radinplaid commited on
Commit
aa947bf
·
verified ·
1 Parent(s): b999c44

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - pl
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.pl-en
10
+ model-index:
11
+ - name: quickmt-pl-en
12
+ results:
13
+ - task:
14
+ name: Translation pol-eng
15
+ type: translation
16
+ args: pol-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: ell_Grek eng_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 27.46
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 57.18
28
+ - name: COMET
29
+ type: comet
30
+ value: 85.04
31
+ ---
32
+
33
+
34
+ # `quickmt-pl-en` Neural Machine Translation Model
35
+
36
+ `quickmt-pl-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `pl` into `en`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 195M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 20k separate Sentencepiece vocabs
49
+ * Expested for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.pl-en/tree/main
51
+
52
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
53
+
54
+
55
+ ## Usage with `quickmt`
56
+
57
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
58
+
59
+ Next, install the `quickmt` python library and download the model:
60
+
61
+ ```bash
62
+ git clone https://github.com/quickmt/quickmt.git
63
+ pip install ./quickmt/
64
+
65
+ quickmt-model-download quickmt/quickmt-pl-en ./quickmt-pl-en
66
+ ```
67
+
68
+ Finally use the model in python:
69
+
70
+ ```python
71
+ from quickmt impest Translator
72
+
73
+ # Auto-detects GPU, set to "cpu" to force CPU inference
74
+ t = Translator("./quickmt-pl-en/", device="auto")
75
+
76
+ # Translate - set beam size to 1 for faster speed (but lower quality)
77
+ sample_text = 'Dr Ehud Ur, będący profesorem medycyny na Uniwersytecie Dalhousie w Halifaxie w Nowej Szkocji oraz przewodniczącym oddziału klinicznego i naukowego Kanadyjskiego Stowarzyszenia Cukrzycy, przestrzegł, iż badania nadal dopiero się zaczynają.'
78
+
79
+ t(sample_text, beam_size=5)
80
+ ```
81
+
82
+ > 'Dr. Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia and chairman of the clinical and scientific division of the Canadian Diabetes Association, warned that research is still just beginning.'
83
+
84
+ ```python
85
+ # Get alternative translations by sampling
86
+ # You can pass any cTranslate2 `translate_batch` arguments
87
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
88
+ ```
89
+
90
+ > 'Professor of Medicine at Dalhous University Halifax in Nova Scotia, MD and Chair of the Canadian Diabetes Association’s Clinical and Scientific Division, cautioned that research is just beginning.'
91
+
92
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
93
+
94
+
95
+ ## Metrics
96
+
97
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("pol_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a larger batch size).
98
+
99
+ | | bleu | chrf2 | comet22 | Time (s) |
100
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
101
+ | quickmt/quickmt-pl-en | 27.46 | 57.18 | 85.04 | 1.46 |
102
+ | Helsinki-NLP/opus-mt-pl-en | 25.55 | 55.39 | 83.8 | 4.01 |
103
+ | facebook/nllb-200-distilled-600M | 29.28 | 57.11 | 84.65 | 21.61 |
104
+ | facebook/nllb-200-distilled-1.3B | 30.99 | 58.77 | 86.04 | 37.64 |
105
+ | facebook/m2m100_418M | 22.12 | 52.51 | 80.41 | 17.99 |
106
+ | facebook/m2m100_1.2B | 27.13 | 56.36 | 84.48 | 35.01 |
README.md CHANGED
@@ -1,3 +1,106 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - pl
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.pl-en
10
+ model-index:
11
+ - name: quickmt-pl-en
12
+ results:
13
+ - task:
14
+ name: Translation pol-eng
15
+ type: translation
16
+ args: pol-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: ell_Grek eng_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 27.46
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 57.18
28
+ - name: COMET
29
+ type: comet
30
+ value: 85.04
31
+ ---
32
+
33
+
34
+ # `quickmt-pl-en` Neural Machine Translation Model
35
+
36
+ `quickmt-pl-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `pl` into `en`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 195M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 20k separate Sentencepiece vocabs
49
+ * Expested for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.pl-en/tree/main
51
+
52
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
53
+
54
+
55
+ ## Usage with `quickmt`
56
+
57
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
58
+
59
+ Next, install the `quickmt` python library and download the model:
60
+
61
+ ```bash
62
+ git clone https://github.com/quickmt/quickmt.git
63
+ pip install ./quickmt/
64
+
65
+ quickmt-model-download quickmt/quickmt-pl-en ./quickmt-pl-en
66
+ ```
67
+
68
+ Finally use the model in python:
69
+
70
+ ```python
71
+ from quickmt impest Translator
72
+
73
+ # Auto-detects GPU, set to "cpu" to force CPU inference
74
+ t = Translator("./quickmt-pl-en/", device="auto")
75
+
76
+ # Translate - set beam size to 1 for faster speed (but lower quality)
77
+ sample_text = 'Dr Ehud Ur, będący profesorem medycyny na Uniwersytecie Dalhousie w Halifaxie w Nowej Szkocji oraz przewodniczącym oddziału klinicznego i naukowego Kanadyjskiego Stowarzyszenia Cukrzycy, przestrzegł, iż badania nadal dopiero się zaczynają.'
78
+
79
+ t(sample_text, beam_size=5)
80
+ ```
81
+
82
+ > 'Dr. Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia and chairman of the clinical and scientific division of the Canadian Diabetes Association, warned that research is still just beginning.'
83
+
84
+ ```python
85
+ # Get alternative translations by sampling
86
+ # You can pass any cTranslate2 `translate_batch` arguments
87
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
88
+ ```
89
+
90
+ > 'Professor of Medicine at Dalhous University Halifax in Nova Scotia, MD and Chair of the Canadian Diabetes Association’s Clinical and Scientific Division, cautioned that research is just beginning.'
91
+
92
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
93
+
94
+
95
+ ## Metrics
96
+
97
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("pol_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a larger batch size).
98
+
99
+ | | bleu | chrf2 | comet22 | Time (s) |
100
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
101
+ | quickmt/quickmt-pl-en | 27.46 | 57.18 | 85.04 | 1.46 |
102
+ | Helsinki-NLP/opus-mt-pl-en | 25.55 | 55.39 | 83.8 | 4.01 |
103
+ | facebook/nllb-200-distilled-600M | 29.28 | 57.11 | 84.65 | 21.61 |
104
+ | facebook/nllb-200-distilled-1.3B | 30.99 | 58.77 | 86.04 | 37.64 |
105
+ | facebook/m2m100_418M | 22.12 | 52.51 | 80.41 | 17.99 |
106
+ | facebook/m2m100_1.2B | 27.13 | 56.36 | 84.48 | 35.01 |
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: pl.eole.vocab
12
+ tgt_vocab: en.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ # path_src: hf://quickmt/quickmt-train.pl-en/pl
22
+ # path_tgt: hf://quickmt/quickmt-train.pl-en/en
23
+ # path_sco: hf://quickmt/quickmt-train.pl-en/sco
24
+ path_src: train.pl
25
+ path_tgt: train.en
26
+ valid:
27
+ path_src: valid.pl
28
+ path_tgt: valid.en
29
+
30
+ transforms: [sentencepiece, filtertoolong]
31
+ transforms_configs:
32
+ sentencepiece:
33
+ src_subword_model: "pl.spm.model"
34
+ tgt_subword_model: "en.spm.model"
35
+ filtertoolong:
36
+ src_seq_length: 256
37
+ tgt_seq_length: 256
38
+
39
+ training:
40
+ # Run configuration
41
+ model_path: quickmt-pl-en-eole-model
42
+ #train_from: model
43
+ keep_checkpoint: 4
44
+ train_steps: 100000
45
+ save_checkpoint_steps: 5000
46
+ valid_steps: 5000
47
+
48
+ # Train on a single GPU
49
+ world_size: 1
50
+ gpu_ranks: [0]
51
+
52
+ # Batching 10240
53
+ batch_type: "tokens"
54
+ batch_size: 8000
55
+ valid_batch_size: 4096
56
+ batch_size_multiple: 8
57
+ accum_count: [10]
58
+ accum_steps: [0]
59
+
60
+ # Optimizer & Compute
61
+ compute_dtype: "fp16"
62
+ optim: "adamw"
63
+ #use_amp: False
64
+ learning_rate: 2.0
65
+ warmup_steps: 4000
66
+ decay_method: "noam"
67
+ adam_beta2: 0.998
68
+
69
+ # Data loading
70
+ bucket_size: 128000
71
+ num_workers: 4
72
+ prefetch_factor: 32
73
+
74
+ # Hyperparams
75
+ dropout_steps: [0]
76
+ dropout: [0.1]
77
+ attention_dropout: [0.1]
78
+ max_grad_norm: 0
79
+ label_smoothing: 0.1
80
+ average_decay: 0.0001
81
+ param_init_method: xavier_uniform
82
+ normalization: "tokens"
83
+
84
+ model:
85
+ architecture: "transformer"
86
+ share_embeddings: false
87
+ share_decoder_embeddings: false
88
+ hidden_size: 1024
89
+ encoder:
90
+ layers: 8
91
+ decoder:
92
+ layers: 2
93
+ heads: 8
94
+ transformer_ff: 4096
95
+ embeddings:
96
+ word_vec_size: 1024
97
+ position_encoding_type: "SinusoidalInterleaved"
98
+
eole-model/config.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "share_vocab": false,
3
+ "n_sample": 0,
4
+ "tensorboard_log_dir_dated": "tensorboard/Sep-15_20-41-35",
5
+ "seed": 1234,
6
+ "src_vocab": "pl.eole.vocab",
7
+ "valid_metrics": [
8
+ "BLEU"
9
+ ],
10
+ "tgt_vocab": "en.eole.vocab",
11
+ "vocab_size_multiple": 8,
12
+ "tensorboard_log_dir": "tensorboard",
13
+ "tgt_vocab_size": 20000,
14
+ "tensorboard": true,
15
+ "save_data": "data",
16
+ "overwrite": true,
17
+ "report_every": 100,
18
+ "src_vocab_size": 20000,
19
+ "transforms": [
20
+ "sentencepiece",
21
+ "filtertoolong"
22
+ ],
23
+ "training": {
24
+ "batch_size_multiple": 8,
25
+ "average_decay": 0.0001,
26
+ "compute_dtype": "torch.float16",
27
+ "save_checkpoint_steps": 5000,
28
+ "world_size": 1,
29
+ "accum_count": [
30
+ 10
31
+ ],
32
+ "valid_batch_size": 4096,
33
+ "attention_dropout": [
34
+ 0.1
35
+ ],
36
+ "gpu_ranks": [
37
+ 0
38
+ ],
39
+ "valid_steps": 5000,
40
+ "optim": "adamw",
41
+ "train_steps": 100000,
42
+ "accum_steps": [
43
+ 0
44
+ ],
45
+ "bucket_size": 128000,
46
+ "prefetch_factor": 32,
47
+ "dropout": [
48
+ 0.1
49
+ ],
50
+ "warmup_steps": 4000,
51
+ "batch_size": 8000,
52
+ "normalization": "tokens",
53
+ "model_path": "quickmt-pl-en-eole-model",
54
+ "learning_rate": 2.0,
55
+ "label_smoothing": 0.1,
56
+ "dropout_steps": [
57
+ 0
58
+ ],
59
+ "param_init_method": "xavier_uniform",
60
+ "decay_method": "noam",
61
+ "adam_beta2": 0.998,
62
+ "max_grad_norm": 0.0,
63
+ "num_workers": 0,
64
+ "batch_type": "tokens",
65
+ "keep_checkpoint": 4
66
+ },
67
+ "transforms_configs": {
68
+ "sentencepiece": {
69
+ "src_subword_model": "${MODEL_PATH}/pl.spm.model",
70
+ "tgt_subword_model": "${MODEL_PATH}/en.spm.model"
71
+ },
72
+ "filtertoolong": {
73
+ "src_seq_length": 256,
74
+ "tgt_seq_length": 256
75
+ }
76
+ },
77
+ "model": {
78
+ "share_embeddings": false,
79
+ "hidden_size": 1024,
80
+ "architecture": "transformer",
81
+ "heads": 8,
82
+ "position_encoding_type": "SinusoidalInterleaved",
83
+ "transformer_ff": 4096,
84
+ "share_decoder_embeddings": false,
85
+ "decoder": {
86
+ "hidden_size": 1024,
87
+ "tgt_word_vec_size": 1024,
88
+ "layers": 2,
89
+ "heads": 8,
90
+ "decoder_type": "transformer",
91
+ "position_encoding_type": "SinusoidalInterleaved",
92
+ "transformer_ff": 4096,
93
+ "n_positions": null
94
+ },
95
+ "encoder": {
96
+ "hidden_size": 1024,
97
+ "encoder_type": "transformer",
98
+ "layers": 8,
99
+ "heads": 8,
100
+ "position_encoding_type": "SinusoidalInterleaved",
101
+ "transformer_ff": 4096,
102
+ "src_word_vec_size": 1024,
103
+ "n_positions": null
104
+ },
105
+ "embeddings": {
106
+ "position_encoding_type": "SinusoidalInterleaved",
107
+ "tgt_word_vec_size": 1024,
108
+ "src_word_vec_size": 1024,
109
+ "word_vec_size": 1024
110
+ }
111
+ },
112
+ "data": {
113
+ "corpus_1": {
114
+ "path_align": null,
115
+ "path_src": "train.pl",
116
+ "path_tgt": "train.en",
117
+ "transforms": [
118
+ "sentencepiece",
119
+ "filtertoolong"
120
+ ]
121
+ },
122
+ "valid": {
123
+ "path_align": null,
124
+ "path_src": "valid.pl",
125
+ "path_tgt": "valid.en",
126
+ "transforms": [
127
+ "sentencepiece",
128
+ "filtertoolong"
129
+ ]
130
+ }
131
+ }
132
+ }
eole-model/en.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83fa4a21ff8359b8827f033977c0e563fd0786ba84bbc93d4a1e22a0dd81ee7f
3
+ size 585058
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2700218a5e8c84d753274d2be97700d8d086094a8ecd009dbcb91a8b7043917
3
+ size 823882912
eole-model/pl.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6ad874c44613df56fb48be31fb64b6b5fc96a14a7888e802b0f91dbf98a8836
3
+ size 605240
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e939c36e6aa38dfa320166a55b3adbfa17bcfd918a560bfb8b3ba6991ac16c2
3
+ size 401699775
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6ad874c44613df56fb48be31fb64b6b5fc96a14a7888e802b0f91dbf98a8836
3
+ size 605240
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83fa4a21ff8359b8827f033977c0e563fd0786ba84bbc93d4a1e22a0dd81ee7f
3
+ size 585058