Update rp.py
Browse files
rp.py
CHANGED
|
@@ -1,26 +1,55 @@
|
|
| 1 |
-
import torch
|
| 2 |
from safetensors.torch import load_file, save_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
model_data = load_file(input_file)
|
| 7 |
-
|
| 8 |
-
# Iterate through all the tensors and reduce their size
|
| 9 |
-
for key in model_data.keys():
|
| 10 |
-
original_tensor = model_data[key]
|
| 11 |
-
|
| 12 |
-
# Calculate the new size
|
| 13 |
-
new_size = int(original_tensor.size(0) * (1 - reduction_factor))
|
| 14 |
-
|
| 15 |
-
# Resize the tensor (this could vary depending on your requirements)
|
| 16 |
-
if new_size > 0: # Ensure new size is positive
|
| 17 |
-
reduced_tensor = original_tensor[:new_size]
|
| 18 |
-
model_data[key] = reduced_tensor
|
| 19 |
-
|
| 20 |
-
# Save the modified model
|
| 21 |
-
save_file(model_data, output_file)
|
| 22 |
-
|
| 23 |
-
# Usage example
|
| 24 |
-
input_file = 'model-00002-of-00002.safetensors' # Replace with your input model file
|
| 25 |
-
output_file = 'model-00002-of-00002.safetensors' # Desired output file name
|
| 26 |
-
reduce_key_size(input_file, output_file)
|
|
|
|
|
|
|
| 1 |
from safetensors.torch import load_file, save_file
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from tqdm import tqdm # Ensure tqdm is installed
|
| 5 |
+
|
| 6 |
+
def load_model(file_path):
|
| 7 |
+
return load_file(file_path)
|
| 8 |
+
|
| 9 |
+
def save_model(merged_model, output_file):
|
| 10 |
+
print(f"Saving merged model to {output_file}")
|
| 11 |
+
save_file(merged_model, output_file)
|
| 12 |
+
|
| 13 |
+
def resize_tensor_shapes(tensor1, tensor2):
|
| 14 |
+
if tensor1.size() == tensor2.size():
|
| 15 |
+
return tensor1, tensor2
|
| 16 |
+
|
| 17 |
+
max_shape = [max(s1, s2) for s1, s2 in zip(tensor1.shape, tensor2.shape)]
|
| 18 |
+
tensor1_resized = F.pad(tensor1, (0, max_shape[-1] - tensor1.size(-1)))
|
| 19 |
+
tensor2_resized = F.pad(tensor2, (0, max_shape[-1] - tensor2.size(-1)))
|
| 20 |
+
|
| 21 |
+
return tensor1_resized, tensor2_resized
|
| 22 |
+
|
| 23 |
+
def merge_checkpoints(ckpt1, ckpt2, blend_ratio=0.5):
|
| 24 |
+
print(f"Merging checkpoints with blend ratio: {blend_ratio}")
|
| 25 |
+
merged = {}
|
| 26 |
+
all_keys = set(ckpt1.keys()).union(set(ckpt2.keys()))
|
| 27 |
+
|
| 28 |
+
for key in tqdm(all_keys, desc="Merging Checkpoints", unit="layer"):
|
| 29 |
+
t1, t2 = ckpt1.get(key), ckpt2.get(key)
|
| 30 |
+
if t1 is not None and t2 is not None:
|
| 31 |
+
t1, t2 = resize_tensor_shapes(t1, t2)
|
| 32 |
+
merged[key] = blend_ratio * t1 + (1 - blend_ratio) * t2
|
| 33 |
+
elif t1 is not None:
|
| 34 |
+
merged[key] = t1
|
| 35 |
+
else:
|
| 36 |
+
merged[key] = t2
|
| 37 |
+
|
| 38 |
+
return merged
|
| 39 |
+
|
| 40 |
+
if __name__ == "__main__":
|
| 41 |
+
# Set your file paths and blend ratio here
|
| 42 |
+
model1_path = "flux1-dev.safetensors.1" # Model 1 path
|
| 43 |
+
model2_path = "brainflux_v10.safetensors" # Model 2 path
|
| 44 |
+
blend_ratio = 0.4 # Blend ratio
|
| 45 |
+
output_file = "output_checkpoint.safetensors" # Output file name
|
| 46 |
+
|
| 47 |
+
# Load the models
|
| 48 |
+
model1 = load_model(model1_path)
|
| 49 |
+
model2 = load_model(model2_path)
|
| 50 |
+
|
| 51 |
+
# Merge the models
|
| 52 |
+
merged_model = merge_checkpoints(model1, model2, blend_ratio)
|
| 53 |
|
| 54 |
+
# Save the merged model
|
| 55 |
+
save_model(merged_model, output_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|