- Graded Contact Geometry and the AKSZ Formalism The AKSZ formalism is a construction of topological field theories where the target spaces are differential graded symplectic manifolds. In this paper, we describe an analogue of the AKSZ formalism where the target spaces are differential graded contact manifolds. We show that the space of fields inherits a weak contact structure, and we construct a solution to the analogue of the classical master equation, defined via the Jacobi bracket. In the n=1 case, we recover the Jacobi sigma model, and in the n=2 case, we obtain three-dimensional topological field theories associated to Courant-Jacobi algebroids. 3 authors · Nov 25, 2025
- Lattice models of random advection and diffusion and their statistics We study in detail a one-dimensional lattice model of a continuum, conserved field (mass) that is transferred deterministically between neighbouring random sites. The model falls in a wider class of lattice models capturing the joint effect of random advection and diffusion and encompassing as specific cases, some models studied in the literature, like the Kang-Redner, Kipnis-Marchioro-Presutti, Takayasu-Taguchi, etc. The motivation for our setup comes from a straightforward interpretation as advection of particles in one-dimensional turbulence, but it is also related to a problem of synchronization of dynamical systems driven by common noise. For finite lattices, we study both the coalescence of an initially spread field (interpreted as roughening), and the statistical steady-state properties. We distinguish two main size-dependent regimes, depending on the strength of the diffusion term and on the lattice size. Using numerical simulations and mean-field approach, we study the statistics of the field. For weak diffusion, we unveil a characteristic hierarchical structure of the field. We also connect the model and the iterated function systems concept. 3 authors · Jun 1, 2023