fix: fixing problem with HF hub
Browse files- .gitattributes +1 -0
- pytorch_model.bin +3 -0
- script.py +26 -12
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
FungiCLEF2024_TestMetadata.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
FungiCLEF2024_TestMetadata.csv filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:25dcfebee82c8b14a9a43b4934173becdc434745344257046a4f3eb4fe94dc6f
|
| 3 |
+
size 34696073
|
script.py
CHANGED
|
@@ -16,20 +16,32 @@ def is_gpu_available():
|
|
| 16 |
class PytorchWorker:
|
| 17 |
"""Run inference using ONNX runtime."""
|
| 18 |
|
| 19 |
-
def __init__(self,
|
| 20 |
-
print("Setting up Pytorch Model")
|
| 21 |
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
self.transforms = T.Compose([T.Resize((224, 224)),
|
| 30 |
T.ToTensor(),
|
| 31 |
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 32 |
|
|
|
|
| 33 |
def predict_image(self, image: np.ndarray) -> list():
|
| 34 |
"""Run inference using ONNX runtime.
|
| 35 |
|
|
@@ -42,10 +54,10 @@ class PytorchWorker:
|
|
| 42 |
return logits.tolist()
|
| 43 |
|
| 44 |
|
| 45 |
-
def make_submission(test_metadata, model_path, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
|
| 46 |
"""Make submission with given """
|
| 47 |
|
| 48 |
-
model = PytorchWorker(model_path)
|
| 49 |
|
| 50 |
predictions = []
|
| 51 |
|
|
@@ -71,12 +83,14 @@ if __name__ == "__main__":
|
|
| 71 |
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
|
| 72 |
zip_ref.extractall("/tmp/data")
|
| 73 |
|
| 74 |
-
|
|
|
|
| 75 |
|
| 76 |
metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
|
| 77 |
-
test_metadata = pd.read_csv(metadata_file_path)
|
| 78 |
|
| 79 |
make_submission(
|
| 80 |
test_metadata=test_metadata,
|
| 81 |
-
model_path=
|
|
|
|
| 82 |
)
|
|
|
|
| 16 |
class PytorchWorker:
|
| 17 |
"""Run inference using ONNX runtime."""
|
| 18 |
|
| 19 |
+
def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1604):
|
|
|
|
| 20 |
|
| 21 |
+
def _load_model(model_name, model_path):
|
| 22 |
|
| 23 |
+
print("Setting up Pytorch Model")
|
| 24 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 25 |
+
print(f"Using devide: {device}")
|
| 26 |
+
|
| 27 |
+
model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False)
|
| 28 |
+
|
| 29 |
+
if not torch.cuda.is_available():
|
| 30 |
+
model_ckpt = torch.load(model_path, map_location=torch.device("cpu"))
|
| 31 |
+
else:
|
| 32 |
+
model_ckpt = torch.load(model_path)["model"]
|
| 33 |
+
|
| 34 |
+
model.load_state_dict(model_ckpt)
|
| 35 |
+
|
| 36 |
+
return model.to(device).eval()
|
| 37 |
+
|
| 38 |
+
self.model = _load_model(model_name, model_path)
|
| 39 |
|
| 40 |
self.transforms = T.Compose([T.Resize((224, 224)),
|
| 41 |
T.ToTensor(),
|
| 42 |
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 43 |
|
| 44 |
+
|
| 45 |
def predict_image(self, image: np.ndarray) -> list():
|
| 46 |
"""Run inference using ONNX runtime.
|
| 47 |
|
|
|
|
| 54 |
return logits.tolist()
|
| 55 |
|
| 56 |
|
| 57 |
+
def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
|
| 58 |
"""Make submission with given """
|
| 59 |
|
| 60 |
+
model = PytorchWorker(model_path, model_name)
|
| 61 |
|
| 62 |
predictions = []
|
| 63 |
|
|
|
|
| 83 |
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
|
| 84 |
zip_ref.extractall("/tmp/data")
|
| 85 |
|
| 86 |
+
MODEL_PATH = "pytorch_model.bin"
|
| 87 |
+
MODEL_NAME = "tf_efficientnet_b1.ap_in1k"
|
| 88 |
|
| 89 |
metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
|
| 90 |
+
test_metadata = pd.read_csv(metadata_file_path)[:100]
|
| 91 |
|
| 92 |
make_submission(
|
| 93 |
test_metadata=test_metadata,
|
| 94 |
+
model_path=MODEL_PATH,
|
| 95 |
+
model_name=MODEL_NAME
|
| 96 |
)
|