Translation
English
Chinese
Eval Results
radinplaid commited on
Commit
a767eae
·
verified ·
1 Parent(s): fb98c61

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md CHANGED
@@ -23,13 +23,13 @@ model-index:
23
  metrics:
24
  - name: BLEU
25
  type: bleu
26
- value: 29.9
27
  - name: CHRF
28
  type: chrf
29
  value: 58.42
30
  - name: COMET
31
  type: comet
32
- value: 86.59
33
  ---
34
 
35
 
@@ -56,7 +56,7 @@ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/Qui
56
  ## Model Information
57
 
58
  * Trained using [`eole`](https://github.com/eole-nlp/eole)
59
- * 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
60
  * 32k separate Sentencepiece vocabs
61
  * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
62
  * The pytorch model (for use with [`eole`](https://github.com/eole-nlp/eole)) is available in this repository in the `eole-model` folder
@@ -111,7 +111,7 @@ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so
111
 
112
  | | bleu | chrf2 | comet22 | Time (s) |
113
  |:---------------------------------|-------:|--------:|----------:|-----------:|
114
- | quickmt/quickmt-zh-en | 29.9 | 58.42 | 86.59 | 1.22 |
115
  | Helsinki-NLP/opus-mt-zh-en | 22.99 | 53.98 | 84.6 | 3.73 |
116
  | facebook/nllb-200-distilled-600M | 26.02 | 55.27 | 85.1 | 21.69 |
117
  | facebook/nllb-200-distilled-1.3B | 28.61 | 57.43 | 86.22 | 37.55 |
 
23
  metrics:
24
  - name: BLEU
25
  type: bleu
26
+ value: 30.0
27
  - name: CHRF
28
  type: chrf
29
  value: 58.42
30
  - name: COMET
31
  type: comet
32
+ value: 86.72
33
  ---
34
 
35
 
 
56
  ## Model Information
57
 
58
  * Trained using [`eole`](https://github.com/eole-nlp/eole)
59
+ * 200M parameter seq2seq transformer
60
  * 32k separate Sentencepiece vocabs
61
  * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
62
  * The pytorch model (for use with [`eole`](https://github.com/eole-nlp/eole)) is available in this repository in the `eole-model` folder
 
111
 
112
  | | bleu | chrf2 | comet22 | Time (s) |
113
  |:---------------------------------|-------:|--------:|----------:|-----------:|
114
+ | quickmt/quickmt-zh-en | 30.0 | 58.42 | 86.72 | 1.10 |
115
  | Helsinki-NLP/opus-mt-zh-en | 22.99 | 53.98 | 84.6 | 3.73 |
116
  | facebook/nllb-200-distilled-600M | 26.02 | 55.27 | 85.1 | 21.69 |
117
  | facebook/nllb-200-distilled-1.3B | 28.61 | 57.43 | 86.22 | 37.55 |
.ipynb_checkpoints/eole-config-checkpoint.yaml CHANGED
@@ -5,7 +5,7 @@ seed: 1234
5
  report_every: 100
6
  valid_metrics: ["BLEU"]
7
  tensorboard: true
8
- tensorboard_log_dir: tensorboard
9
 
10
  ### Vocab
11
  src_vocab: zh.eole.vocab
@@ -18,9 +18,9 @@ n_sample: 0
18
 
19
  data:
20
  corpus_1:
21
- path_src: hf://quickmt/quickmt-train.is-en/zh
22
- path_tgt: hf://quickmt/quickmt-train.is-en/en
23
- path_sco: hf://quickmt/quickmt-train.is-en/sco
24
  weight: 2
25
  corpus_2:
26
  path_src: hf://quickmt/newscrawl2024-en-backtranslated-zh/zh
@@ -57,7 +57,7 @@ training:
57
  world_size: 1
58
  gpu_ranks: [0]
59
 
60
- # Batching
61
  batch_type: "tokens"
62
  batch_size: 6000
63
  valid_batch_size: 2048
@@ -75,9 +75,9 @@ training:
75
  adam_beta2: 0.998
76
 
77
  # Data loading
78
- bucket_size: 128000
79
  num_workers: 4
80
- prefetch_factor: 32
81
 
82
  # Hyperparams
83
  dropout_steps: [0]
@@ -92,15 +92,20 @@ training:
92
  model:
93
  architecture: "transformer"
94
  share_embeddings: false
95
- share_decoder_embeddings: true
96
- hidden_size: 1024
 
 
 
 
 
97
  encoder:
98
- layers: 8
99
  decoder:
100
  layers: 2
101
  heads: 8
102
  transformer_ff: 4096
103
  embeddings:
104
- word_vec_size: 1024
105
  position_encoding_type: "SinusoidalInterleaved"
106
 
 
5
  report_every: 100
6
  valid_metrics: ["BLEU"]
7
  tensorboard: true
8
+ tensorboard_log_dir: tensorboard_small
9
 
10
  ### Vocab
11
  src_vocab: zh.eole.vocab
 
18
 
19
  data:
20
  corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.zh-en/zh
22
+ path_tgt: hf://quickmt/quickmt-train.zh-en/en
23
+ path_sco: hf://quickmt/quickmt-train.zh-en/sco
24
  weight: 2
25
  corpus_2:
26
  path_src: hf://quickmt/newscrawl2024-en-backtranslated-zh/zh
 
57
  world_size: 1
58
  gpu_ranks: [0]
59
 
60
+ # Batching 10240
61
  batch_type: "tokens"
62
  batch_size: 6000
63
  valid_batch_size: 2048
 
75
  adam_beta2: 0.998
76
 
77
  # Data loading
78
+ bucket_size: 256000
79
  num_workers: 4
80
+ prefetch_factor: 64
81
 
82
  # Hyperparams
83
  dropout_steps: [0]
 
92
  model:
93
  architecture: "transformer"
94
  share_embeddings: false
95
+ share_decoder_embeddings: false
96
+ add_estimator: false
97
+ add_ffnbias: true
98
+ add_qkvbias: false
99
+ layer_norm: standard
100
+ mlp_activation_fn: gelu
101
+ hidden_size: 768
102
  encoder:
103
+ layers: 12
104
  decoder:
105
  layers: 2
106
  heads: 8
107
  transformer_ff: 4096
108
  embeddings:
109
+ word_vec_size: 768
110
  position_encoding_type: "SinusoidalInterleaved"
111
 
README.md CHANGED
@@ -23,13 +23,13 @@ model-index:
23
  metrics:
24
  - name: BLEU
25
  type: bleu
26
- value: 29.9
27
  - name: CHRF
28
  type: chrf
29
  value: 58.42
30
  - name: COMET
31
  type: comet
32
- value: 86.59
33
  ---
34
 
35
 
@@ -56,7 +56,7 @@ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/Qui
56
  ## Model Information
57
 
58
  * Trained using [`eole`](https://github.com/eole-nlp/eole)
59
- * 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
60
  * 32k separate Sentencepiece vocabs
61
  * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
62
  * The pytorch model (for use with [`eole`](https://github.com/eole-nlp/eole)) is available in this repository in the `eole-model` folder
@@ -111,7 +111,7 @@ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so
111
 
112
  | | bleu | chrf2 | comet22 | Time (s) |
113
  |:---------------------------------|-------:|--------:|----------:|-----------:|
114
- | quickmt/quickmt-zh-en | 29.9 | 58.42 | 86.59 | 1.22 |
115
  | Helsinki-NLP/opus-mt-zh-en | 22.99 | 53.98 | 84.6 | 3.73 |
116
  | facebook/nllb-200-distilled-600M | 26.02 | 55.27 | 85.1 | 21.69 |
117
  | facebook/nllb-200-distilled-1.3B | 28.61 | 57.43 | 86.22 | 37.55 |
 
23
  metrics:
24
  - name: BLEU
25
  type: bleu
26
+ value: 30.0
27
  - name: CHRF
28
  type: chrf
29
  value: 58.42
30
  - name: COMET
31
  type: comet
32
+ value: 86.72
33
  ---
34
 
35
 
 
56
  ## Model Information
57
 
58
  * Trained using [`eole`](https://github.com/eole-nlp/eole)
59
+ * 200M parameter seq2seq transformer
60
  * 32k separate Sentencepiece vocabs
61
  * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
62
  * The pytorch model (for use with [`eole`](https://github.com/eole-nlp/eole)) is available in this repository in the `eole-model` folder
 
111
 
112
  | | bleu | chrf2 | comet22 | Time (s) |
113
  |:---------------------------------|-------:|--------:|----------:|-----------:|
114
+ | quickmt/quickmt-zh-en | 30.0 | 58.42 | 86.72 | 1.10 |
115
  | Helsinki-NLP/opus-mt-zh-en | 22.99 | 53.98 | 84.6 | 3.73 |
116
  | facebook/nllb-200-distilled-600M | 26.02 | 55.27 | 85.1 | 21.69 |
117
  | facebook/nllb-200-distilled-1.3B | 28.61 | 57.43 | 86.22 | 37.55 |
eole-config.yaml CHANGED
@@ -5,7 +5,7 @@ seed: 1234
5
  report_every: 100
6
  valid_metrics: ["BLEU"]
7
  tensorboard: true
8
- tensorboard_log_dir: tensorboard
9
 
10
  ### Vocab
11
  src_vocab: zh.eole.vocab
@@ -18,9 +18,9 @@ n_sample: 0
18
 
19
  data:
20
  corpus_1:
21
- path_src: hf://quickmt/quickmt-train.is-en/zh
22
- path_tgt: hf://quickmt/quickmt-train.is-en/en
23
- path_sco: hf://quickmt/quickmt-train.is-en/sco
24
  weight: 2
25
  corpus_2:
26
  path_src: hf://quickmt/newscrawl2024-en-backtranslated-zh/zh
@@ -57,7 +57,7 @@ training:
57
  world_size: 1
58
  gpu_ranks: [0]
59
 
60
- # Batching
61
  batch_type: "tokens"
62
  batch_size: 6000
63
  valid_batch_size: 2048
@@ -75,9 +75,9 @@ training:
75
  adam_beta2: 0.998
76
 
77
  # Data loading
78
- bucket_size: 128000
79
  num_workers: 4
80
- prefetch_factor: 32
81
 
82
  # Hyperparams
83
  dropout_steps: [0]
@@ -92,15 +92,20 @@ training:
92
  model:
93
  architecture: "transformer"
94
  share_embeddings: false
95
- share_decoder_embeddings: true
96
- hidden_size: 1024
 
 
 
 
 
97
  encoder:
98
- layers: 8
99
  decoder:
100
  layers: 2
101
  heads: 8
102
  transformer_ff: 4096
103
  embeddings:
104
- word_vec_size: 1024
105
  position_encoding_type: "SinusoidalInterleaved"
106
 
 
5
  report_every: 100
6
  valid_metrics: ["BLEU"]
7
  tensorboard: true
8
+ tensorboard_log_dir: tensorboard_small
9
 
10
  ### Vocab
11
  src_vocab: zh.eole.vocab
 
18
 
19
  data:
20
  corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.zh-en/zh
22
+ path_tgt: hf://quickmt/quickmt-train.zh-en/en
23
+ path_sco: hf://quickmt/quickmt-train.zh-en/sco
24
  weight: 2
25
  corpus_2:
26
  path_src: hf://quickmt/newscrawl2024-en-backtranslated-zh/zh
 
57
  world_size: 1
58
  gpu_ranks: [0]
59
 
60
+ # Batching 10240
61
  batch_type: "tokens"
62
  batch_size: 6000
63
  valid_batch_size: 2048
 
75
  adam_beta2: 0.998
76
 
77
  # Data loading
78
+ bucket_size: 256000
79
  num_workers: 4
80
+ prefetch_factor: 64
81
 
82
  # Hyperparams
83
  dropout_steps: [0]
 
92
  model:
93
  architecture: "transformer"
94
  share_embeddings: false
95
+ share_decoder_embeddings: false
96
+ add_estimator: false
97
+ add_ffnbias: true
98
+ add_qkvbias: false
99
+ layer_norm: standard
100
+ mlp_activation_fn: gelu
101
+ hidden_size: 768
102
  encoder:
103
+ layers: 12
104
  decoder:
105
  layers: 2
106
  heads: 8
107
  transformer_ff: 4096
108
  embeddings:
109
+ word_vec_size: 768
110
  position_encoding_type: "SinusoidalInterleaved"
111
 
eole-model/config.json CHANGED
@@ -1,109 +1,147 @@
1
  {
2
- "n_sample": 0,
3
- "share_vocab": false,
4
- "report_every": 100,
5
- "tgt_vocab_size": 32000,
6
- "tensorboard_log_dir": "tensorboard",
7
- "tensorboard_log_dir_dated": "tensorboard/Nov-28_15-33-54",
8
  "valid_metrics": [
9
  "BLEU"
10
  ],
11
- "src_vocab": "zh.eole.vocab",
12
- "tensorboard": true,
13
- "seed": 1234,
14
- "tgt_vocab": "en.eole.vocab",
15
- "vocab_size_multiple": 8,
16
  "transforms": [
17
  "sentencepiece",
18
  "filtertoolong"
19
  ],
20
  "src_vocab_size": 32000,
 
 
21
  "overwrite": true,
 
 
22
  "save_data": "data",
 
 
 
 
 
 
 
23
  "training": {
24
- "num_workers": 0,
25
- "label_smoothing": 0.1,
26
- "accum_count": [
27
- 20
28
- ],
29
- "valid_steps": 5000,
30
  "gpu_ranks": [
31
  0
32
  ],
33
- "accum_steps": [
34
- 0
35
- ],
36
- "warmup_steps": 5000,
37
- "world_size": 1,
38
- "batch_size_multiple": 8,
39
- "optim": "adamw",
40
  "normalization": "tokens",
41
- "max_grad_norm": 0.0,
42
- "bucket_size": 128000,
 
 
43
  "dropout": [
44
  0.1
45
  ],
46
- "adam_beta2": 0.998,
47
- "model_path": "quickmt-zh-en-eole-model",
48
- "batch_size": 6000,
49
- "batch_type": "tokens",
50
- "compute_dtype": "torch.float16",
51
- "save_checkpoint_steps": 5000,
52
- "keep_checkpoint": 4,
53
- "learning_rate": 3.0,
54
- "prefetch_factor": 32,
55
- "dropout_steps": [
56
  0
57
  ],
58
- "train_steps": 200000,
59
- "decay_method": "noam",
60
- "average_decay": 0.0001,
 
61
  "valid_batch_size": 2048,
 
 
 
 
 
 
 
 
62
  "param_init_method": "xavier_uniform",
63
- "attention_dropout": [
64
- 0.1
65
- ]
66
  },
67
- "transforms_configs": {
68
- "sentencepiece": {
69
- "src_subword_model": "${MODEL_PATH}/zh.spm.model",
70
- "tgt_subword_model": "${MODEL_PATH}/en.spm.model"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  },
72
- "filtertoolong": {
73
- "src_seq_length": 256,
74
- "tgt_seq_length": 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  }
76
  },
77
  "data": {
78
  "corpus_1": {
 
 
79
  "weight": 2,
80
  "transforms": [
81
  "sentencepiece",
82
  "filtertoolong"
83
  ],
84
- "path_align": null,
85
- "path_src": "train.zh",
86
- "path_tgt": "train.en"
87
  },
88
  "corpus_2": {
 
 
89
  "weight": 1,
90
  "transforms": [
91
  "sentencepiece",
92
  "filtertoolong"
93
  ],
94
- "path_align": null,
95
- "path_src": "/home/mark/mt/data/newscrawl.backtrans.zh",
96
- "path_tgt": "/home/mark/mt/data/newscrawl.2024.en"
97
  },
98
  "corpus_3": {
 
 
99
  "weight": 2,
100
  "transforms": [
101
  "sentencepiece",
102
  "filtertoolong"
103
  ],
104
- "path_align": null,
105
- "path_src": "/home/mark/mt/data/madlad.backtrans.zh",
106
- "path_tgt": "/home/mark/mt/data/madlad.en"
107
  },
108
  "valid": {
109
  "path_src": "valid.zh",
@@ -111,43 +149,18 @@
111
  "sentencepiece",
112
  "filtertoolong"
113
  ],
114
- "path_tgt": "valid.en",
115
- "path_align": null
116
  }
117
  },
118
- "model": {
119
- "hidden_size": 1024,
120
- "position_encoding_type": "SinusoidalInterleaved",
121
- "share_embeddings": false,
122
- "architecture": "transformer",
123
- "heads": 8,
124
- "share_decoder_embeddings": true,
125
- "transformer_ff": 4096,
126
- "decoder": {
127
- "hidden_size": 1024,
128
- "layers": 2,
129
- "position_encoding_type": "SinusoidalInterleaved",
130
- "tgt_word_vec_size": 1024,
131
- "n_positions": null,
132
- "heads": 8,
133
- "decoder_type": "transformer",
134
- "transformer_ff": 4096
135
- },
136
- "embeddings": {
137
- "src_word_vec_size": 1024,
138
- "word_vec_size": 1024,
139
- "position_encoding_type": "SinusoidalInterleaved",
140
- "tgt_word_vec_size": 1024
141
  },
142
- "encoder": {
143
- "hidden_size": 1024,
144
- "encoder_type": "transformer",
145
- "src_word_vec_size": 1024,
146
- "layers": 8,
147
- "position_encoding_type": "SinusoidalInterleaved",
148
- "n_positions": null,
149
- "heads": 8,
150
- "transformer_ff": 4096
151
  }
152
  }
153
  }
 
1
  {
 
 
 
 
 
 
2
  "valid_metrics": [
3
  "BLEU"
4
  ],
 
 
 
 
 
5
  "transforms": [
6
  "sentencepiece",
7
  "filtertoolong"
8
  ],
9
  "src_vocab_size": 32000,
10
+ "tensorboard": true,
11
+ "n_sample": 0,
12
  "overwrite": true,
13
+ "vocab_size_multiple": 8,
14
+ "share_vocab": false,
15
  "save_data": "data",
16
+ "seed": 1234,
17
+ "tensorboard_log_dir_dated": "tensorboard/Dec-08_21-16-22",
18
+ "tgt_vocab": "en.eole.vocab",
19
+ "src_vocab": "zh.eole.vocab",
20
+ "tgt_vocab_size": 32000,
21
+ "report_every": 100,
22
+ "tensorboard_log_dir": "tensorboard",
23
  "training": {
 
 
 
 
 
 
24
  "gpu_ranks": [
25
  0
26
  ],
27
+ "keep_checkpoint": 4,
28
+ "decay_method": "noam",
29
+ "valid_steps": 5000,
30
+ "save_checkpoint_steps": 5000,
31
+ "model_path": "quickmt-zh-en-tiny-eole-model",
32
+ "adam_beta2": 0.998,
33
+ "num_workers": 0,
34
  "normalization": "tokens",
35
+ "learning_rate": 3.0,
36
+ "batch_size": 6000,
37
+ "compute_dtype": "torch.float16",
38
+ "warmup_steps": 5000,
39
  "dropout": [
40
  0.1
41
  ],
42
+ "attention_dropout": [
43
+ 0.1
44
+ ],
45
+ "world_size": 1,
46
+ "accum_steps": [
 
 
 
 
 
47
  0
48
  ],
49
+ "accum_count": [
50
+ 20
51
+ ],
52
+ "prefetch_factor": 64,
53
  "valid_batch_size": 2048,
54
+ "average_decay": 0.0001,
55
+ "dropout_steps": [
56
+ 0
57
+ ],
58
+ "max_grad_norm": 0.0,
59
+ "batch_type": "tokens",
60
+ "bucket_size": 256000,
61
+ "label_smoothing": 0.1,
62
  "param_init_method": "xavier_uniform",
63
+ "batch_size_multiple": 8,
64
+ "optim": "adamw",
65
+ "train_steps": 200000
66
  },
67
+ "model": {
68
+ "mlp_activation_fn": "gelu",
69
+ "layer_norm": "standard",
70
+ "hidden_size": 768,
71
+ "add_qkvbias": false,
72
+ "transformer_ff": 4096,
73
+ "add_estimator": false,
74
+ "share_decoder_embeddings": false,
75
+ "add_ffnbias": true,
76
+ "architecture": "transformer",
77
+ "heads": 8,
78
+ "position_encoding_type": "SinusoidalInterleaved",
79
+ "share_embeddings": false,
80
+ "encoder": {
81
+ "mlp_activation_fn": "gelu",
82
+ "encoder_type": "transformer",
83
+ "n_positions": null,
84
+ "layer_norm": "standard",
85
+ "hidden_size": 768,
86
+ "add_qkvbias": false,
87
+ "transformer_ff": 4096,
88
+ "layers": 12,
89
+ "src_word_vec_size": 768,
90
+ "add_ffnbias": true,
91
+ "heads": 8,
92
+ "position_encoding_type": "SinusoidalInterleaved"
93
  },
94
+ "embeddings": {
95
+ "position_encoding_type": "SinusoidalInterleaved",
96
+ "word_vec_size": 768,
97
+ "tgt_word_vec_size": 768,
98
+ "src_word_vec_size": 768
99
+ },
100
+ "decoder": {
101
+ "mlp_activation_fn": "gelu",
102
+ "layer_norm": "standard",
103
+ "n_positions": null,
104
+ "hidden_size": 768,
105
+ "decoder_type": "transformer",
106
+ "add_qkvbias": false,
107
+ "layers": 2,
108
+ "transformer_ff": 4096,
109
+ "tgt_word_vec_size": 768,
110
+ "add_ffnbias": true,
111
+ "heads": 8,
112
+ "position_encoding_type": "SinusoidalInterleaved"
113
  }
114
  },
115
  "data": {
116
  "corpus_1": {
117
+ "path_src": "train.zh",
118
+ "path_tgt": "train.en",
119
  "weight": 2,
120
  "transforms": [
121
  "sentencepiece",
122
  "filtertoolong"
123
  ],
124
+ "path_align": null
 
 
125
  },
126
  "corpus_2": {
127
+ "path_src": "/home/mark/mt/data/newscrawl.backtrans.zh",
128
+ "path_tgt": "/home/mark/mt/data/newscrawl.2024.en",
129
  "weight": 1,
130
  "transforms": [
131
  "sentencepiece",
132
  "filtertoolong"
133
  ],
134
+ "path_align": null
 
 
135
  },
136
  "corpus_3": {
137
+ "path_src": "/home/mark/mt/data/madlad.backtrans.zh",
138
+ "path_tgt": "/home/mark/mt/data/madlad.en",
139
  "weight": 2,
140
  "transforms": [
141
  "sentencepiece",
142
  "filtertoolong"
143
  ],
144
+ "path_align": null
 
 
145
  },
146
  "valid": {
147
  "path_src": "valid.zh",
 
149
  "sentencepiece",
150
  "filtertoolong"
151
  ],
152
+ "path_align": null,
153
+ "path_tgt": "valid.en"
154
  }
155
  },
156
+ "transforms_configs": {
157
+ "sentencepiece": {
158
+ "src_subword_model": "${MODEL_PATH}/zh.spm.model",
159
+ "tgt_subword_model": "${MODEL_PATH}/en.spm.model"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
  },
161
+ "filtertoolong": {
162
+ "src_seq_length": 256,
163
+ "tgt_seq_length": 256
 
 
 
 
 
 
164
  }
165
  }
166
  }
eole-model/model.00.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ce0b3dfe2ef4c9f6b93f969f27f5d5cf38432e4a7bcd144577c8583209bb701a
3
- size 840314816
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:708eecb88e180b1e8d1bb240bf51d27c324d67d00dde6e3fc3551ef6b6299c4c
3
+ size 829569112
model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:88ef37879afce2d5f0bdf4c53073aab30967f178f0a0fa2eed7c98160270b06a
3
- size 409915789
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7cac9c2bc585e476d8fe47af11ed76723d4b5cf69ccef8f5ff821fb3ec05000
3
+ size 407101843