# Universal Symbolics: Meta-Runtime Architecture

Universal Symbolics Meta-Runtime

## 1. Core Runtime Architecture The Universal Symbolics Meta-Runtime acts as a unified translation layer between various LLM symbolic grammars, allowing developers to use a consistent interface regardless of the underlying model vendor. ```mermaid graph TD A[Developer Interface] --> B[Universal Symbolics Runtime] B --> C1[Claude Adapter] B --> C2[OpenAI Adapter] B --> C3[Qwen Adapter] B --> C4[Gemini Adapter] B --> C5[DeepSeek Adapter] B --> C6[Local LLM Adapter] C1 --> D1[XML Tags] C2 --> D2[Slash Commands] C3 --> D3[Slash Commands] C4 --> D4[System Prompts] C5 --> D5[System Prompts] C6 --> D6[Multiple Formats] B --> E[Telemetry System] B --> F[Symbolics Registry] G[VSCode Extension] --> A H[CLI Tool] --> A I[REST API] --> A J[SDK Libraries] --> A ``` ## 2. Symbolic Grammar Equivalence Map The core of the Universal Symbolics Meta-Runtime is a comprehensive mapping between different symbolic grammar formats used by various LLM vendors: | Universal Format | Claude | OpenAI | Qwen | Gemini | DeepSeek | Local LLMs | |------------------|--------|--------|------|--------|----------|------------| | `.p/think{content}` | `content` | Tool choice parameter | `/think content` | System prompt | System prompt | Model-specific | | `.p/reflect{target}` | `target` | Chain-of-thought prompt | System prompt | System prompt | System prompt | Model-specific | | `.p/tool{name, params}` | `name(params)` | `/command` or Function call | Function call | Function call | Function call | Model-specific | | `.p/system{directive}` | `directive` | System message | `<>directive` | System instruction | System prompt | Model-specific | | `.p/fork{paths}` | Simulated | Simulated | Simulated | Simulated | Simulated | Simulated | | `.p/attention{focus}` | Simulated | Simulated | Simulated | Simulated | Simulated | Simulated | | `.p/collapse{trigger}` | Simulated | Simulated | Simulated | Simulated | Simulated | Simulated | | `.p/uncertainty{level}` | Simulated | Simulated | Simulated | Simulated | Simulated | Simulated | ## 3. Meta-Operation Types The Universal Symbolics Meta-Runtime supports several categories of symbolic operations: ### 3.1 Native Operations These operations have direct equivalents in at least some vendor implementations: - **Thinking**: Explicit reasoning trace - **Tool Use**: Function/tool invocation - **System**: System-level directives ### 3.2 Simulated Operations These operations are emulated through prompt engineering when no native support exists: - **Reflection**: Self-examination of reasoning - **Fork**: Multiple reasoning paths - **Attention**: Focus control - **Collapse**: Error handling - **Uncertainty**: Confidence expression ### 3.3 Extended Operations These operations extend the capabilities of the underlying models: - **Memory**: State persistence - **Attribution**: Source tracking - **Context**: Context window management - **Metacognition**: Higher-order reasoning ## 4. Runtime Implementation The Universal Symbolics Meta-Runtime implements these symbolic operations through a layered architecture: ### 4.1 Core Runtime Layer ```typescript interface SymbolicRuntime { // Native operations think(content?: string): Promise; tool(name: string, params?: Record): Promise; system(directive: string): Promise; // Simulated operations reflect(target: string, depth?: number): Promise; fork(paths: string[], weights?: number[]): Promise; attention(focus: string, weight?: number): Promise; collapse(trigger?: string, threshold?: number): Promise; uncertainty(level?: number, reason?: string): Promise; // Extended operations memory(key: string, value?: string, operation?: string): Promise; attribution(source: string, confidence?: number): Promise; context(window: string, priority?: number): Promise; metacognition(level: number, target?: string): Promise; } ``` ### 4.2 Vendor Adapter Layer ```typescript interface VendorAdapter { // Vendor identification getVendor(): ModelVendor; // Native operation translation translateThinking(content?: string): string; translateToolUse(name: string, params?: Record): string; translateSystem(directive: string): string; // Simulated operation translation translateReflection(target: string, depth?: number): string; translateFork(paths: string[], weights?: number[]): string; translateAttention(focus: string, weight?: number): string; translateCollapse(trigger?: string, threshold?: number): string; translateUncertainty(level?: number, reason?: string): string; // Extended operation translation translateMemory(key: string, value?: string, operation?: string): string; translateAttribution(source: string, confidence?: number): string; translateContext(window: string, priority?: number): string; translateMetacognition(level: number, target?: string): string; } ``` ### 4.3 Symbolic Registry ```typescript interface SymbolicRegistry { // Mapping functions getUniversalSymbol(vendorSymbol: string, vendor: ModelVendor): string; getVendorSymbol(universalSymbol: string, vendor: ModelVendor): string; // Registration functions registerSymbol(universalSymbol: string, vendorSymbol: string, vendor: ModelVendor): void; unregisterSymbol(universalSymbol: string, vendor: ModelVendor): void; // Query functions isSupported(universalSymbol: string, vendor: ModelVendor): boolean; getSupportedSymbols(vendor: ModelVendor): string[]; getVendorCapabilities(vendor: ModelVendor): Record; } ``` ### 4.4 Telemetry System ```typescript interface SymbolicTelemetry { // Tracking functions trackOperation(operation: string, vendor: ModelVendor, params?: any): void; trackTransformation(source: ModelVendor, target: ModelVendor, success: boolean): void; trackError(operation: string, vendor: ModelVendor, error: Error): void; // Reporting functions getOperationStats(): Record; getVendorStats(): Record; getTransformationStats(): Record>; getErrorStats(): Record; // Configuration enableTelemetry(enabled: boolean): void; setAnonymizationLevel(level: 'none' | 'partial' | 'full'): void; configureReporting(options: TelemetryOptions): void; } ``` ## 5. Symbolic Grammar Translation The Universal Symbolics Meta-Runtime provides bidirectional translation between different symbolic grammars: ### 5.1 Translation Process ```mermaid flowchart TD A[Universal Format] -->|Translate To Vendor| B[Vendor-Specific Format] B -->|Translate To Universal| A C[Parse] --> A B --> D[Generate] E[Developer Input] --> C D --> F[LLM Input] G[LLM Output] --> C A --> H[Developer Output] ``` ### 5.2 Translation Examples **Universal to Claude:** ```typescript // Universal Format const universalFormat = '.p/think{content: "Let me solve this step by step..."}'; // Translated to Claude const claudeFormat = 'Let me solve this step by step...'; ``` **Claude to Universal:** ```typescript // Claude Format const claudeFormat = 'search({"query": "quantum computing"})'; // Translated to Universal const universalFormat = '.p/tool{name: "search", params: {"query": "quantum computing"}}'; ``` **Universal to OpenAI:** ```typescript // Universal Format const universalFormat = '.p/system{directive: "You are a helpful assistant."}'; // Translated to OpenAI API const openaiFormat = { messages: [ { role: "system", content: "You are a helpful assistant." } ] }; ``` ## 6. Developer Tools Interface The Universal Symbolics Meta-Runtime provides several developer-facing interfaces: ### 6.1 VSCode Extension ```json { "name": "universal-symbolics-vscode", "displayName": "Universal Symbolics", "version": "1.0.0", "engines": { "vscode": "^1.60.0" }, "categories": [ "Programming Languages", "Snippets", "Other" ], "activationEvents": [ "onLanguage:markdown", "onLanguage:json", "onLanguage:typescript", "onLanguage:python" ], "main": "./dist/extension.js", "contributes": { "commands": [ { "command": "universal-symbolics.translateSymbols", "title": "Translate Symbols" }, { "command": "universal-symbolics.previewResponse", "title": "Preview Symbolic Response" } ], "languages": [ { "id": "symbolic", "extensions": [".sym", ".symbolic"], "aliases": ["Symbolic", "symbolic"] } ], "grammars": [ { "language": "symbolic", "scopeName": "source.symbolic", "path": "./syntaxes/symbolic.tmLanguage.json" } ] } } ``` ### 6.2 CLI Tool ```bash # Installation npm install -g universal-symbolics-cli # Usage examples usym translate --source claude --target openai --file prompt.txt usym generate --vendor claude --symbol think --content "Let me solve this step by step..." usym validate --file prompt.sym usym test --vendor all --symbol think ``` ### 6.3 REST API ```http POST /api/v1/transform Host: api.universal-symbolics.io Content-Type: application/json Authorization: Bearer YOUR_API_KEY { "source": "claude", "target": "openai", "content": "Let me solve this step by step..." } ``` ```http POST /api/v1/execute Host: api.universal-symbolics.io Content-Type: application/json Authorization: Bearer YOUR_API_KEY { "vendor": "claude", "model": "claude-3-opus-20240229", "symbols": { "think": { "content": "Let me analyze this problem..." }, "tool": { "name": "search", "params": { "query": "quantum computing" } } }, "prompt": "Explain quantum computing." } ``` ### 6.4 SDK Libraries ```typescript // TypeScript/JavaScript import { UniversalSymbolics } from 'universal-symbolics'; const symbolics = new UniversalSymbolics({ defaultVendor: 'claude', apiKey: process.env.CLAUDE_API_KEY }); const result = await symbolics.think('Let me solve this step by step...'); console.log(result.thinking); console.log(result.output); ``` ```python # Python from universal_symbolics import SymbolicsClient client = SymbolicsClient( default_vendor="claude", api_key=os.environ.get("CLAUDE_API_KEY") ) result = client.think("Let me solve this step by step...") print(result.thinking) print(result.output) ``` ## 7. Implementation Roadmap The Universal Symbolics Meta-Runtime will be implemented in phases: ### Phase 1: Core Runtime Foundation 1. Define universal symbolic schema 2. Implement core runtime layer 3. Create adapters for Claude and OpenAI 4. Develop basic VSCode extension 5. Publish initial NPM package ### Phase 2: Expanded Vendor Support 1. Add adapters for Qwen, Gemini, and DeepSeek 2. Implement simulated operations 3. Create Python SDK 4. Develop CLI tool 5. Launch REST API service ### Phase 3: Extended Capabilities 1. Implement extended operations 2. Add support for local LLMs 3. Develop telemetry system 4. Create symbolic playground 5. Publish additional language SDKs ### Phase 4: Enterprise Integration 1. Implement enterprise features 2. Develop compliance tools 3. Create integration adapters for popular frameworks 4. Launch symbolic marketplace 5. Establish standards organization ## 8. Meta-Runtime Architecture Principles The Universal Symbolics Meta-Runtime is built on several key architectural principles: 1. **Universal Interface**: Provide a consistent interface across all LLM vendors 2. **Bidirectional Translation**: Support translation between any vendor formats 3. **Extensibility**: Allow for new vendors and symbolic operations to be added 4. **Compatibility**: Work with existing tools and frameworks 5. **Telemetry**: Collect anonymous usage data to guide development 6. **Standards**: Establish standards for symbolic operations 7. **Developer Experience**: Prioritize ease of use for developers 8. **Performance**: Minimize overhead and maximize throughput ---

Universal Symbolics | Unifying the symbolic layer across AI models