existing binaural approaches remain constrained by a two-stage pipeline that first generates mono audio and then performs spatialization, often resulting in error accumulation and spatio-temporal inconsistencies. To address this limitation, we introduce the task of end-to-end binaural spatial audio generation directly from silent video. To support this task, we present the BiAudio dataset, comprising approximately 97K video-binaural audio pairs spanning diverse real-world scenes and camera rotation trajectories, constructed through a semi-automated pipeline. Furthermore, we propose ViSAudio, an end-to-end framework that employs conditional flow matching with a dual-branch audio generation architecture, where two dedicated branches model the audio latent flows. Integrated with a conditional spacetime module, it balances consistency between channels while preserving distinctive spatial characteristics, ensuring precise spatio-temporal alignment between audio and the input video. Comprehensive experiments demonstrate that ViSAudio outperforms existing state-of-the-art methods across both objective metrics and subjective evaluations, generating high-quality binaural audio with spatial immersion that adapts effectively to viewpoint changes, sound-source motion, and diverse acoustic environments. Project website: https://kszpxxzmc.github.io/ViSAudio-project.
Multiview Transformers for Video Recognition
Video understanding requires reasoning at multiple spatiotemporal resolutions -- from short fine-grained motions to events taking place over longer durations. Although transformer architectures have recently advanced the state-of-the-art, they have not explicitly modelled different spatiotemporal resolutions. To this end, we present Multiview Transformers for Video Recognition (MTV). Our model consists of separate encoders to represent different views of the input video with lateral connections to fuse information across views. We present thorough ablation studies of our model and show that MTV consistently performs better than single-view counterparts in terms of accuracy and computational cost across a range of model sizes. Furthermore, we achieve state-of-the-art results on six standard datasets, and improve even further with large-scale pretraining. Code and checkpoints are available at: https://github.com/google-research/scenic/tree/main/scenic/projects/mtv.
TGBFormer: Transformer-GraphFormer Blender Network for Video Object Detection
Video object detection has made significant progress in recent years thanks to convolutional neural networks (CNNs) and vision transformers (ViTs). Typically, CNNs excel at capturing local features but struggle to model global representations. Conversely, ViTs are adept at capturing long-range global features but face challenges in representing local feature details. Off-the-shelf video object detection methods solely rely on CNNs or ViTs to conduct feature aggregation, which hampers their capability to simultaneously leverage global and local information, thereby resulting in limited detection performance. In this paper, we propose a Transformer-GraphFormer Blender Network (TGBFormer) for video object detection, with three key technical improvements to fully exploit the advantages of transformers and graph convolutional networks while compensating for their limitations. First, we develop a spatial-temporal transformer module to aggregate global contextual information, constituting global representations with long-range feature dependencies. Second, we introduce a spatial-temporal GraphFormer module that utilizes local spatial and temporal relationships to aggregate features, generating new local representations that are complementary to the transformer outputs. Third, we design a global-local feature blender module to adaptively couple transformer-based global representations and GraphFormer-based local representations. Extensive experiments demonstrate that our TGBFormer establishes new state-of-the-art results on the ImageNet VID dataset. Particularly, our TGBFormer achieves 86.5% mAP while running at around 41.0 FPS on a single Tesla A100 GPU.
STR-Match: Matching SpatioTemporal Relevance Score for Training-Free Video Editing
Previous text-guided video editing methods often suffer from temporal inconsistency, motion distortion, and-most notably-limited domain transformation. We attribute these limitations to insufficient modeling of spatiotemporal pixel relevance during the editing process. To address this, we propose STR-Match, a training-free video editing algorithm that produces visually appealing and spatiotemporally coherent videos through latent optimization guided by our novel STR score. The score captures spatiotemporal pixel relevance across adjacent frames by leveraging 2D spatial attention and 1D temporal modules in text-to-video (T2V) diffusion models, without the overhead of computationally expensive 3D attention mechanisms. Integrated into a latent optimization framework with a latent mask, STR-Match generates temporally consistent and visually faithful videos, maintaining strong performance even under significant domain transformations while preserving key visual attributes of the source. Extensive experiments demonstrate that STR-Match consistently outperforms existing methods in both visual quality and spatiotemporal consistency.
3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditioning that reformulates context-view referencing across the input video. Our approach conditions on both temporally adjacent frames for motion continuity and spatially adjacent content for scene consistency. However, when generating beyond temporal boundaries, directly using spatially adjacent frames would incorrectly preserve dynamic elements from the past. We address this by introducing a 3D scene memory that represents exclusively the static geometry extracted from the entire input video. To construct this memory, we leverage dynamic SLAM with our newly introduced dynamic masking strategy that explicitly separates static scene geometry from moving elements. The static scene representation can then be projected to any target viewpoint, providing geometrically consistent warped views that serve as strong 3D spatial prompts while allowing dynamic regions to evolve naturally from temporal context. This enables our model to maintain long-range spatial coherence and precise camera control without sacrificing computational efficiency or motion realism. Extensive experiments demonstrate that our framework significantly outperforms existing methods in scene consistency, camera controllability, and generation quality. Project page : https://cvlab-kaist.github.io/3DScenePrompt/
ReVideo: Remake a Video with Motion and Content Control
Despite significant advancements in video generation and editing using diffusion models, achieving accurate and localized video editing remains a substantial challenge. Additionally, most existing video editing methods primarily focus on altering visual content, with limited research dedicated to motion editing. In this paper, we present a novel attempt to Remake a Video (ReVideo) which stands out from existing methods by allowing precise video editing in specific areas through the specification of both content and motion. Content editing is facilitated by modifying the first frame, while the trajectory-based motion control offers an intuitive user interaction experience. ReVideo addresses a new task involving the coupling and training imbalance between content and motion control. To tackle this, we develop a three-stage training strategy that progressively decouples these two aspects from coarse to fine. Furthermore, we propose a spatiotemporal adaptive fusion module to integrate content and motion control across various sampling steps and spatial locations. Extensive experiments demonstrate that our ReVideo has promising performance on several accurate video editing applications, i.e., (1) locally changing video content while keeping the motion constant, (2) keeping content unchanged and customizing new motion trajectories, (3) modifying both content and motion trajectories. Our method can also seamlessly extend these applications to multi-area editing without specific training, demonstrating its flexibility and robustness.
Wan-Move: Motion-controllable Video Generation via Latent Trajectory Guidance
We present Wan-Move, a simple and scalable framework that brings motion control to video generative models. Existing motion-controllable methods typically suffer from coarse control granularity and limited scalability, leaving their outputs insufficient for practical use. We narrow this gap by achieving precise and high-quality motion control. Our core idea is to directly make the original condition features motion-aware for guiding video synthesis. To this end, we first represent object motions with dense point trajectories, allowing fine-grained control over the scene. We then project these trajectories into latent space and propagate the first frame's features along each trajectory, producing an aligned spatiotemporal feature map that tells how each scene element should move. This feature map serves as the updated latent condition, which is naturally integrated into the off-the-shelf image-to-video model, e.g., Wan-I2V-14B, as motion guidance without any architecture change. It removes the need for auxiliary motion encoders and makes fine-tuning base models easily scalable. Through scaled training, Wan-Move generates 5-second, 480p videos whose motion controllability rivals Kling 1.5 Pro's commercial Motion Brush, as indicated by user studies. To support comprehensive evaluation, we further design MoveBench, a rigorously curated benchmark featuring diverse content categories and hybrid-verified annotations. It is distinguished by larger data volume, longer video durations, and high-quality motion annotations. Extensive experiments on MoveBench and the public dataset consistently show Wan-Move's superior motion quality. Code, models, and benchmark data are made publicly available.
Sparse Diffusion Autoencoder for Test-time Adapting Prediction of Complex Systems
Predicting the behavior of complex systems is critical in many scientific and engineering domains, and hinges on the model's ability to capture their underlying dynamics. Existing methods encode the intrinsic dynamics of high-dimensional observations through latent representations and predict autoregressively. However, these latent representations lose the inherent spatial structure of spatiotemporal dynamics, leading to the predictor's inability to effectively model spatial interactions and neglect emerging dynamics during long-term prediction. In this work, we propose SparseDiff, introducing a test-time adaptation strategy to dynamically update the encoding scheme to accommodate emergent spatiotemporal structures during the long-term evolution of the system. Specifically, we first design a codebook-based sparse encoder, which coarsens the continuous spatial domain into a sparse graph topology. Then, we employ a graph neural ordinary differential equation to model the dynamics and guide a diffusion decoder for reconstruction. SparseDiff autoregressively predicts the spatiotemporal evolution and adjust the sparse topological structure to adapt to emergent spatiotemporal patterns by adaptive re-encoding. Extensive evaluations on representative systems demonstrate that SparseDiff achieves an average prediction error reduction of 49.99\% compared to baselines, requiring only 1\% of the spatial resolution.
Zero-shot 3D-Aware Trajectory-Guided image-to-video generation via Test-Time Training
Trajectory-Guided image-to-video (I2V) generation aims to synthesize videos that adhere to user-specified motion instructions. Existing methods typically rely on computationally expensive fine-tuning on scarce annotated datasets. Although some zero-shot methods attempt to trajectory control in the latent space, they may yield unrealistic motion by neglecting 3D perspective and creating a misalignment between the manipulated latents and the network's noise predictions. To address these challenges, we introduce Zo3T, a novel zero-shot test-time-training framework for trajectory-guided generation with three core innovations: First, we incorporate a 3D-Aware Kinematic Projection, leveraging inferring scene depth to derive perspective-correct affine transformations for target regions. Second, we introduce Trajectory-Guided Test-Time LoRA, a mechanism that dynamically injects and optimizes ephemeral LoRA adapters into the denoising network alongside the latent state. Driven by a regional feature consistency loss, this co-adaptation effectively enforces motion constraints while allowing the pre-trained model to locally adapt its internal representations to the manipulated latent, thereby ensuring generative fidelity and on-manifold adherence. Finally, we develop Guidance Field Rectification, which refines the denoising evolutionary path by optimizing the conditional guidance field through a one-step lookahead strategy, ensuring efficient generative progression towards the target trajectory. Zo3T significantly enhances 3D realism and motion accuracy in trajectory-controlled I2V generation, demonstrating superior performance over existing training-based and zero-shot approaches.
Make-A-Video: Text-to-Video Generation without Text-Video Data
We propose Make-A-Video -- an approach for directly translating the tremendous recent progress in Text-to-Image (T2I) generation to Text-to-Video (T2V). Our intuition is simple: learn what the world looks like and how it is described from paired text-image data, and learn how the world moves from unsupervised video footage. Make-A-Video has three advantages: (1) it accelerates training of the T2V model (it does not need to learn visual and multimodal representations from scratch), (2) it does not require paired text-video data, and (3) the generated videos inherit the vastness (diversity in aesthetic, fantastical depictions, etc.) of today's image generation models. We design a simple yet effective way to build on T2I models with novel and effective spatial-temporal modules. First, we decompose the full temporal U-Net and attention tensors and approximate them in space and time. Second, we design a spatial temporal pipeline to generate high resolution and frame rate videos with a video decoder, interpolation model and two super resolution models that can enable various applications besides T2V. In all aspects, spatial and temporal resolution, faithfulness to text, and quality, Make-A-Video sets the new state-of-the-art in text-to-video generation, as determined by both qualitative and quantitative measures.
VideoCanvas: Unified Video Completion from Arbitrary Spatiotemporal Patches via In-Context Conditioning
We introduce the task of arbitrary spatio-temporal video completion, where a video is generated from arbitrary, user-specified patches placed at any spatial location and timestamp, akin to painting on a video canvas. This flexible formulation naturally unifies many existing controllable video generation tasks--including first-frame image-to-video, inpainting, extension, and interpolation--under a single, cohesive paradigm. Realizing this vision, however, faces a fundamental obstacle in modern latent video diffusion models: the temporal ambiguity introduced by causal VAEs, where multiple pixel frames are compressed into a single latent representation, making precise frame-level conditioning structurally difficult. We address this challenge with VideoCanvas, a novel framework that adapts the In-Context Conditioning (ICC) paradigm to this fine-grained control task with zero new parameters. We propose a hybrid conditioning strategy that decouples spatial and temporal control: spatial placement is handled via zero-padding, while temporal alignment is achieved through Temporal RoPE Interpolation, which assigns each condition a continuous fractional position within the latent sequence. This resolves the VAE's temporal ambiguity and enables pixel-frame-aware control on a frozen backbone. To evaluate this new capability, we develop VideoCanvasBench, the first benchmark for arbitrary spatio-temporal video completion, covering both intra-scene fidelity and inter-scene creativity. Experiments demonstrate that VideoCanvas significantly outperforms existing conditioning paradigms, establishing a new state of the art in flexible and unified video generation.
LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding
Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .
Implicit Temporal Modeling with Learnable Alignment for Video Recognition
Contrastive language-image pretraining (CLIP) has demonstrated remarkable success in various image tasks. However, how to extend CLIP with effective temporal modeling is still an open and crucial problem. Existing factorized or joint spatial-temporal modeling trades off between the efficiency and performance. While modeling temporal information within straight through tube is widely adopted in literature, we find that simple frame alignment already provides enough essence without temporal attention. To this end, in this paper, we proposed a novel Implicit Learnable Alignment (ILA) method, which minimizes the temporal modeling effort while achieving incredibly high performance. Specifically, for a frame pair, an interactive point is predicted in each frame, serving as a mutual information rich region. By enhancing the features around the interactive point, two frames are implicitly aligned. The aligned features are then pooled into a single token, which is leveraged in the subsequent spatial self-attention. Our method allows eliminating the costly or insufficient temporal self-attention in video. Extensive experiments on benchmarks demonstrate the superiority and generality of our module. Particularly, the proposed ILA achieves a top-1 accuracy of 88.7% on Kinetics-400 with much fewer FLOPs compared with Swin-L and ViViT-H. Code is released at https://github.com/Francis-Rings/ILA .
I2VControl-Camera: Precise Video Camera Control with Adjustable Motion Strength
Video generation technologies are developing rapidly and have broad potential applications. Among these technologies, camera control is crucial for generating professional-quality videos that accurately meet user expectations. However, existing camera control methods still suffer from several limitations, including control precision and the neglect of the control for subject motion dynamics. In this work, we propose I2VControl-Camera, a novel camera control method that significantly enhances controllability while providing adjustability over the strength of subject motion. To improve control precision, we employ point trajectory in the camera coordinate system instead of only extrinsic matrix information as our control signal. To accurately control and adjust the strength of subject motion, we explicitly model the higher-order components of the video trajectory expansion, not merely the linear terms, and design an operator that effectively represents the motion strength. We use an adapter architecture that is independent of the base model structure. Experiments on static and dynamic scenes show that our framework outperformances previous methods both quantitatively and qualitatively. The project page is: https://wanquanf.github.io/I2VControlCamera .
Temporally Consistent Transformers for Video Generation
To generate accurate videos, algorithms have to understand the spatial and temporal dependencies in the world. Current algorithms enable accurate predictions over short horizons but tend to suffer from temporal inconsistencies. When generated content goes out of view and is later revisited, the model invents different content instead. Despite this severe limitation, no established benchmarks on complex data exist for rigorously evaluating video generation with long temporal dependencies. In this paper, we curate 3 challenging video datasets with long-range dependencies by rendering walks through 3D scenes of procedural mazes, Minecraft worlds, and indoor scans. We perform a comprehensive evaluation of current models and observe their limitations in temporal consistency. Moreover, we introduce the Temporally Consistent Transformer (TECO), a generative model that substantially improves long-term consistency while also reducing sampling time. By compressing its input sequence into fewer embeddings, applying a temporal transformer, and expanding back using a spatial MaskGit, TECO outperforms existing models across many metrics. Videos are available on the website: https://wilson1yan.github.io/teco
BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers
3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. To aggregate spatial information, we design spatial cross-attention that each BEV query extracts the spatial features from the regions of interest across camera views. For temporal information, we propose temporal self-attention to recurrently fuse the history BEV information. Our approach achieves the new state-of-the-art 56.9\% in terms of NDS metric on the nuScenes test set, which is 9.0 points higher than previous best arts and on par with the performance of LiDAR-based baselines. We further show that BEVFormer remarkably improves the accuracy of velocity estimation and recall of objects under low visibility conditions. The code is available at https://github.com/zhiqi-li/BEVFormer.
Tool-Augmented Spatiotemporal Reasoning for Streamlining Video Question Answering Task
Video Question Answering (VideoQA) task serves as a critical playground for evaluating whether foundation models can effectively perceive, understand, and reason about dynamic real-world scenarios. However, existing Multimodal Large Language Models (MLLMs) struggle with simultaneously modeling spatial relationships within video frames and understanding the causal dynamics of temporal evolution on complex and reasoning-intensive VideoQA task. In this work, we equip MLLM with a comprehensive and extensible Video Toolkit, to enhance MLLM's spatiotemporal reasoning capabilities and ensure the harmony between the quantity and diversity of tools. To better control the tool invocation sequence and avoid toolchain shortcut issues, we propose a Spatiotemporal Reasoning Framework (STAR) that strategically schedules temporal and spatial tools, thereby progressively localizing the key area in the video. Our STAR framework enhances GPT-4o using lightweight tools, achieving an 8.2% gain on VideoMME and 4.6% on LongVideoBench. We believe that our proposed Video Toolkit and STAR framework make an important step towards building autonomous and intelligent video analysis assistants. The code is publicly available at https://github.com/fansunqi/VideoTool.
Discovering Spatio-Temporal Rationales for Video Question Answering
This paper strives to solve complex video question answering (VideoQA) which features long video containing multiple objects and events at different time. To tackle the challenge, we highlight the importance of identifying question-critical temporal moments and spatial objects from the vast amount of video content. Towards this, we propose a Spatio-Temporal Rationalization (STR), a differentiable selection module that adaptively collects question-critical moments and objects using cross-modal interaction. The discovered video moments and objects are then served as grounded rationales to support answer reasoning. Based on STR, we further propose TranSTR, a Transformer-style neural network architecture that takes STR as the core and additionally underscores a novel answer interaction mechanism to coordinate STR for answer decoding. Experiments on four datasets show that TranSTR achieves new state-of-the-art (SoTA). Especially, on NExT-QA and Causal-VidQA which feature complex VideoQA, it significantly surpasses the previous SoTA by 5.8\% and 6.8\%, respectively. We then conduct extensive studies to verify the importance of STR as well as the proposed answer interaction mechanism. With the success of TranSTR and our comprehensive analysis, we hope this work can spark more future efforts in complex VideoQA. Code will be released at https://github.com/yl3800/TranSTR.
DiffPose: SpatioTemporal Diffusion Model for Video-Based Human Pose Estimation
Denoising diffusion probabilistic models that were initially proposed for realistic image generation have recently shown success in various perception tasks (e.g., object detection and image segmentation) and are increasingly gaining attention in computer vision. However, extending such models to multi-frame human pose estimation is non-trivial due to the presence of the additional temporal dimension in videos. More importantly, learning representations that focus on keypoint regions is crucial for accurate localization of human joints. Nevertheless, the adaptation of the diffusion-based methods remains unclear on how to achieve such objective. In this paper, we present DiffPose, a novel diffusion architecture that formulates video-based human pose estimation as a conditional heatmap generation problem. First, to better leverage temporal information, we propose SpatioTemporal Representation Learner which aggregates visual evidences across frames and uses the resulting features in each denoising step as a condition. In addition, we present a mechanism called Lookup-based MultiScale Feature Interaction that determines the correlations between local joints and global contexts across multiple scales. This mechanism generates delicate representations that focus on keypoint regions. Altogether, by extending diffusion models, we show two unique characteristics from DiffPose on pose estimation task: (i) the ability to combine multiple sets of pose estimates to improve prediction accuracy, particularly for challenging joints, and (ii) the ability to adjust the number of iterative steps for feature refinement without retraining the model. DiffPose sets new state-of-the-art results on three benchmarks: PoseTrack2017, PoseTrack2018, and PoseTrack21.
Large Motion Video Autoencoding with Cross-modal Video VAE
Learning a robust video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation. Directly applying image VAEs to individual frames in isolation can result in temporal inconsistencies and suboptimal compression rates due to a lack of temporal compression. Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance. In this paper, we present a novel and powerful video autoencoder capable of high-fidelity video encoding. First, we observe that entangling spatial and temporal compression by merely extending the image VAE to a 3D VAE can introduce motion blur and detail distortion artifacts. Thus, we propose temporal-aware spatial compression to better encode and decode the spatial information. Additionally, we integrate a lightweight motion compression model for further temporal compression. Second, we propose to leverage the textual information inherent in text-to-video datasets and incorporate text guidance into our model. This significantly enhances reconstruction quality, particularly in terms of detail preservation and temporal stability. Third, we further improve the versatility of our model through joint training on both images and videos, which not only enhances reconstruction quality but also enables the model to perform both image and video autoencoding. Extensive evaluations against strong recent baselines demonstrate the superior performance of our method. The project website can be found at~https://yzxing87.github.io/vae/{https://yzxing87.github.io/vae/}.
StereoSync: Spatially-Aware Stereo Audio Generation from Video
Although audio generation has been widely studied over recent years, video-aligned audio generation still remains a relatively unexplored frontier. To address this gap, we introduce StereoSync, a novel and efficient model designed to generate audio that is both temporally synchronized with a reference video and spatially aligned with its visual context. Moreover, StereoSync also achieves efficiency by leveraging pretrained foundation models, reducing the need for extensive training while maintaining high-quality synthesis. Unlike existing methods that primarily focus on temporal synchronization, StereoSync introduces a significant advancement by incorporating spatial awareness into video-aligned audio generation. Indeed, given an input video, our approach extracts spatial cues from depth maps and bounding boxes, using them as cross-attention conditioning in a diffusion-based audio generation model. Such an approach allows StereoSync to go beyond simple synchronization, producing stereo audio that dynamically adapts to the spatial structure and movement of a video scene. We evaluate StereoSync on Walking The Maps, a curated dataset comprising videos from video games that feature animated characters walking through diverse environments. Experimental results demonstrate the ability of StereoSync to achieve both temporal and spatial alignment, advancing the state of the art in video-to-audio generation and resulting in a significantly more immersive and realistic audio experience.
Spatiotemporal Contrastive Video Representation Learning
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the same short video are pulled together in the embedding space, while clips from different videos are pushed away. We study what makes for good data augmentations for video self-supervised learning and find that both spatial and temporal information are crucial. We carefully design data augmentations involving spatial and temporal cues. Concretely, we propose a temporally consistent spatial augmentation method to impose strong spatial augmentations on each frame of the video while maintaining the temporal consistency across frames. We also propose a sampling-based temporal augmentation method to avoid overly enforcing invariance on clips that are distant in time. On Kinetics-600, a linear classifier trained on the representations learned by CVRL achieves 70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50) backbone, outperforming ImageNet supervised pre-training by 15.7% and SimCLR unsupervised pre-training by 18.8% using the same inflated R3D-50. The performance of CVRL can be further improved to 72.9% with a larger R3D-152 (2x filters) backbone, significantly closing the gap between unsupervised and supervised video representation learning. Our code and models will be available at https://github.com/tensorflow/models/tree/master/official/.
Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks
Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for image recognition problems. Nevertheless, it is not trivial when utilizing a CNN for learning spatio-temporal video representation. A few studies have shown that performing 3D convolutions is a rewarding approach to capture both spatial and temporal dimensions in videos. However, the development of a very deep 3D CNN from scratch results in expensive computational cost and memory demand. A valid question is why not recycle off-the-shelf 2D networks for a 3D CNN. In this paper, we devise multiple variants of bottleneck building blocks in a residual learning framework by simulating 3times3times3 convolutions with 1times3times3 convolutional filters on spatial domain (equivalent to 2D CNN) plus 3times1times1 convolutions to construct temporal connections on adjacent feature maps in time. Furthermore, we propose a new architecture, named Pseudo-3D Residual Net (P3D ResNet), that exploits all the variants of blocks but composes each in different placement of ResNet, following the philosophy that enhancing structural diversity with going deep could improve the power of neural networks. Our P3D ResNet achieves clear improvements on Sports-1M video classification dataset against 3D CNN and frame-based 2D CNN by 5.3% and 1.8%, respectively. We further examine the generalization performance of video representation produced by our pre-trained P3D ResNet on five different benchmarks and three different tasks, demonstrating superior performances over several state-of-the-art techniques.
Lumiere: A Space-Time Diffusion Model for Video Generation
We introduce Lumiere -- a text-to-video diffusion model designed for synthesizing videos that portray realistic, diverse and coherent motion -- a pivotal challenge in video synthesis. To this end, we introduce a Space-Time U-Net architecture that generates the entire temporal duration of the video at once, through a single pass in the model. This is in contrast to existing video models which synthesize distant keyframes followed by temporal super-resolution -- an approach that inherently makes global temporal consistency difficult to achieve. By deploying both spatial and (importantly) temporal down- and up-sampling and leveraging a pre-trained text-to-image diffusion model, our model learns to directly generate a full-frame-rate, low-resolution video by processing it in multiple space-time scales. We demonstrate state-of-the-art text-to-video generation results, and show that our design easily facilitates a wide range of content creation tasks and video editing applications, including image-to-video, video inpainting, and stylized generation.
MTFL: Multi-Timescale Feature Learning for Weakly-Supervised Anomaly Detection in Surveillance Videos
Detection of anomaly events is relevant for public safety and requires a combination of fine-grained motion information and contextual events at variable time-scales. To this end, we propose a Multi-Timescale Feature Learning (MTFL) method to enhance the representation of anomaly features. Short, medium, and long temporal tubelets are employed to extract spatio-temporal video features using a Video Swin Transformer. Experimental results demonstrate that MTFL outperforms state-of-the-art methods on the UCF-Crime dataset, achieving an anomaly detection performance 89.78% AUC. Moreover, it performs complementary to SotA with 95.32% AUC on the ShanghaiTech and 84.57% AP on the XD-Violence dataset. Furthermore, we generate an extended dataset of the UCF-Crime for development and evaluation on a wider range of anomalies, namely Video Anomaly Detection Dataset (VADD), involving 2,591 videos in 18 classes with extensive coverage of realistic anomalies.
