DeepSeek-R1-Cybersecurity-8B-Merged
This is the merged version of sainikhiljuluri/DeepSeek-R1-Cybersecurity-8B, where the LoRA adapter has been merged into the base model for easier deployment.
Model Description
Fine-tuned deepseek-ai/DeepSeek-R1-0528-Qwen3-8B specialized for cybersecurity tasks. This merged model can be loaded directly without needing PEFT.
Training Details
| Parameter | Value |
|---|---|
| Base Model | deepseek-ai/DeepSeek-R1-0528-Qwen3-8B |
| Training Samples | ~50,000 |
| Epochs | 2 |
| LoRA Rank | 16 |
| LoRA Alpha | 32 |
| Learning Rate | 2e-4 |
Usage
Direct Loading
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"sainikhiljuluri/DeepSeek-R1-Cybersecurity-8B-Merged",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"sainikhiljuluri/DeepSeek-R1-Cybersecurity-8B-Merged",
trust_remote_code=True
)
prompt = "Explain how to detect SQL injection attacks."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Via Inference API
import requests
API_URL = "https://api-inference.huggingface.co/models/sainikhiljuluri/DeepSeek-R1-Cybersecurity-8B-Merged"
headers = {"Authorization": "Bearer YOUR_HF_TOKEN"}
response = requests.post(API_URL, headers=headers, json={
"inputs": "What are the indicators of a ransomware attack?",
"parameters": {"max_new_tokens": 256, "temperature": 0.7}
})
print(response.json())
Cybersecurity Capabilities
- 🔍 Threat analysis and classification
- 🚨 Security alert triage
- 📋 Incident response guidance
- 🦠 Malware analysis
- 📊 MITRE ATT&CK mapping
- 🔐 Vulnerability assessment
- Downloads last month
- 28
Model tree for sainikhiljuluri/DeepSeek-R1-Cybersecurity-8B-Merged
Base model
deepseek-ai/DeepSeek-R1-0528-Qwen3-8B