Update README.md
Browse files
README.md
CHANGED
|
@@ -9,6 +9,13 @@ base_model:
|
|
| 9 |
pipeline_tag: image-classification
|
| 10 |
library_name: transformers
|
| 11 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
```py
|
| 13 |
Classification Report:
|
| 14 |
precision recall f1-score support
|
|
@@ -23,4 +30,83 @@ Cartoon Portrait 0.9964 0.9926 0.9945 4444
|
|
| 23 |
weighted avg 0.9972 0.9972 0.9972 17776
|
| 24 |
```
|
| 25 |
|
| 26 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
pipeline_tag: image-classification
|
| 10 |
library_name: transformers
|
| 11 |
---
|
| 12 |
+
|
| 13 |
+

|
| 14 |
+
|
| 15 |
+
# **Multilabel-Portrait-SigLIP2**
|
| 16 |
+
|
| 17 |
+
> **Multilabel-Portrait-SigLIP2** is a vision-language model fine-tuned from [**google/siglip2-base-patch16-224**](https://huggingface.co/google/siglip2-base-patch16-224) using the `SiglipForImageClassification` architecture. It classifies portrait-style images into one of the following **visual portrait categories**:
|
| 18 |
+
|
| 19 |
```py
|
| 20 |
Classification Report:
|
| 21 |
precision recall f1-score support
|
|
|
|
| 30 |
weighted avg 0.9972 0.9972 0.9972 17776
|
| 31 |
```
|
| 32 |
|
| 33 |
+

|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
# **Model Objective**
|
| 38 |
+
|
| 39 |
+
The model is designed to **analyze portrait images** and categorize them into **one of four distinct portrait types**:
|
| 40 |
+
|
| 41 |
+
- **0:** Anime Portrait
|
| 42 |
+
- **1:** Cartoon Portrait
|
| 43 |
+
- **2:** Real Portrait
|
| 44 |
+
- **3:** Sketch Portrait
|
| 45 |
+
|
| 46 |
+
---
|
| 47 |
+
|
| 48 |
+
# **Try it with Transformers 🤗**
|
| 49 |
+
|
| 50 |
+
Install dependencies:
|
| 51 |
+
|
| 52 |
+
```bash
|
| 53 |
+
pip install -q transformers torch pillow gradio
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
Run the model with the following script:
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
import gradio as gr
|
| 60 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 61 |
+
from PIL import Image
|
| 62 |
+
import torch
|
| 63 |
+
|
| 64 |
+
# Load model and processor
|
| 65 |
+
model_name = "prithivMLmods/Multilabel-Portrait-SigLIP2" # Replace with actual HF model path
|
| 66 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 67 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 68 |
+
|
| 69 |
+
# Label mapping
|
| 70 |
+
id2label = {
|
| 71 |
+
0: "Anime Portrait",
|
| 72 |
+
1: "Cartoon Portrait",
|
| 73 |
+
2: "Real Portrait",
|
| 74 |
+
3: "Sketch Portrait"
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
def classify_portrait(image):
|
| 78 |
+
"""Predict the type of portrait style from an image."""
|
| 79 |
+
image = Image.fromarray(image).convert("RGB")
|
| 80 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 81 |
+
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
outputs = model(**inputs)
|
| 84 |
+
logits = outputs.logits
|
| 85 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 86 |
+
|
| 87 |
+
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))}
|
| 88 |
+
predictions = dict(sorted(predictions.items(), key=lambda item: item[1], reverse=True))
|
| 89 |
+
return predictions
|
| 90 |
+
|
| 91 |
+
# Gradio interface
|
| 92 |
+
iface = gr.Interface(
|
| 93 |
+
fn=classify_portrait,
|
| 94 |
+
inputs=gr.Image(type="numpy"),
|
| 95 |
+
outputs=gr.Label(label="Portrait Type Prediction Scores"),
|
| 96 |
+
title="Multilabel-Portrait-SigLIP2",
|
| 97 |
+
description="Upload a portrait-style image (anime, cartoon, real, or sketch) to predict its most likely visual category."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
iface.launch()
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
+
# **Intended Use Cases**
|
| 107 |
+
|
| 108 |
+
- **AI Art Curation** — Automatically organize large-scale datasets of artistic portraits.
|
| 109 |
+
- **Style-based Portrait Analysis** — Determine artistic style in user-uploaded or curated portrait datasets.
|
| 110 |
+
- **Content Filtering for Platforms** — Group and recommend based on visual aesthetics.
|
| 111 |
+
- **Dataset Pre-labeling** — Helps reduce manual effort in annotation tasks.
|
| 112 |
+
- **User Avatar Classification** — Profile categorization in social or gaming platforms.
|