radinplaid commited on
Commit
9dfc21f
·
verified ·
1 Parent(s): 95dbaa6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -36
README.md CHANGED
@@ -1,39 +1,39 @@
1
  ---
2
  language:
3
  - en
4
- - ru
5
  tags:
6
  - translation
7
  license: cc-by-4.0
8
  datasets:
9
- - quickmt/quickmt-train.ru-en
10
  model-index:
11
- - name: quickmt-en-ru
12
  results:
13
  - task:
14
- name: Translation eng-rus
15
  type: translation
16
- args: eng-rus
17
  dataset:
18
  name: flores101-devtest
19
  type: flores_101
20
- args: eng_Latn rus_Cyrl devtest
21
  metrics:
22
  - name: BLEU
23
  type: bleu
24
- value: 32.29
25
  - name: CHRF
26
  type: chrf
27
- value: 59.12
28
  - name: COMET
29
  type: comet
30
- value: 87.77
31
  ---
32
 
33
 
34
- # `quickmt-en-ru` Neural Machine Translation Model
35
 
36
- `quickmt-en-ru` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `ru`.
37
 
38
 
39
  ## Model Information
@@ -42,7 +42,7 @@ model-index:
42
  * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
43
  * 20k sentencepiece vocabularies
44
  * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
45
- * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.ru-en/tree/main
46
 
47
  See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
48
 
@@ -57,7 +57,7 @@ Next, install the `quickmt` python library and download the model:
57
  git clone https://github.com/quickmt/quickmt.git
58
  pip install ./quickmt/
59
 
60
- quickmt-model-download quickmt/quickmt-en-ru ./quickmt-en-ru
61
  ```
62
 
63
  Finally use the model in python:
@@ -73,29 +73,15 @@ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Hal
73
  t(sample_text, beam_size=5)
74
  ```
75
 
76
- > 'Доктор Эхуд Ур, профессор медицины в Университете Далхаузи в Галифаксе, Новая Шотландия, и председатель клинического и научного отдела Канадской диабетической ассоциации предупредил, что исследование все еще находится на ранних этапах.'
77
-
78
- ```python
79
- # Get alternative translations by sampling
80
- # You can pass any cTranslate2 `translate_batch` arguments
81
- t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
82
- ```
83
-
84
- > 'Доктор Ehud Ур (Ehud Ur), профессор медицины в университете Далхаузи в Галифаксе, Новая Шотландия, а также профессор кафедры клинической и научной литературы Канадской диабетической ассоциации предупреждает, что исследование еще проводится в ранние годы работы.'
85
-
86
-
87
- The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
88
-
89
-
90
  ## Metrics
91
 
92
- `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"rus_Cyrl"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible with a larger batch size).
 
 
 
 
 
 
 
 
93
 
94
- | | bleu | chrf2 | comet22 | Time (s) |
95
- |:---------------------------------|-------:|--------:|----------:|-----------:|
96
- | quickmt/quickmt-en-ru | 32.29 | 59.12 | 87.77 | 1.43 |
97
- | Helsink-NLP/opus-mt-en-ru | 26.59 | 54.91 | 85.26 | 4.37 |
98
- | facebook/nllb-200-distilled-600M | 28.79 | 56.58 | 87.58 | 26.71 |
99
- | facebook/nllb-200-distilled-1.3B | 31.5 | 58.63 | 89.26 | 46.57 |
100
- | facebook/m2m100_418M | 23.16 | 51.73 | 82.12 | 20.51 |
101
- | facebook/m2m100_1.2B | 28.88 | 56.61 | 87 | 41.15 |
 
1
  ---
2
  language:
3
  - en
4
+ - pt
5
  tags:
6
  - translation
7
  license: cc-by-4.0
8
  datasets:
9
+ - quickmt/quickmt-train.pt-en
10
  model-index:
11
+ - name: quickmt-en-pt
12
  results:
13
  - task:
14
+ name: Translation eng-por
15
  type: translation
16
+ args: eng-por
17
  dataset:
18
  name: flores101-devtest
19
  type: flores_101
20
+ args: eng_Latn por_Latn devtest
21
  metrics:
22
  - name: BLEU
23
  type: bleu
24
+ value: 50.62
25
  - name: CHRF
26
  type: chrf
27
+ value: 71.79
28
  - name: COMET
29
  type: comet
30
+ value: 89.27
31
  ---
32
 
33
 
34
+ # `quickmt-en-pt` Neural Machine Translation Model
35
 
36
+ `quickmt-en-pt` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `pt`.
37
 
38
 
39
  ## Model Information
 
42
  * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
43
  * 20k sentencepiece vocabularies
44
  * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
45
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.pt-en/tree/main
46
 
47
  See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
48
 
 
57
  git clone https://github.com/quickmt/quickmt.git
58
  pip install ./quickmt/
59
 
60
+ quickmt-model-download quickmt/quickmt-en-pt ./quickmt-en-pt
61
  ```
62
 
63
  Finally use the model in python:
 
73
  t(sample_text, beam_size=5)
74
  ```
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  ## Metrics
77
 
78
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"por_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible with a larger batch size).
79
+
80
+ | | bleu | chrfs | comet | time |
81
+ |:---------------------------------|-------:|--------:|--------:|-------:|
82
+ | quickmt-en-pt | 50.62 | 71.79 | 89.27 | 0.97 |
83
+ | facebook/nllb-200-distilled-600M | 47.68 | 70.28 | 89.05 | 23.75 |
84
+ | facebook/nllb-200-distilled-1.3B | 48.92 | 70.96 | 89.77 | 41.13 |
85
+ | facebook/m2m100_418M | 41.14 | 65.85 | 85.49 | 19.08 |
86
+ | facebook/m2m100_1.2B | 46.56 | 69.41 | 88.53 | 37.42 |
87