Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeHyperbolic Safety-Aware Vision-Language Models
Addressing the retrieval of unsafe content from vision-language models such as CLIP is an important step towards real-world integration. Current efforts have relied on unlearning techniques that try to erase the model's knowledge of unsafe concepts. While effective in reducing unwanted outputs, unlearning limits the model's capacity to discern between safe and unsafe content. In this work, we introduce a novel approach that shifts from unlearning to an awareness paradigm by leveraging the inherent hierarchical properties of the hyperbolic space. We propose to encode safe and unsafe content as an entailment hierarchy, where both are placed in different regions of hyperbolic space. Our HySAC, Hyperbolic Safety-Aware CLIP, employs entailment loss functions to model the hierarchical and asymmetrical relations between safe and unsafe image-text pairs. This modelling, ineffective in standard vision-language models due to their reliance on Euclidean embeddings, endows the model with awareness of unsafe content, enabling it to serve as both a multimodal unsafe classifier and a flexible content retriever, with the option to dynamically redirect unsafe queries toward safer alternatives or retain the original output. Extensive experiments show that our approach not only enhances safety recognition but also establishes a more adaptable and interpretable framework for content moderation in vision-language models. Our source code is available at https://github.com/aimagelab/HySAC.
LionGuard: Building a Contextualized Moderation Classifier to Tackle Localized Unsafe Content
As large language models (LLMs) become increasingly prevalent in a wide variety of applications, concerns about the safety of their outputs have become more significant. Most efforts at safety-tuning or moderation today take on a predominantly Western-centric view of safety, especially for toxic, hateful, or violent speech. In this paper, we describe LionGuard, a Singapore-contextualized moderation classifier that can serve as guardrails against unsafe LLM outputs. When assessed on Singlish data, LionGuard outperforms existing widely-used moderation APIs, which are not finetuned for the Singapore context, by 14% (binary) and up to 51% (multi-label). Our work highlights the benefits of localization for moderation classifiers and presents a practical and scalable approach for low-resource languages.
CGCE: Classifier-Guided Concept Erasure in Generative Models
Recent advancements in large-scale generative models have enabled the creation of high-quality images and videos, but have also raised significant safety concerns regarding the generation of unsafe content. To mitigate this, concept erasure methods have been developed to remove undesirable concepts from pre-trained models. However, existing methods remain vulnerable to adversarial attacks that can regenerate the erased content. Moreover, achieving robust erasure often degrades the model's generative quality for safe, unrelated concepts, creating a difficult trade-off between safety and performance. To address this challenge, we introduce Classifier-Guided Concept Erasure (CGCE), an efficient plug-and-play framework that provides robust concept erasure for diverse generative models without altering their original weights. CGCE uses a lightweight classifier operating on text embeddings to first detect and then refine prompts containing undesired concepts. This approach is highly scalable, allowing for multi-concept erasure by aggregating guidance from several classifiers. By modifying only unsafe embeddings at inference time, our method prevents harmful content generation while preserving the model's original quality on benign prompts. Extensive experiments show that CGCE achieves state-of-the-art robustness against a wide range of red-teaming attacks. Our approach also maintains high generative utility, demonstrating a superior balance between safety and performance. We showcase the versatility of CGCE through its successful application to various modern T2I and T2V models, establishing it as a practical and effective solution for safe generative AI.
Detecting and Filtering Unsafe Training Data via Data Attribution
Large language models (LLMs) are vulnerable to unsafe training data that even small amounts of unsafe data can lead to harmful model behaviors. Detecting and filtering such unsafe training data is essential for trustworthy model development. Current state-of-the-art (SOTA) approaches typically rely on training moderation classifiers which requires significant computational overhead and are limited to predefined taxonomies, making them less adaptable to evolving safety concerns. Moreover, these classifiers lack insight into the training process, limiting their effectiveness in filtering unsafe data. To address these limitations, we propose DABUF, leveraging data attribution to detect and filter unsafe training data by attributing harmful model outputs to influential training data points. DABUF enables flexible identification of various unsafe data types without predefined taxonomies. However, in practice, model outputs can be complex with combined safe linguistic features and unsafe content, leading to reduced attribution accuracy. In such cases, DABUF will integrate moderation classifiers to identify a minimal subset of unsafe training data for targeted attribution (such as jailbreak). When model outputs are relatively straightforward, DABUF uses model outputs directly as the attribution targets. We evaluate the performance on two different tasks: in filtering jailbreaking training data and in identifying and mitigating gender bias. DABUF outperforms SOTA approaches by up to 7.5\% in detection AUPRC in jailbreaking scenarios, and 44.1\% in detecting gender bias. Moreover, retraining on DABUF-filtered data leads to higher model safety across experiments, underscoring its versatility in addressing a broad spectrum of unsafe data issues.
UnsafeBench: Benchmarking Image Safety Classifiers on Real-World and AI-Generated Images
Image safety classifiers play an important role in identifying and mitigating the spread of unsafe images online (e.g., images including violence, hateful rhetoric, etc.). At the same time, with the advent of text-to-image models and increasing concerns about the safety of AI models, developers are increasingly relying on image safety classifiers to safeguard their models. Yet, the performance of current image safety classifiers remains unknown for real-world and AI-generated images. To bridge this research gap, in this work, we propose UnsafeBench, a benchmarking framework that evaluates the effectiveness and robustness of image safety classifiers. First, we curate a large dataset of 10K real-world and AI-generated images that are annotated as safe or unsafe based on a set of 11 unsafe categories of images (sexual, violent, hateful, etc.). Then, we evaluate the effectiveness and robustness of five popular image safety classifiers, as well as three classifiers that are powered by general-purpose visual language models. Our assessment indicates that existing image safety classifiers are not comprehensive and effective enough in mitigating the multifaceted problem of unsafe images. Also, we find that classifiers trained only on real-world images tend to have degraded performance when applied to AI-generated images. Motivated by these findings, we design and implement a comprehensive image moderation tool called PerspectiveVision, which effectively identifies 11 categories of real-world and AI-generated unsafe images. The best PerspectiveVision model achieves an overall F1-Score of 0.810 on six evaluation datasets, which is comparable with closed-source and expensive state-of-the-art models like GPT-4V. UnsafeBench and PerspectiveVision can aid the research community in better understanding the landscape of image safety classification in the era of generative AI.
Token-Level Marginalization for Multi-Label LLM Classifiers
This paper addresses the critical challenge of deriving interpretable confidence scores from generative language models (LLMs) when applied to multi-label content safety classification. While models like LLaMA Guard are effective for identifying unsafe content and its categories, their generative architecture inherently lacks direct class-level probabilities, which hinders model confidence assessment and performance interpretation. This limitation complicates the setting of dynamic thresholds for content moderation and impedes fine-grained error analysis. This research proposes and evaluates three novel token-level probability estimation approaches to bridge this gap. The aim is to enhance model interpretability and accuracy, and evaluate the generalizability of this framework across different instruction-tuned models. Through extensive experimentation on a synthetically generated, rigorously annotated dataset, it is demonstrated that leveraging token logits significantly improves the interpretability and reliability of generative classifiers, enabling more nuanced content safety moderation.
Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs
Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we present and evaluate a method to assess the robustness of LLM alignment. We observe that alignment embeds a safety classifier in the target model that is responsible for deciding between refusal and compliance. We seek to extract an approximation of this classifier, called a surrogate classifier, from the LLM. We develop an algorithm for identifying candidate classifiers from subsets of the LLM model. We evaluate the degree to which the candidate classifiers approximate the model's embedded classifier in benign (F1 score) and adversarial (using surrogates in a white-box attack) settings. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find attacks mounted on the surrogate models can be transferred with high accuracy. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70%, a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is a viable (and highly effective) means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks.
Adapting Safe-for-Work Classifier for Malaysian Language Text: Enhancing Alignment in LLM-Ops Framework
As large language models (LLMs) become increasingly integrated into operational workflows (LLM-Ops), there is a pressing need for effective guardrails to ensure safe and aligned interactions, including the ability to detect potentially unsafe or inappropriate content across languages. However, existing safe-for-work classifiers are primarily focused on English text. To address this gap for the Malaysian language, we present a novel safe-for-work text classifier tailored specifically for Malaysian language content. By curating and annotating a first-of-its-kind dataset of Malaysian text spanning multiple content categories, we trained a classification model capable of identifying potentially unsafe material using state-of-the-art natural language processing techniques. This work represents an important step in enabling safer interactions and content filtering to mitigate potential risks and ensure responsible deployment of LLMs. To maximize accessibility and promote further research towards enhancing alignment in LLM-Ops for the Malaysian context, the model is publicly released at https://huggingface.co/malaysia-ai/malaysian-sfw-classifier.
On the Safety of Conversational Models: Taxonomy, Dataset, and Benchmark
Dialogue safety problems severely limit the real-world deployment of neural conversational models and have attracted great research interests recently. However, dialogue safety problems remain under-defined and the corresponding dataset is scarce. We propose a taxonomy for dialogue safety specifically designed to capture unsafe behaviors in human-bot dialogue settings, with focuses on context-sensitive unsafety, which is under-explored in prior works. To spur research in this direction, we compile DiaSafety, a dataset with rich context-sensitive unsafe examples. Experiments show that existing safety guarding tools fail severely on our dataset. As a remedy, we train a dialogue safety classifier to provide a strong baseline for context-sensitive dialogue unsafety detection. With our classifier, we perform safety evaluations on popular conversational models and show that existing dialogue systems still exhibit concerning context-sensitive safety problems.
Safety Pretraining: Toward the Next Generation of Safe AI
As large language models (LLMs) are increasingly deployed in high-stakes settings, the risk of generating harmful or toxic content remains a central challenge. Post-hoc alignment methods are brittle: once unsafe patterns are learned during pretraining, they are hard to remove. We present a data-centric pretraining framework that builds safety into the model from the start. Our contributions include: (i) a safety classifier trained on 10,000 GPT-4 labeled examples, used to filter 600B tokens; (ii) the largest synthetic safety dataset to date (100B tokens) generated via recontextualization of harmful web data; (iii) RefuseWeb and Moral Education datasets that convert harmful prompts into refusal dialogues and web-style educational material; (iv) Harmfulness-Tag annotations injected during pretraining to flag unsafe content and steer away inference from harmful generations; and (v) safety evaluations measuring base model behavior before instruction tuning. Our safety-pretrained models reduce attack success rates from 38.8% to 8.4% with no performance degradation on standard LLM safety benchmarks.
Maybe I Should Not Answer That, but... Do LLMs Understand The Safety of Their Inputs?
Ensuring the safety of the Large Language Model (LLM) is critical, but currently used methods in most cases sacrifice the model performance to obtain increased safety or perform poorly on data outside of their adaptation distribution. We investigate existing methods for such generalization and find them insufficient. Surprisingly, while even plain LLMs recognize unsafe prompts, they may still generate unsafe responses. To avoid performance degradation and preserve safe performance, we advocate for a two-step framework, where we first identify unsafe prompts via a lightweight classifier, and apply a "safe" model only to such prompts. In particular, we explore the design of the safety detector in more detail, investigating the use of different classifier architectures and prompting techniques. Interestingly, we find that the final hidden state for the last token is enough to provide robust performance, minimizing false positives on benign data while performing well on malicious prompt detection. Additionally, we show that classifiers trained on the representations from different model layers perform comparably on the latest model layers, indicating that safety representation is present in the LLMs' hidden states at most model stages. Our work is a step towards efficient, representation-based safety mechanisms for LLMs.
