--- language: - en - tr tags: - translation license: cc-by-4.0 datasets: - quickmt/quickmt-train.tr-en model-index: - name: quickmt-en-tr results: - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: flores101-devtest type: flores_101 args: eng_Latn tur_Latn devtest metrics: - name: BLEU type: bleu value: 32.72 - name: CHRF type: chrf value: 63.77 - name: COMET type: comet value: 89.42 --- # `quickmt-en-tr` Neural Machine Translation Model `quickmt-en-tr` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `tr`. ## Model Information * Trained using [`eole`](https://github.com/eole-nlp/eole) * 195M parameter transformer 'big' with 8 encoder layers and 2 decoder layers * 20k sentencepiece vocabularies * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.fa-en/tree/main See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model. ## Usage with `quickmt` You must install the Nvidia cuda toolkit first, if you want to do GPU inference. Next, install the `quickmt` python library and download the model: ```bash git clone https://github.com/quickmt/quickmt.git pip install ./quickmt/ quickmt-model-download quickmt/quickmt-en-tr ./quickmt-en-tr ``` Finally use the model in python: ```python from quickmt import Translator # Auto-detects GPU, set to "cpu" to force CPU inference t = Translator("./quickmt-en-tr/", device="auto") # Translate - set beam size to 5 for higher quality (but slower speed) sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.' t(sample_text, beam_size=5) ``` > "Halifax, Nova Scotia'daki Dalhousie Üniversitesi'nde tıp profesörü ve Kanada Diyabet Derneği'nin klinik ve bilimsel bölümü başkanı Dr. Ehud Ur, araştırmanın hala ilk günlerinde olduğu konusunda uyardı." ```python # Get alternative translations by sampling # You can pass any cTranslate2 `translate_batch` arguments t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9) ``` > "Halifax, Nova Scotia'da Dalhousie Üniversitesi'nde tıp profesörü ve Kanada Diyabet Derneği klinik ve bilimsel bölümü başkanı Dr. Ehud Ur, araştırmanın hala ilk zamanlarında olduğuna dikkat çekti." The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. ## Metrics `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"tur_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible with a larger batch size). | | bleu | chrf2 | comet22 | Time (s) | |:---------------------------------|-------:|--------:|----------:|-----------:| | quickmt-en-tr | 32.72 | 63.77 | 89.42 | 1.24 | | facebook/nllb-200-distilled-600M | 24.23 | 57.76 | 87.91 | 22.93 | | facebook/nllb-200-distilled-1.3B | 28.36 | 61.19 | 89.74 | 40.06 | | facebook/m2m100_418M | 20.82 | 54.46 | 84.47 | 19.85 | | facebook/m2m100_1.2B | 22.44 | 56.43 | 86.85 | 37.71 |