Update README.md
Browse files
README.md
CHANGED
|
@@ -1,106 +1,89 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
-
- en
|
| 4 |
license: apache-2.0
|
| 5 |
library_name: transformers
|
| 6 |
pipeline_tag: text-generation
|
| 7 |
tags:
|
| 8 |
-
- mixture-of-attentions
|
| 9 |
-
- distance-attention
|
| 10 |
-
- metric-attention
|
| 11 |
-
- mqa
|
| 12 |
-
- hyperffn
|
| 13 |
-
- router-gating
|
| 14 |
datasets:
|
| 15 |
-
- nvidia/Nemotron-Math-HumanReasoning
|
| 16 |
-
- WeMake/Intelligent-Content-Understanding
|
| 17 |
---
|
| 18 |
|
| 19 |
-
# MoAMetricLM
|
| 20 |
|
| 21 |
-
**A geometry
|
| 22 |
-
**Parameters:** ~
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
- **Model ID:** `your-hf-username/MoAMetricLM-185M`
|
| 29 |
-
- **Task:** text generation (`text-generation`)
|
| 30 |
-
- **Library:** 🤗 Transformers
|
| 31 |
-
- **License:** Apache-2.0 (change here & add LICENSE file if different)
|
| 32 |
-
- **Datasets :**
|
| 33 |
-
- nvidia/Nemotron-Math-HumanReasoning: ~256k tokens
|
| 34 |
-
- WeMake/Intelligent-Content-Understanding ~256k tokens
|
| 35 |
-
|
| 36 |
|
| 37 |
## Overview
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
**Heads per block**
|
| 42 |
-
- **LocalConvHead** — depthwise separable 1D conv (local context).
|
| 43 |
-
- **Metric Multi-Head Attention (MetricMHAttention)** — attention via negative distances in learned head subspaces (L2 / cosine / diagonal-Mahalanobis), with per-head **origin** \(o_h\) and **radius** \(r_h\) enabling **ball pruning**.
|
| 44 |
-
- **Metric MQA** — multi-query attention with shared K/V in the same metric space (efficiency).
|
| 45 |
-
- **ChannelMixHead** — per-token MLP for channel interactions.
|
| 46 |
-
|
| 47 |
-
**FFN**
|
| 48 |
-
- **HyperFFN** (multi-branch): SwiGLU MLP path, separable-conv path, and low-rank path, combined via a token-wise branch router and optional feature gates. LayerScale + DropPath for stability.
|
| 49 |
-
|
| 50 |
-
**Regularization (optional)**
|
| 51 |
-
- **Triangle-inequality (TI) penalty** on sampled triples to encourage true-metric behavior.
|
| 52 |
-
|
| 53 |
-
**Design goals:** geometric consistency, diverse inductive biases, structured efficiency, and full HF compatibility.
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
## What’s different from a standard Transformer?
|
| 57 |
-
|
| 58 |
-
- **Distance-based attention (softmin over distances)** instead of dot product:
|
| 59 |
-
\[
|
| 60 |
-
\text{attn}(i,j)\ \propto\ \exp\!\big(-\alpha_h\ \|q_i-k_j\|^2\big)
|
| 61 |
-
\]
|
| 62 |
-
with per-head sharpness \(\alpha_h\). Cosine / diag-Mahalanobis variants supported.
|
| 63 |
-
- **Per-head origins & radii** define balls for principled sparsity (**ball pruning**).
|
| 64 |
-
- **Mixture of attentions** (conv / metric MHA / metric MQA / channel MLP) blended by a **token-wise router**, with **feature gates** (FiLM-like) and **router-bias gates** for up/down control.
|
| 65 |
-
- **Up/Down projections** (SwiGLU-style) inside heads to expand/contract the value stream.
|
| 66 |
-
- **HyperFFN** provides non-lazy capacity with token-wise branch routing.
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
**
|
| 73 |
|
| 74 |
-
**
|
| 75 |
-
- Dev runs used small token budgets; this is **not** a general-purpose LM.
|
| 76 |
-
- **No KV cache** yet → generation cost scales with context length.
|
| 77 |
-
- No alignment/safety tuning; outputs may be biased or inaccurate.
|
| 78 |
|
| 79 |
-
|
| 80 |
|
|
|
|
|
|
|
| 81 |
|
|
|
|
| 82 |
|
| 83 |
-
##
|
| 84 |
-
|
| 85 |
-
**Hardware:** CPU (Intel; no CUDA)
|
| 86 |
-
**Precision:** FP32
|
| 87 |
-
|
| 88 |
-
### Latest run (v0.2)
|
| 89 |
-
- **Tokens:** ~500,000 (two datasets, ~250k each)
|
| 90 |
-
- **Wall-time:** ~20 minutes (~**417 toks/s** overall)
|
| 91 |
-
- **Tokenizer:** GPT-2 (`gpt2`)
|
| 92 |
-
- **Learning rate:** **5e-4** (AdamW)
|
| 93 |
-
- **Batch / Seq:** batch_size=4, sequence length ≤512
|
| 94 |
-
- **Final train loss:** **≈ 0.30**
|
| 95 |
-
|
| 96 |
-
### Prior run (v0.1)
|
| 97 |
-
- **Tokens:** ~196k
|
| 98 |
-
- **Wall-time:** ~14 minutes
|
| 99 |
-
- **Final avg loss:** ≈ 0.417 (min batch ≈ 0.193)
|
| 100 |
-
|
| 101 |
-
**Stability aids:** safe softmax (subtract max), PreNorm, LayerScale (≈1e-4), DropPath (optional), label masking (`-100` on padding).
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
|
|
|
| 104 |
|
| 105 |
## Configuration (example)
|
| 106 |
|
|
@@ -136,112 +119,153 @@ datasets:
|
|
| 136 |
"eos_token_id": 50256
|
| 137 |
}
|
| 138 |
```
|
| 139 |
-
---
|
| 140 |
|
| 141 |
-
If you use
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
Usage
|
| 146 |
|
| 147 |
-
|
| 148 |
|
| 149 |
```python
|
| 150 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 151 |
-
|
| 152 |
-
model_id = "
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
|
| 160 |
-
inputs = tok(prompt, return_tensors="pt")
|
| 161 |
-
gen = model.generate(**inputs, max_new_tokens=128, do_sample=False)
|
| 162 |
-
print(tok.decode(gen[0], skip_special_tokens=True))
|
| 163 |
|
| 164 |
-
|
| 165 |
|
| 166 |
-
Training (custom loop sketch)
|
| 167 |
|
| 168 |
-
|
|
|
|
| 169 |
from torch.utils.data import DataLoader
|
| 170 |
import torch, torch.nn.functional as F
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
labels = batch["input_ids"].clone()
|
| 180 |
labels[batch["attention_mask"] == 0] = -100
|
| 181 |
batch["labels"] = labels
|
| 182 |
return batch
|
| 183 |
|
| 184 |
-
# dataset =
|
| 185 |
-
# loader = DataLoader(dataset, batch_size=4, shuffle=True, collate_fn=
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
```
|
| 195 |
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
• With vs without TI regularizer
|
| 205 |
|
|
|
|
| 206 |
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
• Ball pruning: masks keys outside per-head radius → structured sparsity.
|
| 210 |
-
• MQA: shared K/V reduce projection cost while retaining diversity via multi-query heads.
|
| 211 |
-
• HyperFFN: token-wise branch router (optional top-k) to avoid paying for all branches equally.
|
| 212 |
-
• CPU tips: set OMP_NUM_THREADS/MKL_NUM_THREADS to core count; use pad_token = eos_token.
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
• No safety/alignment training included.
|
| 218 |
-
• Do not deploy in high-stakes contexts without additional
|
| 219 |
|
|
|
|
| 220 |
|
| 221 |
-
License
|
| 222 |
|
| 223 |
-
Apache
|
| 224 |
|
|
|
|
| 225 |
|
| 226 |
-
Citation
|
| 227 |
|
|
|
|
| 228 |
@misc{moametriclm185m,
|
| 229 |
-
title
|
| 230 |
-
author
|
| 231 |
-
year
|
| 232 |
-
url
|
| 233 |
}
|
|
|
|
|
|
|
|
|
|
| 234 |
|
|
|
|
| 235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
|
|
|
| 241 |
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
-
Maintainers
|
| 244 |
-
• Author: reaper (Convergent Intelligence LLC)
|
| 245 |
-
• Contact: add preferred contact
|
| 246 |
-
• Issues: HF model hub issues tab
|
| 247 |
-
---
|
|
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
+
- en
|
| 4 |
license: apache-2.0
|
| 5 |
library_name: transformers
|
| 6 |
pipeline_tag: text-generation
|
| 7 |
tags:
|
| 8 |
+
- mixture-of-attentions
|
| 9 |
+
- distance-attention
|
| 10 |
+
- metric-attention
|
| 11 |
+
- mqa
|
| 12 |
+
- hyperffn
|
| 13 |
+
- router-gating
|
| 14 |
datasets:
|
| 15 |
+
- nvidia/Nemotron-Math-HumanReasoning
|
| 16 |
+
- WeMake/Intelligent-Content-Understanding
|
| 17 |
---
|
| 18 |
|
| 19 |
+
# MoAMetricLM‑100M — Mixture of Attentions (MoA)
|
| 20 |
|
| 21 |
+
**A geometry‑aware Transformer that mixes several attention mechanisms and routes them with a metric‑based router.**
|
| 22 |
+
- **Parameters:** ~185 M (≈ 100 M effective due to the mixture)
|
| 23 |
+
- **Task:** Causal language modeling (decoder‑only)
|
| 24 |
+
- **Library:** 🤗 Transformers
|
| 25 |
+
- **KV cache:** Not yet implemented (generation recomputes the full context at every step)
|
| 26 |
|
| 27 |
+
---
|
| 28 |
|
| 29 |
+
## Model card
|
| 30 |
+
|
| 31 |
+
| **Model ID** | `reaperdoesntknow/MoA-100M` |
|
| 32 |
+
|--------------|-------------------------------------|
|
| 33 |
+
| **Architecture** | `moa_metric` (custom) |
|
| 34 |
+
| **Tokenizer** | GPT‑2 (`gpt2`) – `pad_token` set to `eos_token` |
|
| 35 |
+
| **Context length** | 2048 tokens |
|
| 36 |
+
| **Training data** | 2 × ≈ 256 k tokens from the datasets listed above |
|
| 37 |
+
| **Training compute** | CPU‑only (Intel), FP32 |
|
| 38 |
+
| **Training hyper‑parameters** | LR = 5e‑4 (AdamW), batch = 4, seq ≤ 512, 500 k total tokens |
|
| 39 |
+
| **Final loss** | ≈ 0.30 (train) |
|
| 40 |
+
| **License** | Apache‑2.0 |
|
| 41 |
+
| **Safety** | No alignment or safety fine‑tuning – outputs may be biased or inaccurate. |
|
| 42 |
+
| **Intended use** | Research on geometry‑aware attention, structured sparsity, and mixture‑of‑attention models. |
|
| 43 |
+
| **Limitations** | • No KV‑cache → slower generation. <br>• Small token budget → not a general‑purpose LM. <br>• No safety/alignment training. |
|
| 44 |
+
| **Out‑of‑scope** | High‑stakes applications (medical, legal, etc.) without further evaluation. |
|
| 45 |
|
| 46 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
## Overview
|
| 49 |
|
| 50 |
+
MoA replaces the classic dot‑product attention with **metric‑based attention** and blends **four** distinct heads per Transformer block:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
| Head type | Description |
|
| 53 |
+
|-----------|-------------|
|
| 54 |
+
| **LocalConvHead** | Depthwise‑separable 1‑D convolution → captures short‑range context. |
|
| 55 |
+
| **Metric Multi‑Head Attention (MetricMHAttention)** | Soft‑min over **L2 / cosine / diagonal‑Mahalanobis** distances: <br> \(\displaystyle \text{attn}_{h}(i,j) \propto \exp\!\big(-\alpha_h\|q_i-k_j\|^2\big)\) |
|
| 56 |
+
| **Metric MQA** | Multi‑Query attention (shared K/V) in the same metric space – cheaper than full MHA. |
|
| 57 |
+
| **ChannelMixHead** | Per‑token MLP that mixes channel dimensions (no positional mixing). |
|
| 58 |
|
| 59 |
+
A **token‑wise router** decides, for each token, which head(s) to use and applies **feature‑gates** (FiLM‑style) and **router‑bias gates** for up/down‑scaling.
|
| 60 |
|
| 61 |
+
The **FFN** is a **HyperFFN** – three parallel branches (SwiGLU MLP, separable‑conv, low‑rank) combined by a **branch router**. LayerScale and optional DropPath keep training stable.
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
### Regularisation (optional)
|
| 64 |
|
| 65 |
+
* **Triangle‑inequality (TI) penalty** on sampled triples to encourage true‑metric behaviour.
|
| 66 |
+
* **Ball pruning** – each head learns an **origin** \(o_h\) and **radius** \(r_h\); keys outside the ball are masked, giving structured sparsity.
|
| 67 |
|
| 68 |
+
---
|
| 69 |
|
| 70 |
+
## Architecture diagram (high‑level)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
```
|
| 73 |
+
Input → Embedding → (PreNorm) → Block₁ → … → Blockₙ → LM‑Head → Output
|
| 74 |
+
│
|
| 75 |
+
├─ LocalConvHead
|
| 76 |
+
├─ MetricMHAttention
|
| 77 |
+
├─ MetricMQA
|
| 78 |
+
└─ ChannelMixHead
|
| 79 |
+
(router decides per‑token)
|
| 80 |
+
|
| 81 |
+
Each Block also contains:
|
| 82 |
+
→ HyperFFN (SwiGLU | Conv | Low‑rank) ← branch router
|
| 83 |
+
→ LayerScale + DropPath
|
| 84 |
+
```
|
| 85 |
|
| 86 |
+
---
|
| 87 |
|
| 88 |
## Configuration (example)
|
| 89 |
|
|
|
|
| 119 |
"eos_token_id": 50256
|
| 120 |
}
|
| 121 |
```
|
|
|
|
| 122 |
|
| 123 |
+
> **Tip:** If you use the GPT‑2 tokenizer, set `pad_token = eos_token` and make sure `vocab_size` matches the tokenizer (50257).
|
| 124 |
|
| 125 |
+
---
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
## Quick‑start (inference)
|
| 128 |
|
| 129 |
```python
|
| 130 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 131 |
+
|
| 132 |
+
>>> model_id = "reaperdoesntknow/MoA-100M"
|
| 133 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 134 |
+
>>> tokenizer.pad_token = tokenizer.eos_token # needed for the GPT‑2 tokenizer
|
| 135 |
+
|
| 136 |
+
>>> model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 137 |
+
|
| 138 |
+
>>> prompt = "Explain metric‑based attention in simple terms:"
|
| 139 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 140 |
+
>>> output_ids = model.generate(
|
| 141 |
+
... **inputs,
|
| 142 |
+
... max_new_tokens=128,
|
| 143 |
+
... do_sample=False, # deterministic; set temperature>0 for sampling
|
| 144 |
+
... pad_token_id=tokenizer.pad_token_id,
|
| 145 |
+
... )
|
| 146 |
+
>>> print(tokenizer.decode(output_ids[0], skip_special_tokens=True))
|
| 147 |
+
```
|
| 148 |
|
| 149 |
+
*Note:* Because KV‑cache is not implemented, generation time grows linearly with the total context length.
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
---
|
| 152 |
|
| 153 |
+
## Training (custom loop sketch)
|
| 154 |
|
| 155 |
+
```python
|
| 156 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling
|
| 157 |
from torch.utils.data import DataLoader
|
| 158 |
import torch, torch.nn.functional as F
|
| 159 |
|
| 160 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 161 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 162 |
+
|
| 163 |
+
def collate_fn(examples):
|
| 164 |
+
batch = tokenizer(
|
| 165 |
+
[ex["text"] for ex in examples],
|
| 166 |
+
padding="max_length",
|
| 167 |
+
truncation=True,
|
| 168 |
+
max_length=512,
|
| 169 |
+
return_tensors="pt",
|
| 170 |
+
)
|
| 171 |
labels = batch["input_ids"].clone()
|
| 172 |
labels[batch["attention_mask"] == 0] = -100
|
| 173 |
batch["labels"] = labels
|
| 174 |
return batch
|
| 175 |
|
| 176 |
+
# dataset = load_dataset(..., split="train") # must contain a 'text' field
|
| 177 |
+
# loader = DataLoader(dataset, batch_size=4, shuffle=True, collate_fn=collate_fn)
|
| 178 |
+
|
| 179 |
+
model = AutoModelForCausalLM.from_pretrained("reaperdoesntknow/MoA-100M")
|
| 180 |
+
optimizer = torch.optim.AdamW(
|
| 181 |
+
model.parameters(),
|
| 182 |
+
lr=5e-4,
|
| 183 |
+
betas=(0.9, 0.95),
|
| 184 |
+
weight_decay=0.01,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
for batch in loader:
|
| 188 |
+
out = model(**batch)
|
| 189 |
+
out.loss.backward()
|
| 190 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.2)
|
| 191 |
+
optimizer.step()
|
| 192 |
+
optimizer.zero_grad()
|
| 193 |
```
|
| 194 |
|
| 195 |
+
---
|
| 196 |
+
|
| 197 |
+
## Evaluation checklist
|
| 198 |
+
|
| 199 |
+
* **Perplexity** on a held‑out split of the two training datasets.
|
| 200 |
+
* **Ablation studies** (keep total token budget constant):
|
| 201 |
+
* L2 vs. cosine vs. diagonal‑Mahalanobis distance.
|
| 202 |
+
* With / without ball pruning.
|
| 203 |
+
* With / without HyperFFN branch router.
|
| 204 |
+
* With / without TI regulariser.
|
| 205 |
+
* **Speed / memory** comparison against a vanilla GPT‑2‑size model (same `dim`/`layers`).
|
| 206 |
+
|
| 207 |
+
---
|
| 208 |
+
|
| 209 |
+
## Efficiency notes
|
| 210 |
|
| 211 |
+
| Feature | What it does |
|
| 212 |
+
|---------|--------------|
|
| 213 |
+
| **Ball pruning** | Masks keys that lie outside a learned radius → reduces the quadratic attention cost. |
|
| 214 |
+
| **Metric MQA** | Shares K/V across heads → fewer projection matrices, lower FLOPs. |
|
| 215 |
+
| **HyperFFN branch router** | Token‑wise top‑k routing means only the most useful branch is evaluated per token. |
|
| 216 |
+
| **CPU tips** | Set `OMP_NUM_THREADS` / `MKL_NUM_THREADS` to the number of physical cores; use `torch.set_num_threads()` if needed. |
|
|
|
|
| 217 |
|
| 218 |
+
Future roadmap: metric‑aware KV‑cache, kernelised distance approximations (e.g., Random Fourier Features), quantisation & mixed‑precision inference.
|
| 219 |
|
| 220 |
+
---
|
| 221 |
|
| 222 |
+
## Safety, Bias & Risks
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
+
* The model **has not been fine‑tuned for safety or alignment**.
|
| 225 |
+
* Outputs may contain **biases, profanity, or factual errors**.
|
| 226 |
+
* Do **not** deploy in high‑stakes contexts without additional evaluation, moderation, and possibly further fine‑tuning.
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
---
|
| 229 |
|
| 230 |
+
## License
|
| 231 |
|
| 232 |
+
Apache‑2.0 – see the `LICENSE` file in the repository.
|
| 233 |
|
| 234 |
+
---
|
| 235 |
|
| 236 |
+
## Citation
|
| 237 |
|
| 238 |
+
```bibtex
|
| 239 |
@misc{moametriclm185m,
|
| 240 |
+
title = {reaperdoesntknow/MoA-100M: A Geometry-Aware Mixture-of-Attentions Language Model},
|
| 241 |
+
author = {Colca, Roy Shawn and collaborators},
|
| 242 |
+
year = {2025},
|
| 243 |
+
url = {https://huggingface.co/reaperdoesntknow/MoA-100M}
|
| 244 |
}
|
| 245 |
+
```
|
| 246 |
+
|
| 247 |
+
---
|
| 248 |
|
| 249 |
+
## Changelog
|
| 250 |
|
| 251 |
+
| Version | Date | Notes |
|
| 252 |
+
|---------|------|-------|
|
| 253 |
+
| **v0.2** | 2025‑09‑20 | 500 k‑token CPU run, GPT‑2 tokenizer, LR = 5e‑4, final loss ≈ 0.30. |
|
| 254 |
+
| **v0.1** | 2025‑09‑20 | Initial public release: metric heads, MQA, ball pruning, HyperFFN, router & gates; HF‑compatible; no KV cache. |
|
| 255 |
|
| 256 |
+
---
|
| 257 |
+
|
| 258 |
+
## Maintainers
|
| 259 |
+
|
| 260 |
+
* **Author:** reaper (Convergent Intelligence LLC)
|
| 261 |
+
* **Contact:** *Email* ([email protected])*
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
---
|
| 265 |
|
| 266 |
+
## Special Remarks
|
| 267 |
|
| 268 |
+
- This models still in an extremely experimental state. As are most of them, but im working on stabilizing this one for general inference.
|
| 269 |
+
- I design create and train all of my models using my mathematical research and pure disgust for the dot product!
|
| 270 |
+
- For those of you who actually read this and use my models, you make my day everytime I see another download, so thank you for being awesome!
|
| 271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|